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—— Abstract

We describe mts, a generic framework for parallelizing certain types of tree search programs,
that provides a single common wrapper containing all parallelization, and minimizes the changes
needed to the existing single processor legacy code. The tree search properties required for the
use of mts are satisfied by any reverse search algorithm and other tree search methods such
as backtracking, branch and bound, and satisfiability testing. As examples we parallelize two
simple existing reverse search codes, generating topological sorts and generating spanning trees
of a graph, and one code for satisfiability testing. We give experimental results comparing the
parallel codes with other codes for the same problems.
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1 Introduction

Parallel programming is a vast area and there is a great amount of literature on it (see, e.g.,
Mattson et al. [20]). Topics include architecture, communication, data sharing, interrupts,
deadlocks, load balancing, and the distinction between shared memory and distributed
computing. This is all essential for building an efficient parallel algorithm from scratch.

Our starting point was different. We had a large complex code, Irs, developed over
about 20 years and tested extensively, which solved vertex/facet enumeration problems.
These problems are notoriously hard and running times often take weeks or longer. The
underlying algorithm, reverse search, was clearly suitable for parallelization. Nevertheless,
the mathematical intricacy of the underlying problem rendered the algorithmic engineering of
direct parallelization daunting. This led us to consider building all of the parallelization into
a wrapper, making only minor changes to the underlying Irs code. There followed a series of
implementations resulting ultimately in the authors’ mplrs code [6]. The key features of mplrs
are: (a) there is no parallel code inside Irs, (b) parallel threads execute Irs on non-overlapping
subproblems, (c) there is no communication between threads except at the beginning and
end of a subproblem execution, and (d) the computation can be distributed over a cluster
of computers. Most of the topics in parallel computation mentioned above are not major
issues in this restricted framework. The exception is load balancing which is the efficient
distribution of work among a number of processors and is a well-studied area of parallel
computation, see e.g., Shirazi et al. [22]. We experimented with a variety of load balancing
? David Avis and Ch.arles Jordan; .
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methods implementable within our framework, with various degrees of success. Finally a
particularly simple method, budgeting, was found to give extremely good load balancing up
to several hundred cores [6].

It seemed likely that similar results could be obtained for other algorithms based on
reverse search! or similar easily parallelizable tree search methods. Many such sequential
codes exist, so designing custom wrappers for each is not desirable. Our goal was to build a
single generic wrapper that could be used, with little if any modification, to do the required
parallelization while maintaining features (a)-(d) described above. This resulted in mts,
presented here. The current implementation? uses MPI and works on clusters of machines.

We describe our general approach in Section 2 and apply it to reverse search in Section
3. We give concrete examples for two simple enumeration problems: generating topological
sorts and spanning trees of a graph. There were several reasons for choosing these problems.
They are easily solved by reverse search, have existing codes, and provide simple examples of
how to apply mts. They have been extensively studied resulting in extremely sophisticated
sequential codes that are much faster than the reverse search codes but which seem to be
difficult to parallelize. Knuth [19] devotes considerable attention to these codes and gives
experimental results that we use as case studies in Section 5. We will see that, with sufficient
parallel hardware, using mts the reverse search codes become competitive with the state of
the art codes for topological sorts and faster for spanning tree enumeration. We describe
only the general process of adapting a code to mts; see [7] for details on the modifications.

Tree search has wide uses, of which enumeration is just one example. In fact it is a very
specific example as all nodes in the enumeration tree are visited. Doing this in parallel does
not create any major experimental design issues since the same tree must be searched in all
cases. Other uses include backtracking, game tree search, branch and bound, and satisfiability
problems. For these the idea is normally not to search the entire tree but to prune subtrees
when possible. The tree generated in these cases will normally differ depending on the
choices made at early stages and luck is involved. Designing and interpreting experiments to
evaluate the effect of parallelization is now a challenge: even if the work has been efficiently
spread between processes bad luck may cause the whole computation to be slow. The mts
framework can be applied to these types of problems. However, unlike the enumeration
problems, we may need to share some information between processes. As an example we
present a parallelization of the sequential satisfiability code Minisat in Section 4.1.

