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Abstract 

_ 

The reverse search technique has been recently introduced by the authors for eflicicnt 
enumeration of vertices of polyhedra and arrangements. In this paper, we develop this idea in 
a general framework and show its broader applications to various problems in operations 
research, combinatorics, and geometry. In particular. we propose new algorithms for listing 

(i) all triangulations of a set of n points in the plane. 
(ii) all cells in a hyperplane arrangement in R”. 

(iii) all spanning trees of a graph, 
(iv) all Euclidean (noncrossing) trees spanning a set of II points in the plane. 
(v) all connected induced subgraphs of a graph. and 

(vi) all topological orderings of an acyclic graph. 
Finally, we propose a new algorithm for the 0 I integer programming problem which can bc 
considered as an alternative to the branch-and-bound algorithm. 

1. Introduction 

The listing of all objects that satisfy a specified property is a fundamental problem 

in combinatorics, computational geometry, and operations research. Typical objects 

to be enumerated are spanning trees in a connected graph, vertices and faces of 

a convex polyhedron or an arrangement of hyperplanes given by a system of linear 

inequalities, triangulations of a set of points in the plane. etc. 
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There are several known search techniques for enumeration problems. Backtrack 

search is known to be useful for various enumeration problems associated with graphs 

[18]. For enumeration problems in computational geometry, the incremental search 

technique has been frequently used [7]. Graph search such as depth first search or 

breadth first search can be widely applicable for the case where the objects to be listed 

are the vertices of some connected graph. 

In this paper, we introduce a new exhaustive search technique, called reverse 

search, which can be considered as a special graph search. This new search can be used 

to design efficient algorithms for various enumeration problems such as those men- 

tioned above. Reverse search algorithms, if successfully designed, have the following 

characteristics: 

(1) time complexity is proportional to the size of output times a polynomial in the 

size of input, 

(2) space complexity is polynomial in the size of input, 

(3) parallel implementation is straightforward (since the procedure can be de- 

composed into multiple independent subprocedures at each general stage). 

In order to explain the basic idea of reverse search, let G be a connected graph 

whose vertices are precisely the objects to be listed, and suppose we have some 

objective function to be maximized over all vertices of G. A local search algorithm on 

G is a deterministic procedure to move from any vertex to some neighboring vertex 

which is larger with respect to the objective function until there exists no better 

neighboring vertex. (Note that a local search algorithm will be defined as a more 

general procedure in the formal discussion in Section 2.) A vertex without a better 

neighboring vertex is called local optimal. The algorithm is finite if for any starting 

vertex, it terminates in a finite number of steps. Well-known examples of local search 

algorithms are the simplex method for linear programming, the edge-exchange algo- 

rithm for finding a minimum spanning tree in a weighted graph [l, Section 10.51, and 

the flip algorithm for finding a Delaunay triangulation in the plane [7, 8, 211. The 

simplex method is not finite in general, but finite if a certain pivot rule such as Bland’s 

smallest subscript rule is used to restrict the pivot selection, while the other two 

algorithms are finite (a detailed description of the flip algorithm will be given in 

Section 3). 

Let us imagine the simple case that we have a finite search algorithm and there is 

only one local optimal vertex x* (which is the optimal solution). Consider the digraph 

T with the same vertex set as G and the edges which are all ordered pairs (x, x’) of 

consecutive vertices x and x’ generated by the local search algorithm. It should be 

clear that T is a tree spanning all vertices with the only sink x*. Thus if we trace this 

graph T from x* systematically, say by depth first search, we can enumerate all 

vertices (i.e. objects). The major operation here is tracing each edge against its 

orientation which corresponds to reversing the local search algorithm, while the 

minor work of backtracking is simply performing the search algorithm itself. It is 

noteworthy that we do not have to store any information about visited vertices for 

this search because T is itself a tree. 
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This new search technique has an interesting application to hard combinatorial 

optimization. Observe that for each vertex X, every vertex J below x in T (those J’ such 

that there is a directed path from y to X) has no larger objective value. Suppose we are 

looking for some vertex satisfying a side constraint (e.g., integrality for linear pro- 

gramming case) with largest objective value. Then, one can perform a reverse search 

but only partially: Keep the current best solution X and the current best value 5, and 

whenever the search detects a better solution satisfying the side constraint, update the 

current best solution and value. Whenever it detects a vertex with lower objective 

value, then abandon going lower in the tree. 

We should make some remarks on parallelization of the reverse search. It is quite 

easy to see that a reverse search algorithm can be easily parallelized, since it only has 

to visit all vertices of a well-defined tree from a given root. One trivial implementation 

is to assign some free processor a son of the root whose branch is not yet traversed. 

This can be done recursively of course: each assigned processor also assigns some of its 

sons to any free processors. The termination of each sub-task is easily recognized by 

using a depth counter. The important question is: how much can we accelerate the 

computation? Obviously, it is restrained by the height of the tree from the root, and 

the computational time depends at least linearly on this height. While we cannot 

easily estimate the height in some cases like the simplex method case, there are many 

cases where the height is small. We believe that such cases have significant potential 

for successful parallel computing. Among others, these cases include the enumeration 

of spanning trees in a connected graph. vertices and cells in an arrangement of 

hyperplanes, and triangulations of a point set. 

The original idea of reverse search came from the vertex enumeration algorithm [S. 

41, proposed by the authors, for polyhedra or for arrangements of hyperplanes which 

reverses the simplex algorithm with Bland’s smallest subscript rule or the crisscross 

method for linear programming, respectively. 

Here is how the present paper is organized. The next section is devoted to a formal 

presentation of local search and reverse search. In Section 3. we give several applica- 

tions of reverse search. The notion of partial reverse search is given in Section 

4 together with some applications such as O-l integer programming. 

2. Reverse search 

In the introduction we have given a basic idea of reverse search for enumeration. 

Here we shall present it formally with more generality. 

Let G = (V, E) be a (undirected) graph with vertex set I/ and edge set E. We shall 

call a triple (G, S,f) local search if S is a subset of I’, ,f’ is a mapping: I/ \S * V 

satisfying 

(Ll) (tl,,f(c)} E E for each v E V\S, 

and ,finite local search if in addition, 

(L2) for each v E V\S, there exists a positive integer k such that ,f” (c) E S. 
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Here is a procedural form of a local search (G, S,f): 

procedure LocalSearch(G, S,f, vO: vertex of G); 

L’ := co; 

while v$S do 
L’ :=.f’(v) 

endwhile; 

output v. 

The function J’ is said to be the local search function, and G the underlying graph 

structure. Naturally, we consider the set V to be the set of candidates for a solution, the 

set S to be the set of solutions. The local search functionj’is simply an algorithm for 

finding one solution. 

It is not difficult to find examples of local search. To list a few, 

l the simplex method for linear programming, where V is the set of feasible bases, E is 

induced by the pivot operation,fis the simplex pivot, and S is the set of optimal bases, 

l the edge-exchange algorithm for finding a minimum spanning tree in a weighted 

graph [l, Section 10.51, where V is the set of all spanning trees, E is induced by the 

edge-exchange operation, f is the best-improvement exchange algorithm, and S is 

the set of all minimum spanning trees, 

l the flip procedure for finding a Delaunay triangulation in the plane for a given set of 

points, where I/ is the set of all possible triangulations, E is induced by the flip 

operation,f is the flip algorithm, and S is the set of Delaunay triangulations. 

