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h 20, 20031 Introdu
tionEvery 
ollege student has learned how to solve a system of linear equations, but how manywould know how to solve Ax � b for x � 0 or show that there is no solution? Solving asystem of linear inequalities has traditionally been taught only in higher level 
ourses and isgiven an in
omplete treatment in introdu
tory linear algebra 
ourses. For example, the textof Strang [4℄ presents linear programming and states Farkas's lemma. It does not, however,in
lude any proof of the �niteness of the simplex method or a proof of the lemma. Re
entdevelopments have 
hanged the situation dramati
ally. Re�nements of the simplex method byBland [1℄ in the 1970s lead to simpler proofs of its �niteness, and Bland's original proof wassimpli�ed further by several authors. In this paper we will use a variant of Bland's pivot ruleto solve a system of inequalities dire
tly, without any need for introdu
ing linear programming.We give a simple proof of the �niteness of the method, based on ideas 
ontained in the paperof Fukuda and Terlaky [3℄ on the related 
riss-
ross method. Finally, if the system is infeasible,we show how the termination 
ondition of the algorithm gives a 
erti�
ate of infeasibility, thusproving the Farkas Lemma. Terminology and notation used here follows that of Chv�atal's linearprogramming book [2℄.We 
onsider the following problem. Given a matrix A = [aij℄ 2 <m�n, and a 
olumn ve
torb 2 <m, �nd x = (x1; x2; :::; xn)T that satis�es the following linear system, or prove no su
hve
tor x exists: Ax � b (1)x � 0We will illustrate a simple method to do this on the following example:�x1 � 2x2 + x3 � �1x1 � 3x2 � x3 � 2 (2)�x1 � 2x2 + 2x3 � �2xi � 0 for i = 1; 2; 3:We �rst 
onvert this system of inequalities into a system of equations, by introdu
ing anew nonnegative sla
k variable for ea
h inequality. This sla
k variable represents the di�eren
e1



between the right and left-hand side of the inequality. In our example, we need three newvariables whi
h we label x4; x5, and x6. Putting these variables on the left-hand side, and theothers on the right-hand side we have the following system:x4 = �1 + x1 + 2x2 � x3x5 = 2� x1 + 3x2 + x3 (3)x6 = �2 + x1 + 2x2 � 2x3It is easy to see that if we have any nonnegative solution of (2) then it extends to a nonnegativesolution to (3) by de�ning the sla
k variables by their respe
tive equations. Conversely anonnegative solution of (3) when restri
ted to x1; x2 and x3 gives a solution to (2). We 
alla system of equations su
h as (3) a di
tionary. The variables on the left-hand side are 
alledbasi
 and the variables on the right-hand side are 
alled 
obasi
. We get a basi
 solution tothe equations in (3) by setting all the 
obasi
 variables to zero and x4 = �1; x5 = 2; x6 = �2.Unfortunately this is not a nonnegative solution. The algorithm pro
eeds as follows: it �ndsthe smallest-indexed basi
 variable that is set to a negative value. In this 
ase it is x4. Inthe equation for x4 we �nd the 
obasi
 variable with the smallest index that has a positive
oeÆ
ient. In this 
ase it is x1. We solve this equation for x1 and substitute for x1 in the otherequations. This yields a new di
tionary:x1 = 1� 2x2 + x3 + x4x5 = 1 + 5x2 � x4 (4)x6 = �1� x3 + x4The step we performed is 
alled a pivot operation, and is the basi
 step of the algorithm.In fa
t it is the only step: we simply repeat this operation. In (4), �rst set the 
obasi
 (i.e.right-hand side) variables to zero and get the basi
 solution x1 = 1; x5 = 1; x6 = �1. Again, we�nd the variable with the smallest index and negative value, x6. In the equation for x6 we �ndthe smallest-indexed variable with a positive 
oeÆ
ient, x4. We pivot by solving this equationfor x4 and substituting for x4 in the other equations, obtaining the di
tionary:x1 = 2� 2x2 + 2x3 + x6x4 = 1 + x3 + x6 (5)x5 = 0 + 5x2 � x3 � x6We are now in lu
k. The basi
 solution is nonnegative, and its restri
tion to our originalthree variables gives a feasible solution to (2): x1 = 2; x2 = 0; x3 = 0. So far so good. Animmediate question now is: what happens if there is no solution to the original problem? Let2