2 The mts framework

The goal of mts is to parallelize existing tree search codes with minimal internal modification
of these codes. The tree search codes should satisfy certain conditions, specified below. The
mts implementation starts a user-specified number of processes on a cluster of computers. One
process becomes the master, another becomes the consumer, and the remaining are workers
which essentially run the original tree search code on specified subtrees. Communication is
limited; workers are not interrupted and do not communicate between themselves.

The master sends the input data and parametrized subproblems to workers, informs the
other processes to exit when appropriate, and handles checkpointing. The consumer receives
and synchronizes output. Workers get budgeted subproblems from the master, run the legacy

1 In 2008, John White made a list of 130 different applications and implementations, see link at [5].
2 Version used here available at https://www-alg.ist.hokudai.ac.jp/~skip/mts/
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code, send output to the consumer, and return unfinished subproblems to the master. This

general approach is similar to but simpler than the well-known work-stealing approach [12].

Generating subproblems can be done in many ways. One way would be to report nodes
at some initial fixed depth. This works well for balanced trees but many trees encountered

in practice are highly unbalanced and the vast majority of subtrees contain few nodes.

Increasing the initial search depth does not solve this problem. Ideally we would only break
up the large subtrees and in the development of mplrs we tried various ways to estimate the
size of a given subtree. Experimentally this did not work well due to the high variance of the
estimator and the wasted cost of doing many estimates.

The idea that worked best, and is implemented in mts, was also the simplest: a heuristic
to determine large subtrees called budgeting. When assigning work the master specifies
that a worker should terminate after completing a certain amount of work, called a budget,
and then return a list of unexplored subtrees. The precise budget may depend on the

application. For enumeration problems it could be the number of nodes visited by the worker.

Some advantages of budgeting are (a) small subtrees are explored without being broken
up, (b) large subtrees will be broken up repeatedly, (c¢) each worker returns periodically
for reassignment, can give information to be passed on to other workers and receive such
information and (d) it is implemented on-the-fly and avoids the duplication of work done in
estimation. Implementing budgeting does not require interrupting workers or communication
between workers. The master uses dynamic budgets to control the job list: small budgets

break up more subtrees and lengthen the joblist while large budgets have the reverse effect.

Additional features of mts include checkpointing and restarts, allowing the user to move
jobs or free computing resources without losing work. mts can produce various histograms to
help tune performance. Histograms and their uses are described in Section 6.

2.1 Sequential tree search code

To be suitable for parallelization with mts the underlying tree search code, which we will
call search, must satisfy a few properties. First, when given a positive budget, search should
either finish the given job or return a list of unexplored nodes. Any unexplored node should
represent a smaller portion of the unfinished work, i.e. running search (with positive budgets)
on the unexplored nodes and any resulting unexplored nodes will eventually result in finishing
the original job. The code should also interpret the budget in some suitable way where
larger budgets correspond to doing more work than smaller budgets. This may require some
modification of the legacy code. Our applications usually interpret the budget as number of
traversed nodes and depth, but this is not required (see conflict budgeting in Section 4.1).

Any given worker must be able to work on any given unexplored node that mts has
seen. It is helpful for the unexplored nodes to represent non-overlapping jobs. mts supports
sharing data between workers, but it is helpful for shared data to be small. Implementing
a shared memory version of mts could help performance when large amounts of data are
shared. Shared data is not used in our enumeration applications. It is used for satisfiability
and similar applications to prune the search tree.

2.2 Master process

The master process begins with initialization, including obtaining an application-provided
initial start_wverter. It chooses an initial worker and sends it the initial subproblem. We
cannot yet proceed in parallel, so the master uses a user-specified (or very small default) initial
budget (maz_depth and/or maz_nodes) to ensure that this worker will return (hopefully
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many) unfinished subproblems quickly to create a job list L. The master then executes its main
loop which assigns budgeted subproblems to workers, collects unfinished subproblems to add
to L, and collects/sends updated shared__data from/to the workers. Assigning shared_ data
updates to the master is not essential: it simplifies checkpointing but can increase load on
the master and interconnect. Each worker either finishes its subproblem or reaches its budget
limitation (max_ depth and maz_nodes) and returns unfinished subproblems to the master
for insertion into L. This continues until no workers are running and the master has no
unfinished subproblems. Once the main loop ends, the master informs all processes to finish.
The main loop performs the following tasks:

subproblems and relevant shared__data updates are sent to free workers when available;

check if any workers are done, mark them as free and receive their unfinished subproblems;

check and receive shared__data updates.
The pseudocode is given as Algorithm 1 in the Appendix. Communication is non-blocking
and work proceeds when required information is available.