It will be helpful for us to keep at least one of these examples in mind for better 

understanding of several new notions to be introduced below. 

The truce of a local search (G, S,f) is a directed subgraph T = (V, E(f)) of G, where 

E(f) = {(v,f(v)): v E V\S} 

The trace T is simply the digraph with all vertices of G and those edges of G used by 

the local search. We also define the height h(T) of a trace T as the length of a longest 

directed path in T. An obvious but important remark is 

Property 2.1. If (G, S, f) is a jinite local search then its truce T is a directed spanning 

forest of G with each component containing exactly one vertex of S as a unique sink. 

Let (G, S, f) be a finite local search with trace T, and denote by T(s) the component 

of T containing a vertex s for each s E S. We call the following procedure an abstract 

reverse search: 

procedure AbstractReverseSearch(G,S, f ); 
for each vertex s E S do 

traverse the component T(s) and output all its vertices 

endfor. 

Here we are purposely vague in describing how we traverse T(s). The actual 

traversal depends on how the local search is given: in almost all cases for which reverse 
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search is useful, G is not explicitly given. Also, we shall deal with the case where 

ISI > 1, and the set S is not explicitly given. In many cases. we can consider S to be the 

output of another reverse search for which the solution set is a singleton. 

Thus, it is extremely useful to discuss a special implementation of reverse search 

when the local search is given in a certain way which is general enough for 0111 

applications to be described later but yet restricted enough for us to make interesting 

statements about the time complexity of reverse search. 

We say that a graph G is given by Nc~ia~rnc?~-orLI(.lL~ or simply A-OI.LKI~ when the 

following conditions are satisfied: 

(Al) The vertices are represented by nonzero integers. 

(A2) An integer d is explicitly given which is an upper bound on the maximum 

degree of G, i.e., for each vertex 1% E V, the degree dram is at most this number. 

(A3) The adjacency list oracle Allj satisfying (i)-(iii) is given: 

(i) for each vertex L’ and each number k with 1 d k < 6 the oracle returns 

Adj(c, k), a vertex adjacent to I’ or extraneous 0 (zero), 

(ii) if Adj(c, k) = Adj(u, k’) # 0 for some c’ E V, k and k’, then k = k’, 

(iii) for each vertex c, , , r,4dj(c k): Adj(c. k) # 0, 1 < k < 6) is exactly the set of 

vertices adjacent to c. 

The conditions (i)+iii) imply that Adj returns each adjacent vertex to L’ exactly once 

during the d inquiries Adj(c, k), 1 d k < 6, for each vertex ~1. 

Conditions (AZ) and (A3) may not seem to be natural. but as we will see. in many 

cases, we have no knowledge of the maximum degree of the underlying graph but only 

an upper bound. Consider the simplex method. For each feasible basis, some pivot 

operations lead to feasible bases, and others lead to nonfeasible bases. In general (with 

possible degeneracy and an unbounded feasible region), we do not know the max- 

imum number of adjacent feasible bases. However. we have a trivial bound, i.e. the 

number of pivot positions ( = number of basic variables times number of nonbasic 

variables). Associated with each feasible basis and each kth pivot position we have 

either an adjacent feasible basis or something else (i.e. a nonfeasible basis or imposs- 

ible pivot), that determines our A-oracle. For the flip algorithm, one can naturally see 

that the underlying graph is given by A-oracle. 

A local search (G, S,f) is said to be gicen by an A-oraclr if the underlying graph G is. 

When a local search is given by an A-oracle, we can write a particular implementa- 

tion of abstract local search. The following procedure, ReverseSearch. which will be 

used in all of the applications in the present paper, is the one where the traversal of 

each component is done by depth first search and the set S is explicitly given: 

procedure ReverseSearch(Adj,6,SJ’); 

for each vertex s E S do 

c := s; j := 0; (* ,j: neighbor counter *) 

repeat 

whilej < 6 do 

j:=j + 1; 
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6-l) 

b-2) 

next := Adj(u, j) ; 

if next # 0 then 

iff(next) = v then (* reverse traverse *) 

u := next; j := 0 

endif 

endif 

endwhile; 

(fl) 

(f2) 

if u # s then (* forward traverse *) 
u I= 0’ ) v:=f(v); 
j := 0; repeat j := j + 1 until Adj(u, j) = u (* restore j *) 

endif 

untilv=sandj=6 

endfor. 

Note that for each vertex u E I/ \S, exactly one “forward traverse” is performed in 

the procedure ReverseSearch. The time complexity of ReverseSearch can be now 

evaluated. For a local search (G, S,f) given by an A-oracle, let t(f) and t(Adj) denote 

the time to evaluatef and Adj, respectively. 

Theorem 2.2. Suppose that a local search (G, S, f) is given by an A-oracle. Then the time 

complexity of ReverseSearch is O(6 t(Adj)I VI + t(f)lEl). 

Proof. It is easy to see that the time complexity is determined by the total time spent 

to execute the four lines (rl), (r2), (fl) and (f2). The first line (rl) is executed at most 

6 times for each vertex, and the total time spent for (rl) is O(6 t(Adj)I VI). The line (r2) 

is executed as many times as the degree deg(v) for each vertex v, and thus the total time 

for (r2) is O(t(f) I E I). The third line (fl) is executed for each vertex v in I/ \S, and hence 

the total time for (fl) is O(t(f)(l VI - ISI)). Similarly, the total time for (f2) is 

0 (6 t(Adj) (IT/I - ISI)). Since I VI - ISI d IEI, by adding up the four time complexities 

above, we have the claimed result. 0 

Corollary 2.3. Suppose that a local search (G, S, f’) is given by an A-oracle. Then the 

time complexity of ReverseSearch is O(6 (t(Adj) + t(f))1 VI). In particular, ifs, t(f) and 
t(Adj) are independent of the number I VI of vertices in G, then the time complexity is 

linear in the output size I VI. 

Proof. The claim follows immediately from Theorem 2.2 and the fact that 

2lEI <6(V’1. 0 

The assumption that 6, t( f’) and t(Adj) are independent of the number IF’/1 is not 

satisfied in general (e.g. when G is a complete graph), but for many cases it can be 

assumed. In fact, all applications to be presented in the next section satisfy this 

assumption. 
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We have already two simple formulas, Theorem 2.2 and Corollary 2.3, for the time 

complexity of the reverse search. We shall use these to evaluate the time complexity of 

some of our applications. However, a stronger result is possible in some cases. One of 

such cases is when the lines (rl) and (r2) have a shortcut. i.e., it is possible to check fol 

any vertex c of G and any integer 1 <j 6 6 whetherj’(Adj(c.,j)) = 1’ without executing 

Adj andf: Another case is when the procedure (f2) has a shortcut, i.e.. it is possible fat 

any vertex u of G to determine the integerj such that Adj(,f’(v). j) = u without executing 

Agj explicitly. In order to deal with these cases more clearly we shall give below an 

alternative version of reverse search. Here we use the convention that ,f’(O) = 0. 

procedure ReverseSearch2(AIlj,d.S,f’); 

for each vertex s E S do 

1‘ := s; j := 0; (* j: neighbor counter *) 

repeat 

while j < 6 do 

j :=,j + 1; 

(rl’) if,f‘(Mj(c,j)) = c’ then (* reverse traverse *) 

(r2’) 1’ := Adj(c, j); j := 0 
endif 

endwhile; 

if 1’ # s then (* forward traverse *) 

(fl) CI := c; v :=,f(Ll); 

(W determine j such that A~j(r, j) = u (* restore ,j *) 

endif 

until z’ = s and j = 6 

endfor. 