us 
onsider the following problem: �x1 + 2x2 + x3 � 33x1 � 2x2 + x3 � �17 (6)�x1 � 6x2 � 23x3 � 19We get our initial di
tionary by introdu
ing three sla
k variables and letting them be thebasi
 variables: x4 = 3 + x1 � 2x2 � x3x5 = �17� 3x1 + 2x2 � x3 (7)x6 = 19 + x1 + 6x2 + 23x3The algorithm pro
eeds as before by 
hoosing the equation for x5 and solving for x2:x2 = 17=2 + (3=2)x1 + (1=2)x3 + (1=2)x5x4 = �14� 2x1 � 2x3 � x5 (8)x6 = 70 + 10x1 + 26x3 + 3x5Now we �nd something new. We sele
t the equation for x4 and �nd that there is no 
obasi
variable with a positive 
oeÆ
ient. Let us rewrite this equation with all variables on the left-hand side, in
luding those with zero 
oeÆ
ient, getting:2x1 + 0x2 + 2x3 + 1x4 + 1x5 + 0x6 = �14 (9)This is an example of an in
onsistent equation. Note that the 
oeÆ
ients of all variables arenonnegative, but the right-hand side is negative. Therefore this equation 
annot be satis�edby 
hoosing any 
ombination on nonnegative values for the variables. This equation was de-rived from the original system by standard operations that do not 
hange the solution set forthe equations. Therefore (7) and hen
e (6) has no nonnegative solution. In fa
t (9) gives asimple proof of this 
oded in the bold fa
e 
oeÆ
ients of the sla
k variables. We multiply ea
hinequality in (6) by the 
oeÆ
ient of its 
orresponding sla
k variable and add them up getting:1 � (�x1 + 2x2 + x3 � 3)+1 � (3x1 � 2x2 + x3 � �17) (10)+0 � (�x1 � 6x2 � 23x3 � 19)) 2x1+2x3� �14 (11)The �nal inequality, (11), is 
alled an in
onsistent inequality : all the variables have a nonnega-tive 
oeÆ
ient and the right-hand side is negative. The multipliers given by the 
oeÆ
ients ofthe sla
k variables are 
alled a 
erti�
ate of infeasibility for the original system.3



We now have a 
omplete des
ription of the algorithm whi
h we 
all the b-rule, for solvingproblems of form (1):Step 1: Introdu
e m sla
k variables xn+1; :::; xn+m and use these as the basis (left-handside) of an initial di
tionary:xn+i = bi � nXj=1 aijxj i = 1; :::; m (12)Step 2: Set the 
obasi
 (right-hand side) variables to zero. Find the smallest index of thebasi
 (left-hand side) variables whi
h re
eive a negative value. If there is none, terminate witha feasible solution.Step 3: Find the 
obasi
 variable in the equation 
hosen in Step 2 that has the smallestindex and a positive 
oeÆ
ient. If there is none, terminate as the problem is infeasible. The
oeÆ
ients of the sla
k variables give a 
erti�
ate of infeasibility. Otherwise, solve this equationfor this variable, and substitute in all of the other equations. Go to Step 2.In what follows we prove the following:- the algorithm des
ribed above terminates in a �nite number of steps;- if it terminates in Step 2, then the basi
 solution is feasible for (1);- if it terminates in Step 3, then the system (1) is infeasible and the sla
k 
oeÆ
ients givea 
erti�
ate of this.2 Proof of Corre
tnessTheorem 1 The b-rule is �nite.Proof. Given an input system (1) we 
onstru
t the initial di
tionary (12) and run theb-rule algorithm. Sin
e there are at most �n+mm � possible 
hoi
es of a basis, if the algorithm isnot �nite then some bases must be repeated, a pro
ess 
alled 
y
ling. Let us assume that this
an happen, and 
hoose a system of equations that 
y
les.First suppose that xn+m (n+m being the largest index) enters and leaves the basis duringthe 
y
le. When xn+m is 
hosen to enter the basis we must have an equation of the followingform, where we let B and N denote the set of basi
 and 
obasi
 indi
es respe
tively:xk = �b0k � Xj2Nnfn+mg a0kjxj + a0k;n+mxn+m (13)Note the 
hoi
e of xn+m as entering variable in this equation implies that �b0k < 0, a0k;n+m > 0and a0kj � 0 for j 2 N nfn+mg. This shows that every solution to the full system of equationswith x1; :::; xn+m�1 � 0 must have xn+m > 0. 4