Using reasonable parameters is critical to performance. This is done dynamically by
observing |L|. We use parameters imin, lmaz and scale which depend on the type of tree
search problem being handled. The following default values are used in this paper. Initially,
to create a reasonable size list L, we set max__depth = 2 and max__nodes = 5000. Therefore
the initial worker will generate subtrees at depth 2 until 5000 nodes have been visited and
then terminates sending roots of unvisited subtrees back to the master. Additional workers
are given the same aggressive parameters until |L| grows larger than Imin times the number
of processors, at which point maz_ depth is removed. Once |L| is larger than Imaz times
the number of processors, we multiply the budget by scale. With scale = 40 workers will
not generate any new subproblems unless their tree has at least 200,000 nodes. If |L| drops
below these bounds we return to these smaller budgets. The default is Imin = 1, Imax = 3.
In Section 6 we show an example of how |L| typically behaves with these settings.

2.3 Workers

The worker processes are simpler — they receive the problem at startup, and then repeat their
main loop: receive a parametrized subproblem and possible shared_ data updates from the
master, work on the subproblem subject to the parameters, send the output to the consumer,
and send updated shared__data and unfinished subproblems to the master if the budget is
exhausted. The pseudocode is given as Algorithm 2 in the Appendix.

2.4 Consumer process

The consumer process in mts is the simplest. The workers send output to the consumer in
exactly the format it should be output (i.e., this formatting is done in parallel). The consumer
simply outputs it. By synchronizing output to a single destination, the consumer delivers a
continuous output stream to the user in the same way as search does. The pseudocode is
given as Algorithm 3 in the Appendix.

3 Applying mts to reverse search

Reverse search is a technique for generating large relatively unstructured sets of discrete
objects [4]. In its most basic form, reverse search can be viewed as the traversal of a spanning
tree, called the reverse search tree T, of a graph G = (V, E) whose nodes are the objects
to be generated. Edges in the graph are specified by an adjacency oracle, and the subset
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of edges of the reverse search tree are determined by an auxiliary function, which can be
thought of as a local search function f for an optimization problem defined on the set of
objects to be generated. One vertex, v*, is designated as the target vertex. For every other
vertex v € V repeated application of f must generate a path in G from v to v*. The set of
these paths defines the reverse search tree T', which has root v*.

A reverse search is initiated at v*, and only edges of the reverse search tree are traversed.

When a node is visited, the corresponding object is output. Since there is no possibility of
visiting a node by different paths, the visited nodes do not need to be stored. Backtracking
can be performed in the standard way using a stack, but this is not required as the local
search function can be used for this purpose.

In the basic setting described here a few properties are required. Firstly, the underlying
graph G must be connected and an upper bound on the maximum vertex degree, A, must
be known. The performance of the method depends on G having A as low as possible.
An adjacency oracle Adj(v, 7), similar to that described in Section 2.1, must be capable of
generating the adjacent vertices of any given vertex v in G. For each vertex v # v* the
local search function f(v) returns the tuple (u,j) where v = Adj(u,7) which defines the
parent v of v in 7. One difference with the discussion in Section 2.1 is that the adjacency
oracle in reverse search will also provide the parent of each node of T, except the root. This
parent node can easily be determined by use of f. Pseudocode is given in Algorithm 4 in
the Appendix and is invoked by setting start_vertex = v*. C implementations for several
simple enumeration problems are given at [5]. For convenience later, we do not output the
start__vertex in the pseudocode shown. Note that the vertices are output as a continuous
stream. Also note that Algorithm 4 does not require the parameter start_vertex to be the
root v* of the entire search tree. If an arbitrary node in the tree is given, the algorithm
reports the subtree rooted at this node and terminates.

We need to implement budgeting in order to parallelize Algorithm 4 with mts. We do
this in two ways that may be combined. Firstly we introduce the parameter maz_ depth
which terminates the tree search at that depth returning any unvisited subtrees. Secondly
we introduce a parameter max_ nodes which terminates the tree search after this many
nodes have been visited and again returns the roots of all unvisited subtrees. This entails
backtracking to the root and returning the unvisited siblings of each node in the backtrack
path. These modifications are straight forward and given in Algorithm 5 in the Appendix.