In order to describe the time complexity of this procedure, we define tK(A4j, f’) to be 

the time necessary to decide for any vertex ZJ of G and any integer 1 <,j < 6 whether 

f’(Adj(q j)) = 21 (i.e., tR(Adj,f) is the time to decide whether moving from L’ to Adj(c,j) is 

a reverse ofJ‘). Similarly, we define tF(Adj,,f) to be the time necessary for any vertex 

r of G to determine the integer j such that Allj(,f‘(r), j) = 21. 

Theorem 2.4. Suppose [hut a local search (G, S,f’) is given by an A-oracle. Then thg timcl 

complexity of’ReuerseSearch2 is O((t(Adj) -t 6 tR(Agj,f’) + t(f) + t”(Adj,J‘))I VI), 

Proof. The proof is similar to that of Theorem 2.2. The total time for (rl’) is 

O(6 tR(Adj,f)lVl), and that for (r2’) is O(t(Adj) (IV - ISI)). Similarly, the total time 

for (fl) is O(t(f’) (IV1 - IS\)), and that for (f’2’) is O(?(Adj,j,J’) (IPi - ISI)). Adding up all 

these yields the result. 0 

Looking into this theorem, we notice a possibility of further refinement of reverse 

search. Remark that the part t, = (t(Adj) + 6 tR(Agj,,f’)) of the time complexity is the 

time necessary for the reverse traversal, i.e., moving away from the top vertex. and the 

remaining part t2 = (t(f) + tF(Adj,f)) is the time for the forward traversal, i.e.. moving 
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toward the top vertex. One cannot really shorten the first part, but interestingly one 

can shorten the latter part by storing the forward traverse paths. More precisely, if we 

store the forward sequence to return to the top vertex while reversing, neitherf nor 

Adj need to be evaluated to go forward. This remark can be particularly important 

when the trace of a local search has a short height and ti is an order of magnitude 

smaller than tZ, though presently we do not have any such applications. 

Finally we should remark that the space complexity is usually independent of the 

cardinality of the output. At the moment, we cannot evaluate precisely the space 

complexity, but it only depends linearly on the space necessary to store a single vertex 

and the space necessary to realize the functions (oracles) f and Adj. 

3. Applications of reverse search 

3.1. Vertex enumeration in polyhedra 

The vertex enumeration problem is to list all vertices of the convex polyhedron 

given by P = (x: Ax d b, x 3 0}, where A is an m x n matrix and b is an m-vector. 

Consider the linear program of form: maximize cx subject to Ax d b and x 3 0. The 

simplex algorithm can be considered as a finite local search (GLP, SLP,fLP) where 

GLP = (J’LP, ELP) is a graph with VLp the set of all feasible bases; where two bases are 

adjacent if and only if one can be obtained from the other by a pivot operation; 

SLp being the set of all optimal bases; andf’, is the simplex algorithm with Bland’s 

smallest subscript rule. Moreover, represent each basis by the set of indices of basic 

variables, and define Adj,, to be Adj,,(B, (i, j)) = B - i + j if B is a basis and B - i + j 

is a basis. and 0 otherwise, for each basic and nonbasic indices i and j. Then the local 

search is given by an A-oracle AdjLp with dLP = m x n. 

Now, how can we find all vertices of P? We can easily find one feasible basis of the 

linear inequality system Ax < b and x 3 0. say B, by the simplex method or the 

interior-point method. Then we can set up an LP with objective function cx for which 

the current basic solution is the unique optimal solution and B is an optimal basis. 

The associated local search (G LP, SLp,fLp) immediately yields the reverse search 

ReverseSearch(Adj,,, Lp 6 , SLP,fLp) to list all feasible bases as long as the set SLp of all 

optimal bases are explicitly given. 

If the set SLp is the singleton {B) then we are done. Otherwise, we can enumerate all 

optimal bases from B by another reverse search with respect to the dual simplex 

method applied to an auxiliary problem. See [.5] for details. 

If the system Ax < b, x > 0 is nondegenerate, then one can design a much simpler 

algorithm. The critical difference is that for each feasible basis B and each nonbasic 

index ,j, there exists at most one basic index i = i(j) such that B - i + j is again 

a feasible basis. Define AdjLp to be AdjLp(B,j) = B - i + j if there exists i such that 

B - i + j is a feasible basis, and 0 otherwise, for each nonbasic index j. Then the local 

search is given by an A-oracle AdjLp with smaller dLp = n. 
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It is well known that the simplex method with Bland’s rule might take an exponen- 

tial number of pivots to find an optimal solution. see [3]. This means that the height of 

the trace TLP cannot be bounded by a polynomial function of 171 and n. Theoretically. 

this means even the best parallel implementation may not be much faster. The 

expected behavior, however, might turn out to be quite different. 

A Muthemutica implementation of the vertex enumeration algorithm is available in 

[lO], and a C implementation in [2]. 

3.2. Enumeration of cells in arrangements 

Let E = ( 1, 2, , nz), let .ti be an arrangement of distinct hyperplanes {Hi: i E 1: ) in 

R”, where each hyperplane is given by a linear equality Hi = (.Y: U’.Y = /,ii. The two 

sides of Hi are H+ = (?c: a’x 3 h;) and Hjm = [.Y: a’.~ < h,j). For each x E R”, the sign 

vector ST/(x) of x is the vector in [ - 0, +- )-” defined by 

i 

~ if .Y E H,: 

SV(X)i = 0 if ucHi (GEE). 

+ if x6H+ 

Let V,,,, be the set of sign vectors of points in R” whose nonzero support is E. WC 

can identify each vector c in VCELI, with the open cell (open n-face) of the arrangement 

defined by {.Y: SV(x) = c}. For two cells c and 6, let .sep(c, c’) be the set of separators ol 

L’ and c.‘, i.e. the set of elements i of E such that ci and c’; have opposite signs. We say 

that two cells c and c’ are a4jacent in GCEI.I. if they differ in only one component. ot 

equivalently, I.s~p(c. c’)\ = 1. The following lemma is important. 

Lemma 3.1. For any two distinct cells c and c’ in VcEI.,.. there erists a cell C’ \\,hich i.\ 

adjacent to c and sep(c, c”) c .sep(c, c’). 

Proof. Let c and c’ be two distinct cells, and let N (.Y’) be a point in c (in c’, respectively) 

in general position. Moving from .Y toward X’ on the line segment [s, r’]. we encounter 

the sequence of cells: cO = c, c,. cl,. . ck = c ‘, and we can easily verify that c1 is 

adjacent to c and scp(c, c,) csep(c’. L.‘). El 

Let us assume that I/ contains the cell c* of all + ‘s. Lemma 3.1 implies that for 

each cell c different from c*, there is a cell c” which is adjacent to c and .sep(c,*, c”) 

c se[,(c*. c). Let us define ,fcELL(c) as such c” that is lexico-largest (i.e., the unique 

element in .sep(c, c”) is smallest possible). Then, (GcELI., SCE,,,,,,fcELL) is a finite local 

search with Sc.EI,I. = I’ ,. ’ .*I By Lemma 3.1, one immediately obtains: 

Corollary 3.2. The height of the trace T ; c tr.1. of the kml mm-h (GcE,.,, &,m,,fC~,.,.) is 
ut most m. 
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Fig 1. An arrangement of hyperplanes and the trace of fcELL 

Fig. 1 describes the trace of the local search on a small example with yt = 2 and 

m = 4. 

