
Solving Inequalities and Proving Farkas's Lemma Made EasyDavid Avis and Bohdan KaluznyMarh 20, 20031 IntrodutionEvery ollege student has learned how to solve a system of linear equations, but how manywould know how to solve Ax � b for x � 0 or show that there is no solution? Solving asystem of linear inequalities has traditionally been taught only in higher level ourses and isgiven an inomplete treatment in introdutory linear algebra ourses. For example, the textof Strang [4℄ presents linear programming and states Farkas's lemma. It does not, however,inlude any proof of the �niteness of the simplex method or a proof of the lemma. Reentdevelopments have hanged the situation dramatially. Re�nements of the simplex method byBland [1℄ in the 1970s lead to simpler proofs of its �niteness, and Bland's original proof wassimpli�ed further by several authors. In this paper we will use a variant of Bland's pivot ruleto solve a system of inequalities diretly, without any need for introduing linear programming.We give a simple proof of the �niteness of the method, based on ideas ontained in the paperof Fukuda and Terlaky [3℄ on the related riss-ross method. Finally, if the system is infeasible,we show how the termination ondition of the algorithm gives a erti�ate of infeasibility, thusproving the Farkas Lemma. Terminology and notation used here follows that of Chv�atal's linearprogramming book [2℄.We onsider the following problem. Given a matrix A = [aij℄ 2 <m�n, and a olumn vetorb 2 <m, �nd x = (x1; x2; :::; xn)T that satis�es the following linear system, or prove no suhvetor x exists: Ax � b (1)x � 0We will illustrate a simple method to do this on the following example:�x1 � 2x2 + x3 � �1x1 � 3x2 � x3 � 2 (2)�x1 � 2x2 + 2x3 � �2xi � 0 for i = 1; 2; 3:We �rst onvert this system of inequalities into a system of equations, by introduing anew nonnegative slak variable for eah inequality. This slak variable represents the di�erene1



between the right and left-hand side of the inequality. In our example, we need three newvariables whih we label x4; x5, and x6. Putting these variables on the left-hand side, and theothers on the right-hand side we have the following system:x4 = �1 + x1 + 2x2 � x3x5 = 2� x1 + 3x2 + x3 (3)x6 = �2 + x1 + 2x2 � 2x3It is easy to see that if we have any nonnegative solution of (2) then it extends to a nonnegativesolution to (3) by de�ning the slak variables by their respetive equations. Conversely anonnegative solution of (3) when restrited to x1; x2 and x3 gives a solution to (2). We alla system of equations suh as (3) a ditionary. The variables on the left-hand side are alledbasi and the variables on the right-hand side are alled obasi. We get a basi solution tothe equations in (3) by setting all the obasi variables to zero and x4 = �1; x5 = 2; x6 = �2.Unfortunately this is not a nonnegative solution. The algorithm proeeds as follows: it �ndsthe smallest-indexed basi variable that is set to a negative value. In this ase it is x4. Inthe equation for x4 we �nd the obasi variable with the smallest index that has a positiveoeÆient. In this ase it is x1. We solve this equation for x1 and substitute for x1 in the otherequations. This yields a new ditionary:x1 = 1� 2x2 + x3 + x4x5 = 1 + 5x2 � x4 (4)x6 = �1� x3 + x4The step we performed is alled a pivot operation, and is the basi step of the algorithm.In fat it is the only step: we simply repeat this operation. In (4), �rst set the obasi (i.e.right-hand side) variables to zero and get the basi solution x1 = 1; x5 = 1; x6 = �1. Again, we�nd the variable with the smallest index and negative value, x6. In the equation for x6 we �ndthe smallest-indexed variable with a positive oeÆient, x4. We pivot by solving this equationfor x4 and substituting for x4 in the other equations, obtaining the ditionary:x1 = 2� 2x2 + 2x3 + x6x4 = 1 + x3 + x6 (5)x5 = 0 + 5x2 � x3 � x6We are now in luk. The basi solution is nonnegative, and its restrition to our originalthree variables gives a feasible solution to (2): x1 = 2; x2 = 0; x3 = 0. So far so good. Animmediate question now is: what happens if there is no solution to the original problem? Let2