To output all nodes in the subtree of T rooted at v we set start__vertex = v, maz_ nodes =
400 and max__depth = 4+o00. This reduces to Algorithm 4 if v = v*. To break up T into
subtrees we have two options that can be combined. Firstly we can set the max_ depth
parameter resulting in all nodes at that depth to be flagged as unexplored. Secondly we
can set the budget parameter max_ nodes. In this case, once this many nodes have been
explored the current node and all unexplored siblings on the backtrack path to the root are
output and flagged as unexplored.

3.1 Example 1: Topological sorts

In the tutorial [5] a C implementation (per.c) is given for the reverse search algorithm for
generating permutations. A small modification of this code generates all topological sorts of
a partially ordered set that is given by a directed acyclic graph (DAG). Such topological
sorts are also called linear extensions or topological orderings. The code modification is given
as Exercise 5.1 and a solution to the exercise (topsorts.c) is at [5]. Here we describe how
to modify this code to allow parallelization via the mts interface to produce the program
mtopsorts. The details and code are available at [5].

23:5
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It is convenient to describe the procedure as two phases. Phase 1 implements budgeting
and organizes the internal data in a suitable way. This involves modifying an implementation
of Algorithm 4 to an implementation of Algorithm 5 that can be independently tested. We
need to prepare a global data structure bts_ data which contains problem data obtained from
the input. In Phase 2 we build a node structure for use by the mts wrapper and add necessary
routines to allow initialization and I/O in a parallel setting. In practice this involves sharing
a common header file with mts. The resulting program btopsorts.c can be compiled as a
sequential code or with mts as a parallel code with no change in the source files.

In the second phase we add the ‘hooks’ that allow communication with mts. This
involves defining a Node structure which holds all necessary information about a node in the
search tree. The roots of unexplored subtrees are maintained by mts for parallel processing.
Therefore whenever a search terminates due to the maxz_ nodes or maz__depth restrictions,
the Node structure of each unexplored tree node is returned to mts. As we do not wish to
customize mts for each application, we use a very generic node structure. The user should
pack and unpack the necessary data into this structure as required. The Node structure is
defined in the mts header.

The efficiency of mts depends on keeping the job list non-empty until the end of the
computation, without letting it get too large. Depending on the application, there may be a
substantial restart cost for each unexplored subtree. Surely there is no need to return a leaf as
an unexplored node, and the prune=0 option checks for this. Further, if an unexplored node
has only one child it may be advantageous to explore further, terminating either at a leaf or
at a node with two or more children, which is returned as unezplored. The prune=1 option
handles this condition, meaning that no isolated nodes or paths are returned as unexplored.
Note that pruning is not a built-in mts option; it is an example of options that applications
may wish to include and was implemented in mtopsorts.

3.2 Example 2: Spanning trees

In the tutorial [5] a C implementation (tree.c) is given for the reverse search algorithm for all
spanning trees of the complete graph. An extension of this to generate all spanning trees of
a given graph is stated as Exercise 6.3. Applying Phase 1 and 2 as described above results in
the code btree.c. Again this may be compiled as a sequential code or with the mts wrapper
to provide the parallel implementation mtree. All of these codes are given at the URL [5].

4 Applying mts to satisfiability

Boolean satisfiability (SAT) asks us to determine the existence of (or find) satisfying as-
signments for propositional formulas, see [11] for more background. SAT solvers have made
tremendous progress over the years, and are now widely used as general NP solvers. While
most application problems seem to result in easy SAT instances [9], there has long been
interest in parallel SAT solvers for hard instances. Despite the many challenges [14, 17] in
parallel SAT, there are recent successes [15].

There are two major approaches to parallel SAT solvers. Either one somehow partitions
the space of possible assignments and uses divide-and-conquer (e.g., [2] for a recent example)
or one uses the portfolio approach and runs many sequential solvers on the original problem
(e.g., plingeling [10]). In either case, a major issue is determining which learnt clauses®

3 CDCL solvers learn clauses during the search, pruning the search space. See, e.g., Chapter 4 of [11].
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to share between workers [3]. While sharing these clauses helps prune the search space,
additional clauses slow the solver and enormous numbers of clauses are learned.