By reversing this local search, we obtain an algorithm to list all cells in an 

arrangement. There are a few things to be explained for an implementation. First, we 

assumed that the cell c* of all + ‘s is given, but we can pick up any cell c in the 
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arrangement, and consider it as the cell of all + ‘s since replacing some equality 

ui.x = hi by - &Y = - hi does not essentially change the arrangement. Note that one 

can obtain an initial cell by picking up any random point in R” and perturbing it if it 

lies on some hyperplanes. 

Now, how can we realize ReverseSearch(Alij LE~L,6CELL,SCEL~,~~.ELL) in an efficient 
way? First we can set 6CELL = m and SCELL = \c , f *I. For any cell c E V,,,, and k E E. 

the function AdjCELL(c, k) can be realized via solving an LP of the form 

minimize (maximize) yk 

subject to 1: = A.x ~- h, 

~~ >, 0 for all i # k with ci = + , 

JJ~ < 0 for all i # k with ci = - . 

(3.1) 

where minimization (maximization) is chosen when ck = + (ck = - , respectively). 

The function returns the adjacent cell c’ with sep(c. c’) = {ki if and only if LP (3.1) has 

a feasible solution with negative (positive) objective value. The time t(Adj,,,!,) de- 

pends on how an LP with n variables and nl - 1 inequalities is solved. We denote this 

as a function I(m, n) of m and II. 

There is a straightforward implementation ofh..EL,,, which solves a sequence of LP’s 

similar to (3.1) with objective functions yl, y2, J’~, . This means we may have to solve 

O(m) LP’s in the worst case. Presently we do not know how to implement it in a more 

efficient manner. 

Theorem 3.3. There is an implementution of ReuerseSearck(AdjcE,,, ii,,,,, SCEI,L,.f;,E,,,,) 

for the cell enumeration problem with time complesity O(m n l(m, n)i V,,,,/) unll spuw 

comple.xitJ~ O(m n). 

Proof. To prove this, first we recall that Theorem 2.2 says, the time complexity of 

ReverseSearch is O(6 t(Adj)lV + t(.f)lEl). As we remarked earlier, &,, = m. 

t(AdjCEd = O(l(m, n)), and t(fCEd = O(m l(m, ~~)). Since IECEI.,~I < n IVcer~r,l holds 
for any arrangement (see, e.g., [ll, 121). the claimed time complexity follows. The 

space complexity is clearly same as the input size O(m n). 0 

We believe that there is no previously known algorithm to enumerate all cells of an 

arrangement whose time complexity is polynomial in the size of output. 

The cardinality of output is of course exponential in m and n, and the maximum. 

explicitly given by Buck’s formula &, (y), is attained for any simple arrangements. 

see [6, 71. By Corollary 3.2, the cell enumeration can profit a lot from parallel 

implementation. 

3.3. Enumeration c~f’triungulations 

Let P be a set {pI, . , pn} of n distinct points in the plane. A pair {p, q} of distinct 

points in P is called an edge if the line segment connecting p and 4 does not contain 
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any other point of P. A triple {p, q, r> of points in P is called a triangle if they are not 

collinear and their convex hull (triangle region) does not contain any other points in 

P. A point or edge in P is called external if it is contained in the boundary of the 

convex hull of P, and internal otherwise. 

A triangulation of P is a set A of triangles in P such that (1) each external edge is 

contained in exactly one triangle of A, (2) each internal edge is contained in either no 

triangle of A or exactly two triangles of A. An edge of a triangulation A is an edge 

contained in at least one triangle of A. 

By using Euler’s relation, one can easily see that the number of triangles and edges 

of a triangulation are independent of the choice of triangulation. 

Proposition 3.4. Let A be a triangulation of P, and let,fi and,f, be the number of edges 

and triangles of A, respectively. Then, they are determined by fi = 3n - n* - 3, 

fi = 2n - n* - 2, where n” denotes the number of external points. 

It is clear from the definition that the number of triangulations is finite. The 

enumeration of all possible triangulations of P is the problem in this section. In order 

to apply the reverse search technique, the notion of Delaunay triangulation and the 

flip algorithm is very useful. 

Let A be a triangulation with fi triangles whose interior angles x1, CI~, . . , rzf2 are 

indexed in such a way that Xi < Glj for any 1 < i <,j < 3f2. The vector 

a(A) = (al, CI~, , x3f2) is called the angle vector of A. A triangulation is said to be 

Delaunay if its angle vector is lexicographically maximal over all possible triangula- 

tions of the same point set, where the comparison of components is done from left to 

right. 

Let A be a triangulation. Let (a, b} be any internal edge of A, and let {a, b, c} and 

{a, b, d} be the two triangles of A containing it. We call (a, b) jippable if the set 

Flip(A, {a, 6)) := A\{(a, 6, c>, {a, b, d}} u {{a, c, d}, {b, c, d}} is again a triangulation 

of P. One can easily see that an internal edge (a, b} is flippable if and only if the points 

a, b, c, d form a convex quadrangle. 

We call {a, b} legal if the circumscribing disk of one of the triangles abc, ubd does 

not contain the other, and illegal otherwise. When an edge (a, b) is illegal, it is always 

flippable and the operation Flip(A, {a, b}) is called a Delaunuy flip. 

It is known that a triangulation A is Delaunay if and only if it does not contain any 

illegal edges. The flip algorithm is simply a procedure to use the Delaunay flip 

operation repeatedly in any order until no such operation is possible, see Fig. 2. The 

following theorem states that the flip algorithm is finite. 

Theorem 3.5 (Fortune [S], Telley [21]). The flip algorithm terminates in O(n*) steps 
and finds a Deluunuy triangulation of P, starting with any initial triangulation. 

To apply reverse search, let VTRr (STRI) be the set of all (Delaunay, respectively) 

triangulations of P. The underlying graph GTRr is ( ViTRI, ETRI) where two vertices are 

adjacent if and only if one is a flip of the other. We define a local search fTRI as the 



D. Avis, K. Fukuda / Discrete Applied Mathematics 65 (1996) 21-46 3 i 

Flip (1,3] 

Flip (3,5) 

Flip (1.6) 

a Delaunay Triangulation 

Fig 2. Flip algorithm and Delaunay triangulation 

function from VTRr\STRI to V,.,, such that 

where {u, b) is the lexico-smallest illegal edge of A. 

Now, how one should design an A-oracle? For any triangulation A, let L be the list 

of interior edges ordered lexicographically and let Lk be the kth member of L. By 

Proposition 3.4, the cardinality IL1 of L is exactly 3n ~ 2n* - 3, which we denote by 



34 D. Avis, K. Fukuda J Discrete Applied Mathematics 65 (1996) 21-46 

dTRI. The adjacency oracle AdjTRI(A, k) is then defined as 

Adh,(A, 4 := 
Ffip(A, Lk) if Lk is flippable, 
o 

otherwise, 

for each k = 1, . . , STRI. 

