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1 Introduction

Every college student has learned how to solve a system of linear equations, but how many
would know how to solve Ax < b for x > 0 or show that there is no solution? Solving a
system of linear inequalities has traditionally been taught only in higher level courses and is
given an incomplete treatment in introductory linear algebra courses. For example, the text
of Strang [4] presents linear programming and states Farkas’s lemma. It does not, however,
include any proof of the finiteness of the simplex method or a proof of the lemma. Recent
developments have changed the situation dramatically. Refinements of the simplex method by
Bland [1] in the 1970s lead to simpler proofs of its finiteness, and Bland’s original proof was
simplified further by several authors. In this paper we will use a variant of Bland’s pivot rule
to solve a system of inequalities directly, without any need for introducing linear programming.
We give a simple proof of the finiteness of the method, based on ideas contained in the paper
of Fukuda and Terlaky [3] on the related criss-cross method. Finally, if the system is infeasible,
we show how the termination condition of the algorithm gives a certificate of infeasibility, thus
proving the Farkas Lemma. Terminology and notation used here follows that of Chvatal’s linear
programming book [2].

We consider the following problem. Given a matrix A = [a;;] € R™*", and a column vector
b e R find x = (z1,29,...,7,)" that satisfies the following linear system, or prove no such
vector x exists:

Az <b (1)
x>0

We will illustrate a simple method to do this on the following example:

—x1 — 229+ 13 < —1
T — 3Ty — 23 < 2 (2)
—x1 — 219 + 223 < =2
x; >0 forv=1,2,3.

We first convert this system of inequalities into a system of equations, by introducing a
new nonnegative slack variable for each inequality. This slack variable represents the difference



between the right and left-hand side of the inequality. In our example, we need three new
variables which we label x4, x5, and x4. Putting these variables on the left-hand side, and the
others on the right-hand side we have the following system:

Ty =—14+x1 4+ 215 — 23
1‘5:2—£U1+3£U2+£U3 (3)
x6:—2+x1+2x2—2x3

[t is easy to see that if we have any nonnegative solution of (2) then it extends to a nonnegative
solution to (3) by defining the slack variables by their respective equations. Conversely a
nonnegative solution of (3) when restricted to z1,z, and x3 gives a solution to (2). We call
a system of equations such as (3) a dictionary. The variables on the left-hand side are called
basic and the variables on the right-hand side are called cobasic. We get a basic solution to
the equations in (3) by setting all the cobasic variables to zero and x4 = —1, 25 = 2,26 = —2.
Unfortunately this is not a nonnegative solution. The algorithm proceeds as follows: it finds
the smallest-indexed basic variable that is set to a negative value. In this case it is x4. In
the equation for z; we find the cobasic variable with the smallest index that has a positive
coefficient. In this case it is z;. We solve this equation for x; and substitute for x; in the other
equations. This yields a new dictionary:

371:1—2372+.Z'3+.’E4
Ts =1+ w9 — 2y (4)

Te=—1—o3+ 24

The step we performed is called a pivot operation, and is the basic step of the algorithm.
In fact it is the only step: we simply repeat this operation. In (4), first set the cobasic (i.e.
right-hand side) variables to zero and get the basic solution 1 = 1,25 = 1,26 = —1. Again, we
find the variable with the smallest index and negative value, zg. In the equation for x4 we find
the smallest-indexed variable with a positive coefficient, z,. We pivot by solving this equation
for x4 and substituting for z, in the other equations, obtaining the dictionary:

1 =2 — 219 + 2x3 + w4
.’174:1+.Z'3+-’176 (5)

.’E5:0+5.’E2—.’E3—l‘6

We are now in luck. The basic solution is nonnegative, and its restriction to our original
three variables gives a feasible solution to (2): z; = 2,29 = 0,23 = 0. So far so good. An
immediate question now is: what happens if there is no solution to the original problem? Let



us consider the following problem:

—I +2.’172—|—.’173 S 3
3.’171 — 2.’172 + T3 S —17 (6)
—T1 — 61‘2 — 231‘3 S 19

We get our initial dictionary by introducing three slack variables and letting them be the
basic variables:

.’174:3+.Z'1—2.’172—.Z'3
s = —17 — 3x1 + 209 — 3 (7)
$6:19+$1+6$2+23$3

The algorithm proceeds as before by choosing the equation for x5 and solving for x»:

oo = 17/2 + (3/2)11 + (1/2)3 + (1/2)75
Ty = —14—21‘1 —2%'3—1'5 (8)
Te = 70 4+ 10z + 26x3 + 375

Now we find something new. We select the equation for z, and find that there is no cobasic
variable with a positive coefficient. Let us rewrite this equation with all variables on the left-
hand side, including those with zero coefficient, getting:

2.1‘1 + 0.1‘2 + 2.1‘3 + 1.1‘4 + 1.’175 + 0.1‘6 =—-14 (9)

This is an example of an inconsistent equation. Note that the coefficients of all variables are
nonnegative, but the right-hand side is negative. Therefore this equation cannot be satisfied
by choosing any combination on nonnegative values for the variables. This equation was de-
rived from the original system by standard operations that do not change the solution set for
the equations. Therefore (7) and hence (6) has no nonnegative solution. In fact (9) gives a
simple proof of this coded in the bold face coefficients of the slack variables. We multiply each
inequality in (6) by the coefficient of its corresponding slack variable and add them up getting:

1% (=21 + 229 + 3 < 3)
+1 % (32, — 229 + 23 < —17) (10)
+0 % (—.Tl — 6.1'2 — 23.1'3 S ].9)

= 2x,4+2x3< —14 (11)

The final inequality, (11), is called an inconsistent inequality: all the variables have a nonnega-
tive coefficient and the right-hand side is negative. The multipliers given by the coefficients of
the slack variables are called a certificate of infeasibility for the original system.