Another question for divide-and-conquer solvers is the question of how to divide the
search space. Many approaches have been tried, often setting initial variables and using
a common feature of sequential solvers to “solve under assumptions”. Some recent solvers
(e.g., [2] and treengeling [10]) work on these subproblems subject to some budget, and hard
subproblems can be split again. Cube-and-conquer [16] is another recent approach that uses
look-ahead solvers to divide the search space for CDCL solvers.

4.1 mtsat: parallelizing Minisat with mts

We used mts to implement a divide-and-conquer solver mtsat, using Minisat 2.2.0 as sequential
solver. Our goal was to demonstrate the use of shared__data and show that mts can be used in
settings other than enumeration. mtsat is still experimental and much work remains to reach
the level of state-of-the-art dedicated parallel SAT solvers, but it allows for experimentation
with, e.g., budgeting and restart strategies in parallel SAT.

Minisat [13] supports solving under assumptions, i.e. solving subject to some partial
assignment. It also supports solving subject to a budget, given in propagations or conflicts,
returning unknown if the given subproblem could not be solved within the budget.

The major modification required is to report unexplored partial assignments when the
budget is exhausted. At any point in the search, SAT solvers distinguish between decision
variables and propagated variables. Decision variables are those where the solver chose an
assignment, while propagated variables are those where the solver was able to determine
(because of a unit clause) that only one option need be explored. It suffices to return
unexplored nodes corresponding to the current partial assignment and to those formed
by taking the unexplored options for decision variables (including the last one) along the
backtrack path.

Regarding learnt clauses, we implemented a simple scheme sharing only learnt unit clauses.
The idea is that short clauses cut the search tree more than longer clauses; an early version of
plingeling also shared only units [10]. We avoided more sophisticated approaches to sharing
clauses [3, 2|, using conflicts to prune the job list L and similar ideas for simplicity.

mtsat includes additional options. For example, while the parallel solvers most similar to
our approach [2, 10] budget using conflicts — we added the option to budget using decisions.
Conflict budgets correspond to hitting a leaf in the search tree, while decision budgets
correspond to nodes in the search space (omitting propagated variables since those are
forced). Conflict budgets are attractive, but decision budgets correspond more closely to the
budgets used in Section 3 and allow us to experiment with different budgeting techniques.

Modern solvers generally perform random restarts, abandoning the current search to start
over (cf. Chapter 4 of [11]) and hopefully avoid getting stuck in hard parts of the search
space. We split problems along the backtrack path and schedule these abandoned portions
of the search space for later exploration — possibly resulting in much duplicated work. We
therefore added an option to disable restarts, in order to experiment with their impact on
performance in mtsat, and formula preprocessing, to experiment with the idea that avoiding
preprocessing can be beneficial to divide-and-conquer parallel SAT solvers [14].

The total is 50 lines of changes to legacy Minisat (including support to parse inputs from
strings) of the original 4803 lines, plus a few hundred lines of generic code interfacing the
Minisat API and mts that can be re-used. Essentially identical changes suffice to parallelize
Glucose (since it is based on Minisat) and others. One could easily support workers using a
mix of solvers, a hybrid of the divide-and-conquer and portfolio approaches to parallel SAT.

23:7

CVIT 2016



23:8

mts: a framework for parallel tree search

5 Experimental results

The tests were performed at Kyoto University on mai32, a cluster of 5 nodes with a total of
192 identical processor cores, consisting of:

mai32abcd: 4 nodes, each containing: 2x Opteron 6376 (16-core 2.3GHz), 32GB memory,

500GB hard drive (128 cores in total);

mai32ef: 4x Opteron 6376 (16-core 2.3GHz), 64 cores, 256GB memory, 4TB hard drive.
A complete description of the problems solved below is given in [7] and the input files are
available by following the link to tutorial2 at [5].