Theorem 3.6. There is an implementation of ReverseSearch2(AdjrRI, 6rRI, STRI, fTRl) 

for the triangulation enumeration problem with time complexity O(n 1 V,,,/) and space 

complexity O(n). 

Proof. For the implementation, we can use the quad-edge data structure [13] for 

storing a triangulation. Also we store L as a linked list of edges each with a flag 

indicating either nonflippable, legal or illegal, and store the lexico-smallest illegal edge 

of L. For the analysis of time complexity, we apply Theorem 2.4. First, note that we 

can evaluate AdjTRr and fTRI in O(n) time, including time to update L and the 

triangulation data. Since we store the lexico-smallest illegal edge of L, t”(Adj,f) and 

tF(Adj,f) are both O(1). Since dTRI = O(n) and by Theorem 2.4, we have the stated 

time complexity. The space complexity is clearly O(n). 0 

We remark that enumerating all elements in STRr (i.e. the enumeration of all 

Delaunay triangulations) is unnecessary. It is possible to transform any Delaunay 

triangulation to another by a sequence of flips, and one can extend the local search 

frRI so that it finds the lexico-smallest Delaunay triangulation by flipping some legal 

edge at a nonlexico-smallest Delaunay triangulation. 

Theorem 3.5 shows that a parallel implementation can be quite fast. 

It should be mentioned that essentially the same algorithm has been discovered 

independently by Telley. 

3.4. Enumeration of connected-induced subgraphs 

Let G = (V, E) be a graph with vertex set I/ = { 1,2, . . . , n} and edge set E of size m. 

For any subset U of V, we denote by G(U) = (U, E(U)) the subgraph of G induced by 

U, i.e. E(U) is the set of edges of G whose endpoints are both in U. 

In this section, we apply the reverse search technique to the enumeration of all 

connected-induced subgraphs of a given graph G. It will be seen that the enumeration 

of connected subgraphs as opposed to connected-induced subgraphs can be treated in 

a similar manner. 

The following lemma is essential. 

Lemma 3.1. Let G = (V, E) be a graph and let U be a nonempty subset of V such that 

G(U) is connected. Then there exists a vertex j E U such that G(U -j) is connected. 
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Proof. Let the assumptions be satisfied. If IUI = 1 then the lemma is trivial. Assume 

that /U 3 2. Take any spanning tree T of G(U), and take any vertex ,i of T having 

degree one, which always exists. Removal of such a vertex cannot disconnect T and 

the graph G(U). 0 

It is quite easy to prove that there is an opposite operation preserving connectivity. 

Lemma 3.8. Let G = (V, E) he a connected graph and let U he a proper subset of‘V suc,h 

thut G(U) is connected. Then there e.uist.s a certes ,j E V ‘_ U such thut G( U + j) is 

connected. 

Each of the two lemmas above yields a reverse search algorithm for enumerating all 

connected induced subgraphs. Here we exploit the first one, Lemma 3.7. 

Let V’(-,, be the family of subsets U of V such that G(U) is connected. and let 

ScIs = (a). By Lemma 3.7 the following local search function,f,-,, from VC.Is ,_ Sc.,.s to 

Vcrs is well defined: 

&s(U) := u -.i, 

where ,i is the smallest vertex in U such that G( U -,i) is connected. Thus for any 

nonempty set U E I/,,, the function f c,s generates a unique sequence of subsets 

U,.f‘( U),,f’(U), ,f’“‘( U) = cb. The reverse search algorithm we describe here merely 

reverses this finite algorithm. 

Now the underlying graph Gcrs = (I/,-,,, Ecrs) is rather straightforward; two sub- 

sets U and U’ are adjacent in Gcrs if and only if one is a proper subset of the other and 

they differ in exactly one element. The adjacency oracle AcIs is then defined by 

U-k if kEU and U-liEV’cls, 

Adj,.,,( U, k) := U +k if kEl’\ U and U + ke I/,,,, 

0 otherwise 

for each U E I/,,, and each vertex k = 1,2, , n. Thus we have dcls = n. 

A simple implementation of the adjacency oracle Adj cIs and fcIs gives the following 

complexity of the reverse search algorithm, which one might be able to improve by 

using a more sophisticated data structure. 

Theorem 3.9. There is an implementation of ReverseSeurch(Adj CIS, &IS, SCIS, fc,.d ,fi)r 
the connected-induced subgraph enumeration problem with time complexit~~ 

O(m n IVcIs/) und space complexity O(m -t n). 

Proof. The essential part of implementing AGjcrs and ,fcIs is to list directly or 

indirectly all articulation points (i.e. cut vertices) in a graph. Using the depth first 

search tree (see [l, Section 7.41) we have an implementation of Adjcrs and_&,, for 

which t(Adj,,,) = t(fcrs) = O(m). F rom the time complexity of ReverseSearch in 
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Theorem 2.3 and the fact that Gcrs = n, we immediately obtain the claimed time 

complexity. The space complexity is clearly same as the input size O(m + n). 0 

Clearly the height of the reverse search tree Tcls is at most n. This means that 

a parallel implementation of the algorithm can be much faster. 

It is interesting to note that this reverse search algorithm can be used with slight 

modification to enumerate all connected-induced subgraphs with at most k vertices, 

for a fixed k < n. The only change will be an additional stopping rule (stop as soon as 

lU/ = k) to search lower in the trace offers. 

As we mentioned it above, Lemma 3.8 yields a reverse search algorithm as well. In 

this algorithm, the initial graph is G itself instead of the empty graph (assuming 

without loss of generality that G is connected). It is easy to see that an additional 

stopping rule in this search, gives an algorithm for enumerating all connected-induced 

subgraphs with at least k vertices, for a fixed k < n. 

Finally, we should note that the enumeration of all connected subgraphs of a graph 

as opposed to induced subgraphs can be done by the same approach. That is, the key 

lemmas, Lemmas 3.7 and 3.8 have an immediate analogue in terms of connected 

subgraphs where edge insertion/deletion replaces vertex insertion/deletion. 

3.5. Enumeration of topological orderings 

Let G = (V, E) be an acyclic digraph with vertex set I/ = (1,2, . , n} and edge set 

E of size m. We denote by (i, j) an edge directed from i to j. A permutation 

rc = rc1n2 . . . rc, of I/ is said to be a topological ordering if (i, j) E E implies i appears to 

the left ofj in rr. Topological orderings are also called linear extensions. 

It is well known that a topological ordering of an acyclic graph G can be found in 

O(m) time, see [l, Section 6.61. In this section, we present a reverse search algorithm to 

enumerate all topological orderings efficiently. 

Without loss of generality we assume that the trivial permutation (identity) rc” is a 

topological ordering. Let V,,, be the set of topological orderings, and let SToR = {rr”}. 

For a permutation 71 of V and for any 1 d p < n, the local change of rc at i is the 

replacement of 71 with LC(q i), the permutation obtained from 71 by interchanging 

xi and ni+l. The local change is said to be admissible if Xi > ni+l. Now we have 

a simple lemma. 

Lemma 3.10. Let 71 be a nontrivial permutation in VToR. Then II admits an admissible 

local change, and furthermore any admissible local change of 7t is in VTOR. 