3



We now have a complete description of the algorithm which we call the b-rule, for solving
problems of form (1):

Step 1: Introduce m slack variables z, 1, ..., Z,1m and use these as the basis (left-hand
side) of an initial dictionary:

Tnti = bz — Zaijxj 1= 1, I (12)
j=1

Step 2: Set the cobasic (right-hand side) variables to zero. Find the smallest index of the
basic (left-hand side) variables which receive a negative value. If there is none, terminate with
a feasible solution.

Step 3: Find the cobasic variable in the equation chosen in Step 2 that has the smallest
index and a positive coefficient. If there is none, terminate as the problem is infeasible. The
coefficients of the slack variables give a certificate of infeasibility. Otherwise, solve this equation
for this variable, and substitute in all of the other equations. Go to Step 2.

In what follows we prove the following:

- the algorithm described above terminates in a finite number of steps;

- if it terminates in Step 2, then the basic solution is feasible for (1);

- if it terminates in Step 3, then the system (1) is infeasible and the slack coefficients give
a certificate of this.

2  Proof of Correctness
Theorem 1 The b-rule is finite.

Proof. Given an input system (1) we construct the initial dictionary (12) and run the

";m) possible choices of a basis, if the algorithm is

not finite then some bases must be repeated, a process called cycling. Let us assume that this

b-rule algorithm. Since there are at most (

can happen, and choose a system of equations that cycles.

First suppose that z,,,, (n + m being the largest index) enters and leaves the basis during
the cycle. When x4, is chosen to enter the basis we must have an equation of the following
form, where we let B and N denote the set of basic and cobasic indices respectively:

T = —by — Z Wi Tj + Oy Tntm (13)
JEN\{n+m}
Note the choice of z,,1,, as entering variable in this equation implies that —b} <0, aj ., >0
and ajy; > 0 for j € N\ {n+m}. This shows that every solution to the full system of equations
with zq, ...,z m 1 > 0 must have z,,, > 0.



Now consider when x,,,, is chosen to leave the basis. The dictionary has form:

z; =0+ Z a;ja;j fori € B\ {n+m} (14)
JEN
Tn+m = _b;L+m + Z a;cjxj
jEN

< 0and b, >0 fori € B\ {n+ m}. By setting the
cobasic variables to zero, the above dictionary shows that there exists a solution to the system

The choice of z,,, ensures that —b;,
of equations with z1,..., 2,4 1 > 0 and x,.,, < 0. Clearly both situations (13) and (14)
cannot hold, so there cannot exist a cycle during which the largest-indexed variable enters and
leaves the basis.

Now suppose there exists a cycle where x,,,,, always stays in the basis, then we can remove
Tnem and it’s corresponding equation without changing the pivot decisions made during the
cycle. Similarly, if there exists a cycle where x,,, always stays in the cobasis, then we can
remove ., from all of the equations without influencing the cycle. Either way we can reduce
original example that cycles to an equivalent example during which the largest-indexed variable
both enters and leaves the basis. This will lead us to the two conflicting situations above, so a
cycle cannot exist: the algorithm is finite. m

Since the algorithm is finite, it must terminate in either Step 2 or Step 3. If it terminates
in Step 2, we have a nonnegative solution to the original system. This follows from the fact
that the only operations we performed on the initial dictionary were standard operations for
manipulating a system of equations. If the algorithm stops in Step 3, we have a certificate of
infeasibility which, when stated in general terms, is a variant of the Farkas Lemma.

Theorem 2 (Farkas Lemma variant) Either there exists x € R",x > 0 such that Ax < b or
there exists y € ™,y > 0 such that yT A > 0,y7b < 0.

Proof. We begin by showing that there cannot exist both a vector x and a vector y
satisfying the conditions of the theorem. For otherwise, 0 > y7b > y¥ Az > 0. If such a vector
x does not exist, the finiteness of the b-rule implies that the algorithm will terminate in Step
3. The algorithm returns an inconsistent equation:

n+m

Z ;i Tj + T = —by (15)

=1,

J#k
where by > 0 and all of the coefficients aj; > 0. Set y; = aj,,,; > 0,i = 1,...,m. We observe
that equation (15) is obtained from the initial dictionary (12) by multiplying the equation for
ZTn+i by y; and summing, for ¢ = 1, ..., m. This is because variable x,,; appears only once in the



entire dictionary, as the left-hand side of its defining equation. This shows that y”b = —b), < 0,
and

m
Zyiaij = a;gj >0 j=1,...n (16)
i=1

again by the termination condition of the algorithm. Hence y7A > 0. m

3 Conclusion

The b-rule is a finite algorithm that finds a nonnegative solution to a system of linear inequal-
ities. Readers familiar with linear programming will recognize that the b-rule is the dual form
of Bland’s rule, [1] (see also [2]), with a zero objective (cost) row. Simple variants of the b-rule
exist for finding a solution to Ax < b, or Az = b,z > 0 etc. We can also use the b-rule to obtain
algorithmic proofs of the Farkas Lemma and the Fundamental Theorem of Linear Inequalities.
In practice, the b-rule can be used to find a starting primal-feasible basis for a linear program
without having to introduce the traditional ”phase-one” artificial variable. However, as with
all pivot rules known, in the worst case it may require an exponential number of steps.
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