5.1 Topological sorts: mtopsorts

The tests were performed using the following codes:
VR: obtained from [1], generates topological sorts in lexicographic order via the Varol-
Rotem algorithm [23] (Algorithm V in Section 7.2.1.2 of [19]);
Genle: also obtained from [1], generates topological sorts in Gray code order using the
algorithm of Pruesse and Rotem [21];
btopsorts: derived from the reverse search code topsorts.c [5] as described in Section 3.1;
mtopsorts: mts parallelization of btopsorts.
For the tests all codes were used in count-only mode due to the enormous output that would
otherwise be generated. All codes were used with default parameters:

maz__depth =2 maz_nodes = 5000 scale =40 Imin =1 Imaz =3 (1)

The following graphs were chosen, listed in order of increasing edge density: pm22, cat42,
Kg 9. The constructions for the first two partial orders are well known (see, e.g., Section
7.2.1.2 of [19]) and the third is a complete bipartite graph.

Graph m n No. of perms VR | Genle | btopsorts mtopsorts
nodes edges 12 24 48 96 | 192
pm22 22 21 13,749,310,575 || 179 14 12723 1172 | 595 360 | 206 | 125
cat42 42 61 24,466,267,020 || 654 | 171 45674 4731 | 2699 | 1293 | 724 | 408
Ksgo 17 72 14,631,321,600 || 159 5 8957 859 445 249 | 137 | 85

Table 1 Topological sorts: mai32, times in secs

Results are in Table 1. The reverse search code btopsorts is very slow, over 900 times
slower than Genle and over 70 times slower than VR on pm22. However the parallel mts code
obtains excellent speedups and is faster than VR on all problems when 192 cores are used.

5.2 Spanning trees: mtree

The tests were performed using the following codes:

grayspan: Knuth’s implementation [18] of an algorithm that generates all spanning trees
of a given graph, changing only one edge at a time, as described in Malcolm Smith’s M.S.
thesis, Generating spanning trees (University of Victoria, 1997);

grayspspan: Knuth’s improved implementation of grayspan: “This program combines the
ideas of grayspan and spspan, resulting in a glorious routine that generates all spanning
trees of a given graph, changing only one edge at a time, with ‘guaranteed efficiency’—in
the sense that the total running time is O(m + n + t) when there are m edges, n vertices,
and t spanning trees.” [18];



David Avis and Charles Jordan 23:9

btree: derived from the reverse search code tree.c [5] as described in Section 3.2;

mtree: mts parallelization of btree.
Both grayspan and grayspspan are described in detail in Knuth [19]. Again all codes were
used in count-only mode and with the default parameters (1). The problems chosen were the
following graphs which are listed in order of increasing edge density: 8-cage, P5C5, C5Cs,
K77, K12. The latter 4 graphs were motivated by Table 5 in [19]: P5C5 appears therein and
the other graphs are larger versions of examples in that table.

Graph m n No. of trees grayspan | grayspspan btree mtree
nodes edges 12 24 48 96 192
8-cage 30 45 23,066,015,625 3166 730 10008 1061 459 238 137 92
PsCs 25 45 38,720,000,000 3962 1212 8918 851 455 221 137 122
CsCs 25 50 1,562,500,000,000 131092 41568 230077 || 26790 | 13280 | 7459 | 4960 | 4244
K7 14 49 13,841,287,201 699 460 2708 259 142 68 51 61
Ko 12 66 61,917,364,224 2394 1978 3179 310 172 84 97 148

Table 2 Spanning tree generation: mai32, times in secs

The computational results are given in Table 2. This time the reverse search code is a
bit more competitive: about 3 times slower than grayspan and about 14 times slower than
grayspspan on 8-cage for example. The parallel mts code runs about as fast as grayspspan
on all problems when 12 cores are used and is significantly faster after that. Near linear
speedups are obtained up to 48-cores but then tail off. For the two dense graphs K7 7 and
K15 the performance of mts is actually worse with 192 cores than with 96.

5.3 Satisfiability

The tests were performed using the following codes:
Minisat: version 2.2.0, classic sequential solver [13];
mtsat: parallel solver using mts and Minisat 2.2.0;

lingeling, treengeling: version bbe, sequential and (shared memory) parallel solvers [10].

Benchmarking parallel SAT solvers is challenging [14] and any particular instance may give
superlinear speedups or timeouts. We use a standard set of hard instances from applications,
and count the number of problems that each solver can solve within a given time. We re-use
the setup of [2], i.e. the 100 instances in the parallel track of SAT Race 2015 [8] and a timeout
of 20 minutes. Results are in Figure 1. Due to different computers used, our results are not
directly comparable to those in [2]. As noted by [9], solvers like mtsat can use substantial
memory on very large instances, limiting the number of processes that can execute in a given
amount of memory. The computers we used had sufficient memory for the instances used.