Proof. Let rr be a nontrivial permutation in V TOR. Since it is nontrivial, there exists an 

index1 <i<nsuchthat~i>~i+i. Take any such an index i. Since no is a topological 

ordering, (ni, 71i+l)~E and thus LC(x, i) E VToR. 0 

This lemma ensures that any nontrivial permutation in VToR can be replaced by 

a permutation in VTOR which is better (closer to 7~“). More specifically, the lemma 
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enables us to define a finite local search function,f7.0R from VrOR - rrO to VroR as 

where s is the smallest index such that the local change of rc at s is admissible (i.e. s is 

the smallest index such that n, > x,+ r). 

The underlying graph structure GI.oK = ( VToR, k;7.0R) is naturally derived from the 

function&,; two permutations 7-r and 7-c’ are adjacent if and only if one is obtained 

from the other by a local change. So we define the adjacency oracle AdjT,, of the 

graph by 

.Mjm(~, k) := 
i 

LC(n, k) if (Q, nk+ r)$E and (all+ r. rcJ$E. 
o 

otherwise 

for each rt E V,.aK and each index k = 1,2.. . , n - 1. Thus we have dToR = II - 1. 

The following lemma is important for an efficient implementation of the reverse 

search algorithm for the current problem. 

Lemma 3.11. Let 71 he u nontricial permutalion in VTOK and let s he the smallest indrr 

such that the local change of‘rc at s is udmissihle. For an index 1 6 i < n. the local chanye 

of’z at i is a reverse oj?f:fTOR, i.e.,fTOK(L(I(7r, i)) = 71 if’mtl only $(7ci. 7ci- ,)$E, 7ri < TI, + , 

~uzll either one of‘ the,following conditions holds: 

(i) i < s - 1; 

(ii) i = s + 1 and 71, < 7c s+ z (implyimg s <: n - 2). 

Proof. The sufficiency is easy. We prove the necessity. Let i be an index 1 < i < n such 

that the local change of II at i is a reverse off,,,. Firstly, one can easily see that the 

conditions (pi, rci+ ,)$E and rti < xi+ 1 must hold. Suppose that neither (i) nor (ii) 

holds. Then we have three cases (1) i = s. (2) i = s + 1 and rc, > rcY12, (3) i > s + 1. Let 

n’ = LC(7c, i). 

Clearly the case (1) does not happen since the position s cannot be an admissible 

local change position for both 7-r and r-c’. Thus either (2) or (3) must hold. Then the 

position s is the smallest indexj such that the local change of rc’ atj is admissible. This 

contradicts the assumption that ,fTOR(k) = rr. 

Therefore either (i) or (ii) must hold. This completes the proof. q 

Theorem 3.12. There is an implementation of Rever.seSearch2(Adj(jToR, ci,.,,. S7.0R, f,.,,) 

fiw the topoloyical ordering enumerution problem with time complesit~~ O(n 1 VT,,l) and 

spacr complrxit~~ O(m n). 

Proof. For an efficient implementation, we store the current permutation 

n = z1rc2 71, and the smallest index s such that the local change of rt at s is 

admissible. Also we store the graph G with its incidence matrix so that the query (i,j) 

E E? can be answered in O(1) time. Observe that one can evaluate AdjToR andfi-oR in 

O(n) time, including time to update rr and the index s. Since we store the index s. 
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Lemma 3.11 implies that we have tR(Adj,f) = 0( 1). By using the trivial time complex- 

ity tF(Adj,f) = O(n) and dTOR = O(n), Theorem 2.4 yields the claimed time complexity 

of ReverseSearch2. The space complexity is dominated by the storage for the inci- 

dence matrix which is O(m n). Cl 

There is an efficient backtrack algorithm to enumerate all topological orderings, see 

[14]. Recently, a Gray code algorithm has been proposed [17] which generates all 

topological orderings (and outputs only the local changes) in optimal O(m + I V,,,l) 

time and O(n’) space. Analysing the amortized complexity of the reverse search 

algorithm is an interesting problem, which might lead to a reverse search algorithm 

with optimal complexities. 

3.6. Enumeration of bases and spanning trees 

Let P be a finite set with n elements, and let M be the set of bases of a matroid on the 

ground set P with rank m [22], i.e., M satisfies the basis axioms: 

(1) each member of M is a subset of P with cardinality m, called a basis of M; 

(2) for any two bases B and B’ of M and for any s E B’\ B, there exists an element 

Y E B\B’ such that B - r + s is again a basis of M. 

There are simple well-known examples of matroids. 

Let A be a real matrix of rank m with n-column vectors AI, . . . , A,, and let 

P=(AI,...,A,}.Ab asis of A is defined as a maximal independent subset of P. Then 

the set M,i,(A) of all bases of A is a matroid. A matroid arising this way is called linear 

or representable over the reals. 

For a graph G with the edge set P, the set M,,(G) of all spanning forests, each 

considered as the collection of its edges, is also a matroid. This matroid is known as 

the cycle matroid of G. By assigning arbitrary orientations to the edges of G, we have 

M,,(G)- MLin(AG) for the ( - 1, 0, + 1)-incidence matrix AG of G, the cycle matroid 

of a graph is always linear. 

The problem of enumeration of bases of M does not make any sense if M is given 

explicitly. However, as we see from the two special cases above, we often have the 

following situation: 

(a) the set P is explicitly given but not M; 

(b) there is an efficient way to find a basis of M; 

(c) there is an efficient way to decide whether a given subset B of P is a basis or not. 

Under these conditions, the efficient enumeration of bases is a nontrivial problem. 

Like the cases we have already discussed in earlier sections, the reverse search 

technique can be naturally applied to this problem. 

By (a), we may suppose that a basis B* of M is given. Without loss of generality, we 

set B* = (1, 2, . . . , ml and P = { 1,2, . , n}. Let VBas = M and Seas = {B*}, and 

consider Gsas to be the graph with vertex set V BAS such that two vertices B, B’ are 

adjacent if and only if they have exactly m - 1 common elements. Now, the basis 

axioms (1) and (2) almost immediately yield a local search we need for the enumer- 

ation of bases. Namely we definef to be the function from VBAs \ SBAs to I/,,, such 
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that 

.fsns(B) := B - r + s, 

where s = minij: ,j E B* \B} and r = maxii: i E B\B* and B - i + s is a basis). From 

the basis axioms, this function is well defined, and always returns a basis closer to 

B* in terms of Hamming distance. 

In order to design an algorithm that can be readily applied to the linear matroid 

case, we employ the notion of tableau. For a basis B, the B x (Pi B)-matrix T(B) = 

[tii: i E B and j E P \ B] defined by 

I 
tij = 

if B - i + j is a basis 

0 otherwise 
(in B,,jEP‘,B) 

is called the tableau of B. 

The notion of tableau is commonly used for linear matroids with an explicitly given 

representation matrix A in which each tableau corresponds to an elementary (pivot) 

transformation of A. The tableau here is simply a combinatorial abstraction which 

only distinguishes the zero and the nonzero entries by 0 and 1. 

For a given tableau T(B), and a nonzero entry t,,, the operation of replacing T(B) 

by T(B - r + s) is called a pivot on (r, s), denoted by Piv(B, (r, s)). Since this operation 

is basic in linear cases, it is useful to implement our algorithm using the pivot 

operation as an elementary operation. Let us consider t(Pic) to be the time necessary 

to do one pivot operation. In the linear case M = M(A), we have t(Pic) = O(nzn). 