us onsider the following problem: �x1 + 2x2 + x3 � 33x1 � 2x2 + x3 � �17 (6)�x1 � 6x2 � 23x3 � 19We get our initial ditionary by introduing three slak variables and letting them be thebasi variables: x4 = 3 + x1 � 2x2 � x3x5 = �17� 3x1 + 2x2 � x3 (7)x6 = 19 + x1 + 6x2 + 23x3The algorithm proeeds as before by hoosing the equation for x5 and solving for x2:x2 = 17=2 + (3=2)x1 + (1=2)x3 + (1=2)x5x4 = �14� 2x1 � 2x3 � x5 (8)x6 = 70 + 10x1 + 26x3 + 3x5Now we �nd something new. We selet the equation for x4 and �nd that there is no obasivariable with a positive oeÆient. Let us rewrite this equation with all variables on the left-hand side, inluding those with zero oeÆient, getting:2x1 + 0x2 + 2x3 + 1x4 + 1x5 + 0x6 = �14 (9)This is an example of an inonsistent equation. Note that the oeÆients of all variables arenonnegative, but the right-hand side is negative. Therefore this equation annot be satis�edby hoosing any ombination on nonnegative values for the variables. This equation was de-rived from the original system by standard operations that do not hange the solution set forthe equations. Therefore (7) and hene (6) has no nonnegative solution. In fat (9) gives asimple proof of this oded in the bold fae oeÆients of the slak variables. We multiply eahinequality in (6) by the oeÆient of its orresponding slak variable and add them up getting:1 � (�x1 + 2x2 + x3 � 3)+1 � (3x1 � 2x2 + x3 � �17) (10)+0 � (�x1 � 6x2 � 23x3 � 19)) 2x1+2x3� �14 (11)The �nal inequality, (11), is alled an inonsistent inequality : all the variables have a nonnega-tive oeÆient and the right-hand side is negative. The multipliers given by the oeÆients ofthe slak variables are alled a erti�ate of infeasibility for the original system.3



We now have a omplete desription of the algorithm whih we all the b-rule, for solvingproblems of form (1):Step 1: Introdue m slak variables xn+1; :::; xn+m and use these as the basis (left-handside) of an initial ditionary:xn+i = bi � nXj=1 aijxj i = 1; :::; m (12)Step 2: Set the obasi (right-hand side) variables to zero. Find the smallest index of thebasi (left-hand side) variables whih reeive a negative value. If there is none, terminate witha feasible solution.Step 3: Find the obasi variable in the equation hosen in Step 2 that has the smallestindex and a positive oeÆient. If there is none, terminate as the problem is infeasible. TheoeÆients of the slak variables give a erti�ate of infeasibility. Otherwise, solve this equationfor this variable, and substitute in all of the other equations. Go to Step 2.In what follows we prove the following:- the algorithm desribed above terminates in a �nite number of steps;- if it terminates in Step 2, then the basi solution is feasible for (1);- if it terminates in Step 3, then the system (1) is infeasible and the slak oeÆients givea erti�ate of this.2 Proof of CorretnessTheorem 1 The b-rule is �nite.Proof. Given an input system (1) we onstrut the initial ditionary (12) and run theb-rule algorithm. Sine there are at most �n+mm � possible hoies of a basis, if the algorithm isnot �nite then some bases must be repeated, a proess alled yling. Let us assume that thisan happen, and hoose a system of equations that yles.First suppose that xn+m (n+m being the largest index) enters and leaves the basis duringthe yle. When xn+m is hosen to enter the basis we must have an equation of the followingform, where we let B and N denote the set of basi and obasi indies respetively:xk = �b0k � Xj2Nnfn+mg a0kjxj + a0k;n+mxn+m (13)Note the hoie of xn+m as entering variable in this equation implies that �b0k < 0, a0k;n+m > 0and a0kj � 0 for j 2 N nfn+mg. This shows that every solution to the full system of equationswith x1; :::; xn+m�1 � 0 must have xn+m > 0. 4