Now 
onsider when xn+m is 
hosen to leave the basis. The di
tionary has form:xi = b0i +Xj2N a0ijxj for i 2 B n fn+mg (14)xn+m = �b0n+m +Xj2N a0kjxjThe 
hoi
e of xn+m ensures that �b0n+m < 0 and b0i � 0 for i 2 B n fn +mg. By setting the
obasi
 variables to zero, the above di
tionary shows that there exists a solution to the systemof equations with x1; :::; xn+m�1 � 0 and xn+m < 0. Clearly both situations (13) and (14)
annot hold, so there 
annot exist a 
y
le during whi
h the largest-indexed variable enters andleaves the basis.Now suppose there exists a 
y
le where xn+m always stays in the basis, then we 
an removexn+m and it's 
orresponding equation without 
hanging the pivot de
isions made during the
y
le. Similarly, if there exists a 
y
le where xn+m always stays in the 
obasis, then we 
anremove xn+m from all of the equations without in
uen
ing the 
y
le. Either way we 
an redu
eoriginal example that 
y
les to an equivalent example during whi
h the largest-indexed variableboth enters and leaves the basis. This will lead us to the two 
on
i
ting situations above, so a
y
le 
annot exist: the algorithm is �nite.Sin
e the algorithm is �nite, it must terminate in either Step 2 or Step 3. If it terminatesin Step 2, we have a nonnegative solution to the original system. This follows from the fa
tthat the only operations we performed on the initial di
tionary were standard operations formanipulating a system of equations. If the algorithm stops in Step 3, we have a 
erti�
ate ofinfeasibility whi
h, when stated in general terms, is a variant of the Farkas Lemma.Theorem 2 (Farkas Lemma variant) Either there exists x 2 <n; x � 0 su
h that Ax � b orthere exists y 2 <m; y � 0 su
h that yTA � 0; yTb < 0.Proof. We begin by showing that there 
annot exist both a ve
tor x and a ve
tor ysatisfying the 
onditions of the theorem. For otherwise, 0 > yT b � yTAx � 0. If su
h a ve
torx does not exist, the �niteness of the b-rule implies that the algorithm will terminate in Step3. The algorithm returns an in
onsistent equation:n+mXj=1;j 6=k a0kjxj + xk = �b0k (15)where b0k > 0 and all of the 
oeÆ
ients a0kj � 0. Set yi = a0k;n+i � 0; i = 1; :::; m. We observethat equation (15) is obtained from the initial di
tionary (12) by multiplying the equation forxn+i by yi and summing, for i = 1; :::; m. This is be
ause variable xn+i appears only on
e in the5



entire di
tionary, as the left-hand side of its de�ning equation. This shows that yT b = �b0k < 0,and mXi=1 yiaij = a0kj � 0 j = 1; :::; n (16)again by the termination 
ondition of the algorithm. Hen
e yTA � 0.3 Con
lusionThe b-rule is a �nite algorithm that �nds a nonnegative solution to a system of linear inequal-ities. Readers familiar with linear programming will re
ognize that the b-rule is the dual formof Bland's rule, [1℄ (see also [2℄), with a zero obje
tive (
ost) row. Simple variants of the b-ruleexist for �nding a solution to Ax � b, or Ax = b; x � 0 et
. We 
an also use the b-rule to obtainalgorithmi
 proofs of the Farkas Lemma and the Fundamental Theorem of Linear Inequalities.In pra
ti
e, the b-rule 
an be used to �nd a starting primal-feasible basis for a linear programwithout having to introdu
e the traditional "phase-one" arti�
ial variable. However, as withall pivot rules known, in the worst 
ase it may require an exponential number of steps.Referen
es[1℄ R.G. Bland, New �nite pivot rules for the simplex method, Mathemati
s of OperationsResear
h 2 (1977) 103.[2℄ V. Chv�atal, Linear Programming, Freeman, 1980.[3℄ K. Fukuda and T.Terlaky, Criss-
ross methods: A fresh view on pivot algorithms, Mathe-mati
al Programming 79 (1997) 369-395.[4℄ G. Strang, Linear Algebra and Its Appli
ations, A
ademi
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