Our adjacency oracle Adjsas is merely a disguise of the tableau: 

@jdB, (i,j)) := 
B-i+j if tij= 1 
o 

if ti, = 0 
(i E B.j E P\ B). 

Here we consider dBAs = m x (n - m), which is the number of candidates for (i,,j). 

For the implementation of reverse search we propose here, we maintain the tableau 

for the current basis B. In addition, we maintain three additional items associated with 

B so that we can evaluatefsAs, AdjsAs in constant time 0( 1). The first one is simply the 

pivot position (r, s) chosen byf BAS at B. The second item is the largest integer I such 

that (1, . , 1) G B, which will be denoted by last(B). The last one is the reversibility flag 

vector R(B) = [R(B)j: j E P\B] given by 

R(B), := 
true if j > m and tkj = 0 for all k E B with k >,j 

false otherwise 
0’ E P \ B) 

Then we have the following lemma. 

Lemma 3.13. For u basis B, u position (i,,j) in the tableau T(B) is (I reverse piz:ot position 

with respect to.f,,, if und only if’tij # 0. i < last(B) und R(B)j = true. 

Proof. Left to the reader. 0 
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Theorem 3.14. There is an implementation qf ReverseSearck2(AdjsAS, fiBAs, SBas,fBAS) 

for the basis enumeration problem with time complexity O((mn + t(Piv)) IV& and 

space complexity independent qf 1 VB,sl. 

Proof. To prove this, we use Theorem 2.4 which claims the time complexity of 

ReverseSearch is O((t(Adj) + t(,f) + 6 tR(Adj,f) + tF(Adj,f)) IVl). 

For the claimed implementation, we use the data structure (the tableau and 

the three associated items) described above. Thus we have 

O(t(&)) = O(t(Adj,,,)) = O(1) excluding the data structure update. Clearly, 

tF(Adj,f) = O(1). Also, by the previous lemma, we have tR(Adj,f) = O(1). Since 

6 BAS = m x (n - m), the total time for enumeration excluding the time of data struc- 

ture update is O(rnn(l/B,&. 

Now, the time of updating a tableau and the associated data is t(Piv) + O(mn). 

Since we must update the tableau and the associated data each time we move to 

a different basis, the total time for updating data is O((t(Piv) + O(mn)) lV,,sl). This 

proves the theorem. Cl 

For the case of spanning trees of graphs, the enumeration problem can be solved 

using backtrack search with time complexity O((m + n)IMI), see [18]. It has been 

shown recently in [15,20] that by using sophisticated data structures one can design 

reverse search algorithms with the optimal complexity O(m + n + nlMI). While [15] 

describes an implementation with optimal space complexity O(m + n), the algorithm 

in [20] can be used to scan all spanning trees in O(m + n + [Ml) time and O(mn) 

space. 

One can easily see that the maximum cardinality of output is (“m). In contrast, the 

trace of the reverse search has an exceptionally short height of at most m. This 

example is perhaps an ideal example of reverse search that can profit substantially 

from parallel implementation. 

Note that this reverse search can be applied to the enumeration of vertices in 

arrangements of hyperplanes. This is superior to the reverse search method given in 

[S] in the sense of both time complexity and parallel acceleration. 

3.7. Enumeration of Euclidean spanning trees 

Let P = {pl . . p,,} be a set of n points in the plane, no three of which are collinear. 

We consider trees with vertices in P and edges given by line segments with endpoints 

in P. Two such edges with all endpoints distinct are said to cross if the corresponding 

line segments intersect. By the general position assumption this intersection point 

must be at an interior point of both segments. An Euclidean spanning tree for P is 

a spanning tree with no crossing edges. In this section we show how to enumerate all 

Euclidean spanning trees for P. First we describe an optimum tree T*. By relabeling 

the points if necessary, we may assume that p1 is the lexicographically smallest point, 

and hence an extreme point of the convex hull of P. We label the other points p2 . pn 
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in sorted counterclockwise order about p, so that both pIp2 and plpn are edges of the 

convex hull of P. T” is defined as the tree consisting of edges pIpi> i = 2, , II. It is 

clearly an Euclidean spanning tree for P. The enumeration algorithm is based on the 

following lemma. 

Lemma 3.15. For any nonoptimum Euclidean spunniny tree T of’P there is mn rdcglr c’ of 

T” bvhich is not in T and an edyef of T \vhich is not in T” .such thrrt T’ = T +- CJ ~ f i.5 

an Euclidem spanning tree. 

Proof. The proof uses an adoption of an argument due to Yao [23]. A candidate for 

fis an edge pipj that is in T - T*. Note that this implies that neither endpoint is p,, At 

least one of the edges plpi and pipj is not in T. and can be used for e provided it is not 

intersected by any other edge of T. By placing an acyclic relation on the edges of 

T - T* we show the existence of such a pair of edgesf’and c. 

By convention, when we refer to an edge pipj of T we will assume that i < ,j. Let pilli 

and prps be two edges of T - T”. We say that pipj dam prps whenever edge pill, 

intersects the interior of the triangle plpIp,y. If ~,ipj dam pIpy and in addition p,pi crosses 

pip,. then we say that pipj lejtdom pips, otherwise we say that pipj rightdom p,.ps (SW 

Fig. 3). Note that pipj kftdom pips, implies that i < I’. so we have the following. 

Observation 1. The relation leftdonz is acyclic 

Observation 2. If pipi ri<ghtdonz p?~.~ then i 2 I’. 

Proof. Since pip, and p,.p,, are edges of T they can only intersect at endpoints. Since 

pipi does not cross plpr and it intersects the interior of the triangle plp,.p5, we must 

have i > r (note equality is possible). 

Let plpu be an edge of T - T*. 

Observation 3. If ptpj leftdom pips and p,.ps rightdom plpu then p;pj donz p,p.. 

Proof. First note that edges pips and pIpI, do not cross because they are edges of T. 

Since pIpA rightdom ptpu either r = t or r > t. If r = t then pipj kftdom prpU. If r > t then 

p,. is contained in the interior of the triangle pIptp,,. Since pipj crosses plpr it also 

properly intersects the interior of the triangle pIptp,,, as required. 

Using the above observations we can show that dom has a maximal element, which 

is our candidate for.11 Since leftdom is acyclic, it has maximal element(s). Let prpu be the 

maximal element of kftdom satisfying the conditions: 

(i) if pipj is a maximal element of Iejtdom then i < t, and 

(ii) if plpi is a maximal element of kfrdom.,j # u, then ipIpppp, < iplp,p,. 

Claim. p,pu is II mauimal element qf dom 

Proof. Assume, on the contrary, the existence of an edge pips such that prps dom p,p,,. 

First note that since plpu is maximal for l@dom we must have prps rightdom ptp,,. Let 

pip,i be the maximal element for leftdm in the chain of the lgftdom relation containing 
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Fig 3. (a) pipi Mhtdom PZ.. (b) pLpi kftdom P,P~ 

pips. By repeated use of Observation 3 and the maximality of ptp,, with respect to 

leftdom, we have pipj rightdom ptpu. By Observation 2, we have i 3 t, which combined 

with condition (i) gives i = t. But now condition (ii) gives a contradiction, since we 

cannot have plpj rightdom ptpu This contradiction proves the claim. 