The results in Figure 1 show improvement from additional cores using default parameters
and decision budgeting with no attempt at tuning. Performance with conflict budgeting is
shown in Figure 2, using an initial budget of 10000 conflicts (i.e. the corresponding value
in [2]). All non-timeout outputs are correct, and the 32-core run with conflict budgeting
solves 62bits_10.dimacs.cnf (reported as unsolved in the SAT Race 2015 results) giving
a correct satisfying assignment. It is likely that experimenting with parameter values can
improve performance, and using a newer sequential solver on the workers may be another
source of improvement given the performance treengeling achieves starting from the higher
baseline performance of lingeling.

CVIT 2016
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Figure 1 mtsat performance (decision budgeting, default parameters (1))
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Figure 2 mtsat performance (conflict budgeting, maz__nodes = 10000, scale = 10)

6 Evaluating and improving performance
Our main measures of performance for the enumeration problems are the elapsed time taken
and the efficiency defined as:

single core running time

(2)

efficiency = - : :
number of cores * multicore running time
Multiplying efficiency by the number of cores gives the speedup. Speedups that scale linearly
with the number of cores give constant efficiency. External factors can affect performance as
the load on the machine increases. One example is dynamic overclocking, where the speed
of working cores may be increased by 25%—-30% when other cores are idle. This limits the
maximum efficiency achievable when all cores are used, since the single core running times
are measured on otherwise idle machines. In Figure 3 we plot the efficiencies obtained by
mtopsorts and mtree for the runs shown in Tables 1 and 2 respectively.

The amount of work contained in a subproblem can vary dramatically. mts can produce
histograms to help understand and tune its performance. We discuss three of these here:
processor usage, job list size and distribution of subproblem sizes. Figure 4 shows the first
two histograms for the mtopsorts run on Ky ¢ with default parameters (1).

We see the master struggling to keep workers busy despite having jobs available. This
suggests that we can improve performance with better parameters. Here, a larger -scale or
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Efficiency vs number of cores (mtopsorts)
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Figure 3 Efficiency vs number of cores (data from Tables 1 and 2)
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Figure 4 Histograms for mtopsorts on Kz o: busy workers (left) job list size (right)

-maxnodes value may help, since it will allow workers to

large subproblem) before contacting the master.
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Figure 5 Histograms with -scale 200 -maznodes 10000 on Kgo: busy workers (1), joblist size (r)

Figure 5 shows the result of using 200 for -scale and 10000 for -maznodes.

These

parameters produce less than half the number of total number of jobs compared to the
default parameters, and increase overall performance by about five percent on this input.
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In addition to the performance histograms, mts can generate a frequency file containing a
list of values returned by each worker on the completion of each job. For the enumeration
applications this is normally the number of nodes visited by the worker during the job.
Such a list provides statistical information about the tree that is helpful when tuning the
parameters for better performance. For example, it may be helpful to implement and use
pruning if many jobs correspond to leaves. Likewise, increasing the budget will have limited
effect if only few jobs use the full budget. Figure 6 shows the distribution of subproblem sizes
that was produced in a run of mtopsorts on Kz g with default parameters (1). L is usually
large so the scaled budget constraint of 200000 is normally in use. The left figure shows this
constraint was invoked about 15000 times. The right figure shows that most subproblems
have less than 40 nodes and so are not broken up. The three spikes in the middle of the left
figure are interesting and show there are large numbers of subtrees with these specific sizes.
This is probably due to the high symmetry of the graph Kgg.

Frequency distribution of subtree sizes Frequency distribution of subtree sizes up to 100 nodes

70000 70000

freq’ using (rounded($1)):(1) s "freq’ using (rounded($1)):(1) mm—

60000 4 60000
50000 4 50000

40000 4 % 40000

Frequency

30000 4 L 30000

20000 4 20000

10000 4 10000

0 50000 100000 150000 200000 250000 0 20 40 60 80 100
Size of subtree Size of subtree

Figure 6 Subproblem sizes for Kg,o: all (left) small subproblems only (right)

7 Conclusions

We have presented a generic framework for parallelizing reverse search codes requiring only
minimal changes to the legacy code. Two features of our approach are that the parallelizing
wrapper does not need to be user modified and the modified legacy code can be tested in
standalone single processor mode. Applying this framework to two very basic reverse search
codes we obtained comparable results to that previously obtained by the customized mplrs
wrapper applied to the the complex Irs code [6]. We expect that many other reverse search
applications and will obtain similar speedups when parallelized with mts.