Now onsider when xn+m is hosen to leave the basis. The ditionary has form:xi = b0i +Xj2N a0ijxj for i 2 B n fn+mg (14)xn+m = �b0n+m +Xj2N a0kjxjThe hoie of xn+m ensures that �b0n+m < 0 and b0i � 0 for i 2 B n fn +mg. By setting theobasi variables to zero, the above ditionary shows that there exists a solution to the systemof equations with x1; :::; xn+m�1 � 0 and xn+m < 0. Clearly both situations (13) and (14)annot hold, so there annot exist a yle during whih the largest-indexed variable enters andleaves the basis.Now suppose there exists a yle where xn+m always stays in the basis, then we an removexn+m and it's orresponding equation without hanging the pivot deisions made during theyle. Similarly, if there exists a yle where xn+m always stays in the obasis, then we anremove xn+m from all of the equations without inuening the yle. Either way we an redueoriginal example that yles to an equivalent example during whih the largest-indexed variableboth enters and leaves the basis. This will lead us to the two oniting situations above, so ayle annot exist: the algorithm is �nite.Sine the algorithm is �nite, it must terminate in either Step 2 or Step 3. If it terminatesin Step 2, we have a nonnegative solution to the original system. This follows from the fatthat the only operations we performed on the initial ditionary were standard operations formanipulating a system of equations. If the algorithm stops in Step 3, we have a erti�ate ofinfeasibility whih, when stated in general terms, is a variant of the Farkas Lemma.Theorem 2 (Farkas Lemma variant) Either there exists x 2 <n; x � 0 suh that Ax � b orthere exists y 2 <m; y � 0 suh that yTA � 0; yTb < 0.Proof. We begin by showing that there annot exist both a vetor x and a vetor ysatisfying the onditions of the theorem. For otherwise, 0 > yT b � yTAx � 0. If suh a vetorx does not exist, the �niteness of the b-rule implies that the algorithm will terminate in Step3. The algorithm returns an inonsistent equation:n+mXj=1;j 6=k a0kjxj + xk = �b0k (15)where b0k > 0 and all of the oeÆients a0kj � 0. Set yi = a0k;n+i � 0; i = 1; :::; m. We observethat equation (15) is obtained from the initial ditionary (12) by multiplying the equation forxn+i by yi and summing, for i = 1; :::; m. This is beause variable xn+i appears only one in the5



entire ditionary, as the left-hand side of its de�ning equation. This shows that yT b = �b0k < 0,and mXi=1 yiaij = a0kj � 0 j = 1; :::; n (16)again by the termination ondition of the algorithm. Hene yTA � 0.3 ConlusionThe b-rule is a �nite algorithm that �nds a nonnegative solution to a system of linear inequal-ities. Readers familiar with linear programming will reognize that the b-rule is the dual formof Bland's rule, [1℄ (see also [2℄), with a zero objetive (ost) row. Simple variants of the b-ruleexist for �nding a solution to Ax � b, or Ax = b; x � 0 et. We an also use the b-rule to obtainalgorithmi proofs of the Farkas Lemma and the Fundamental Theorem of Linear Inequalities.In pratie, the b-rule an be used to �nd a starting primal-feasible basis for a linear programwithout having to introdue the traditional "phase-one" arti�ial variable. However, as withall pivot rules known, in the worst ase it may require an exponential number of steps.Referenes[1℄ R.G. Bland, New �nite pivot rules for the simplex method, Mathematis of OperationsResearh 2 (1977) 103.[2℄ V. Chv�atal, Linear Programming, Freeman, 1980.[3℄ K. Fukuda and T.Terlaky, Criss-ross methods: A fresh view on pivot algorithms, Mathe-matial Programming 79 (1997) 369-395.[4℄ G. Strang, Linear Algebra and Its Appliations, Aademi Press, 1980.Shool of Computer SieneMGill University3480 University StreetMontreal, Quebe, H3A 2A7Canadafavis,beezerg�s.mgill.a
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