The rest of the proof is straightforward. We let f be the edge plpu. Since T is a tree, at 

least one of pIpt, plpu is not in T and is our choice for e. The maximality off with 

respect to dom proves that T’ is Euclidean. 0 

Lemma 3.15 immediately shows that there is a reverse search algorithm for 

enumerating all Euclidean spanning trees. The performance of an implementation is 

another matter. Here we do not try to search for the most efficient one, since it will go 

beyond the scope of this paper. Instead, we shall describe a simple one with a reason- 

ably good time complexity. 

First we define the graph GEsT = (I’,,,, EEST), where I/,,, is the set of all Euclidean 

panning trees, and two trees T and T ’ in T/EST are adjacent in GEsT if the symmetric 

difference TAT’ consists of two edges of form, pipj and prps withj = Y orj = s. 

For any Euclidean spanning tree T different from T *, let M(T) be the set of edges 

in T \ T * that are maximal elements of dom. Lemma 3.15 guarantees that M(T) is 

nonempty. For each edge in M(T), there exists a unique edge ef E T* such that 

T-f+esEVEsT. The local search we use here is (GEST, SEST,fEST) where 

s EST = {T*} and 

f&T) := T -f + es, 

where f is the lexico-min edge in M(T). 

In order to construct an A-oracle, one can set 6 EST to be (n - 1) (n - 2) since there 

are (n - 1) edge candidates to remove from T and at most (n - 2) edges to add, at 

any Euclidean spanning tree T. We can easily implement AdjEsT such that 

t(Adj,,,) = O(n) since recognizing whether two edges cross takes only constant time. 

Similarly we have t(f&) = O(n). 
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Theorem 3.16. There is an implementation of‘ ReverseSearch(AdjEsr. cSES1., SES.I., ,fES1.) 

for the Euclidean spanning tree enumeration problem lcith time complexity 0(n3 1 VES, 1) 

and space complexity O(n). 

Proof. To prove this, we simply use Corollary 2.3 which claims the time complexity of 

ReverseSearch is O(ii(t(Adj) + t(f))lVl). This together with the discussion above gives 

the time complexity. The space complexity is obvious. Cl 

4. Partial reverse search 

In Section 2. we developed the reverse search as a general exhaustive search 

technique. Here we introduce a simple modification of reverse search as a general 

algorithmic framework for solving a certain class of hard optimization problems. 

In order to understand the main idea, let us first consider the O-l integer program- 

ming problem (abbreviated by IP): 

maximize 

subject to 

(‘.X 

Ax < b and 

?ij = 0 Or 1 for ,j = 1, , Jl, (4.1) 

where A is a rational m x n matrix, h a rational m-vector and c’ a rational n-vector. It is 

well known that IP is NP-complete [19], A standard technique used to solve this 

problem is the branch-and-bound (see, e.g., 116, Ch. IX]). The new algorithm to be 

introduced now can be considered as an alternative to the branch-and-bound 

methods. 

Let 

P = (.Y: A.Y < h and 0 d x d 1:. 

Then we have the following lemma. 

Lemma 4.1. A point x in P is an optimal solution to the ZP (4.1) if’ untl on/~, if 

.Y maximizes cx over all vertices of P that we integral. 

Proof. The “only if” part is trivial. The “if’ part follows from the fact that every 

integral vector of P is a vertex of P. 0 

This lemma suggests the following primitive strategy to solve an IP: 

(1) Apply reverse search of Section 3.1 for enumerating all vertices of P; 

(2) during the search procedure, output no vertices but remember and update an 

integral vertex, say 5 with currently best objective value; and 

(3) output V at the end of search. 



44 D. Aais, K. Fukuda 1 Disrrete Applied Mathematics 65 11996) 21-46 

This procedure obviously works. But it is very far from practical since the vertex 

enumeration takes too much time for large n and m. Can we shorten this procedure 

and somehow overcome this difficulty? Observe that the local search f we reverse in 

(1) is the simplex method, andfis monotone with respect to the objective function, 

that is, cxB < cxfcB), where xg denotes the basic solution (i.e. a vertex of P) associated 

with a basis B. This means that as we follow the trace Tf reversely (against 

its orientation), the objective value monotonically decreases. Therefore, while 

doing reverse search, as soon as we detect an integral vertex or a vertex with objective 

value worse than the current best value ~6, there is no reason to search lower in the 

trace. 

We do not know if this “partial reverse search” strategy yields a practical algorithm. 

But we believe that it deserves further investigation. Unlike the branch-and-bound 

algorithms for IP that require a large number of linear programs to be solved, we have 

to solve at most one linear program initially. Furthermore, we have simple ways to 

implement it in parallel computers. 

Now, let us present the partial reverse search in general setting. Suppose we have 

a finite local search (G, S,,f’) given by an A-oracle. Therefore, we can apply reverse 

search to enumerate all vertices of G = (V’, E). Now, in addition, suppose we have the 

following situation: 

(1) we are given an objective function c defined at each vertex; 

(2) we are given a boolean function Q defined at each vertex. 

The general problem to be solved is to 

maximize 

subject to 
c(o) 
u E V and 

Q(0) = true. (4.2) 

Obviously, an IP is a special case of this optimization problem. We call the 

following procedure a purtial reverse search: 

procedure PartialReverseSearch(Adj, 6, S,f. c, Q); 

for each vertex s E S do 

u := s; j := 0; (* j: neighbor counter *) 

V := 0; C = - EC; (* current best solution and value *) 

repeat 

while j < 6 do 

j:=,j + 1; 

next := Adj(v, j); 

if next # 0 andf(next) = u and c(next) > C then (* reverse traverse *) 

v := next; j:= 0; 

if Q(v) = true then (* update the current best solution *) 

v := u; c = c(v); 

,j := S + 1 (* no further reverse *) 

endif 
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endif 

endwhile; 

if t’ # s then (* forward traverse *) 

14 := L’; 2: := f(c); 

determine j such that Acdj(r,,j) = u (* restore,j *) 

endif 

until I’ = s and j = 6; 

output F 

endfor. 

We call a local search functionf’monotone with rcsprct ro c if I.(C) d c(.f’(c)) for all 

7: E V\S. Then. the previous discussion of partial reverse algorithm for IP naturally 

extends to: 

Proposition 4.2. The partiul reverse search .sol~ws the optimization problem (4.2) {f’/k 

function ,f’ is monotonr with respect to c. 

One can easily find applications of partial reverse search other than the integer 

programming. For example, one can find a very special triangulation of points in the 

plane by using the flip algorithm fTRI of Section 3.3. It is often desired to have 

a triangulation which does not use a very narrow angle in any of its triangles. In fact. 

a Delaunay triangulation is one that maximizes the angle vector, and thus in 

particular. it maximizes the minimum angle. The partial reverse search can then find 

a triangulation satisfying any prescribed condition(s) Q and maximizing the angle 

vector. 

Another example is to find a “special” basis of a weighted matroid (or a spanning 

tree of a graph with weighted edges). It is easy to modify the local search ,f;l,.l,s 

of Section 3.6 so that it finds a basis of maximum weight (see [9]). Setting Q to 

be any condition(s) that you want a basis to satisfy. e.g. having k leaves for the 

graph case. Then the partial reverse search finds a basis satisfying Q with maximum 

weight. 

Again, we have no evidence whatsoever supporting these applications being useful 

in practice. In order to say anything meaningful in this respect demands further 

research. 
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