The application to SAT demonstrates the use of shared data, and the ease with which a
widely-used existing legacy code can be parallelized using mts. While mtsat remains work in
progress, it shows some promise and further experimentation can likely improve performance.

Acknowledgements. This work was partially supported by JSPS Kakenhi Grants 16H02785,
23700019 and 15H00847, Grant-in-Aid for Scientific Research on Innovative Areas, ‘Exploring
the Limits of Computation (ELC)".
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Appendix

Algorithm 1 Master process

1: procedure MASTER(input_data, max_depth, maz_nodes, Imin, Imaz, scale,
num__workers)

2: Send (input__data) to each worker

3: Create empty table sdata

4: Create empty list L

5: Get start_verter from application, add to L

6: size < num__workers + 2

7: while L is not empty or some worker is marked as working do
8: while L is not empty and some worker not marked as working do
9: if |L| < size - Imin then

10: maxd < max__depth

11: else

12: mazxd < oo

13: end if

14: if |L| > size - Imaz then

15: node__budget < scale - max__nodes

16: else

17: node__budget <— mazx_ nodes

18: end if

19: Remove next element start from L
20: Send (start, mazd, node__budget) to first free worker 4
21: Mark ¢ as working
22: Send any shared_ data in sdata newer than i has
23: end while
24: for each marked worker 7 do
25: Check for new message unfinished from i
26: if incoming message unfinished from i then
27: Join list unfinished to L
28: Receive shared__data update from ¢
29: Unmark i as working
30: if non-empty update then
31: Update i’s shared__data in sdata
32: end if
33: end if
34: end for
35: end while
36: Call application with final set of shared__data
37: Send terminate to all processes

38: end procedure
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Algorithm 2 Worker process

1:
2
3
4
5:
6
7
8
9

10:
11:
12:
13:
14:
15:

procedure WORKER
Receive (input__data) from master

Create empty shared__data
while true do

Wait for message from master
if message is terminate then

Exit
end if

Receive (start_vertex, maz__depth, max_nodes)
Receive shared__data updates, update local copy

Call search (start_vertex, max__depth, max_nodes, shared__data)

Send list of unfinished vertices to master
Send shared__data update to master
Send output list to consumer

end while

16: end procedure

Algorithm 3 Consumer process

1:
2
3
4
5:
6
7
8
9:

procedure CONSUMER

while true do

Wait for incoming message
if message is terminate then

Exit
end if
Output this message
end while

end procedure

Algorithm 4 Generic Reverse Search

1:
2
3
4
5:
6
7
8
9

10:
11:
12:
13:
14:
15:
16:
17:

procedure RS(start_vertez)

vv" j< 0 depth <+ 0
repeat
while j < A do
j+—J+1

if f(Adj(v,j)) = v then

v < Adj(v, j)
7+0
depth < depth + 1
output v
end if
end while
if depth > 0 then
(v,5) + f(v)
depth < depth — 1
end if
until depth =0 and j = A

18: end procedure

> forward step

> backtrack step
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Algorithm 5 Budgeted Reverse Search

1. procedure BRS(start_verter, max_ depth, max_nodes)
2 j 0 v+ start_vertex count < 0 depth <+ 0
3 repeat
4 unexplored < false
5: while j < A and unexplored = false do
6 j—J+1
7 if f(Adj(v,j)) = v then > forward step
8 v« Adj(v, )
9 j<0
10: count < count + 1
11: depth < depth + 1
12: if count > max_nodes or depth = max__depth then
13: unexplored < true > budget exhausted
14: end if
15: put_ output (v, unexplored)
16: end if
17: end while
18: if depth > 0 then > backtrack step
19: (v,4) < (o)
20: depth < depth — 1
21: end if

22: until depth =0 and j = A
23: end procedure
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