A Pivoting Algorithm for Convex Hulls and Vertex Enumer ation of

Arrangements and Polyhedra

David Avis

School of Computer Science
McGill University

3480 Unversity, Montreal, Quebec H3A 2A7

Komei Fukuda

Graduate School of Systems Management
The Unversity of Tsukuba

Otsuka, Bunkyo-ku, Tokyo 112

November 1990, Revised January 1992

ABSTRACT

We present a ng pivot-based algorithm which can be used with minor modifica-
tion for the enumeration of the facets of thewveontull of a set of points, or for the enu-
meration of the vertices of an arrangement or of aveornwlyhedron, in arbitrary
dimension. Thealgorithm has the following properties:

(a) Virtually no additional storage is required beyond the input data;

(b) The output list produced is free of duplicates;

(c) The algorithm is extremely simple, requires no data structures, and handles all
degenerate cases;

(d) The running time is output sengéifor non-degenerate inputs;

(e) The algorithm is easy to efficiently parallelize.

For example, the algorithm finds thevertices of a polyhedron iRY defined by a non-
degenerate system aofinequalities (or duallythe v facets of the corex hull of n points
in RY, where eachdcet contains>actly d given points) in timeO(ndv) and O(nd)
space. The vertices in a simple arrangement mhyperplanes irR? can be found in
O(n?dv) time andO(nd) space compleity. The algorithm is based onvieting finite
pivot algorithms for linear programming.

1. Introduction

In this paper we ge an dgorithm, which with minor variations can be used to sdlwvee basic
enumeration problems in computational geometry: facets of theexdull of a set of points, vertices of
a convex lyhedron gien by a gstem of linear inequalities, and vertices of an arrangemengparh
planes. The algorithm is based orqgting and has mannice properties. Among these are that virtually
no additional space is required apart from that required to store the input, and that the algorithm produces
a list that is free of duplicateven for degenerate inputs. The algorithm is based orerting" finite piv-
oting algorithms for linear programmingNo special knowledge of linear programming or arrangements
is assumed, and necessary terminology is defined Rereadditional information the reader is referred
to Chvatal[6] for linear programming and Edelsbrunner[9] for arrangementke the rest of this section
we give an informal description of the algorithm beginning with thertex enumeration problem for

cornvex polyhedra.

Suppose we ha a ystem of linear inequalities defining a polyhedrorRfhand a ertex of that
polyhedron. Avertex is secified by giing the indices ofd half-spaces whose boundinggerplanes
intersect at theartex. For aty given linear objectre function, the simpbemethod generates a path along
edges of the polyhedron until @rex maximizing this objectie function is found.For simplicity, let us
assume for the moment that the polyhedron is simple, which means thateetechisvaontained on
exactly d bounding lyperplanes. Theath is found by pioting, which irvolves interchanging one of the
equations defining theevtex with one not currently usedThe path chosen from an initialvgn vertex
depends on the it rule used. In fact, care must be taken because samierplies generate cycles and
do not lead to the optimunextex. However, a marticularly simple rule, known as Blarsdule or the least
subscript rule[3], guarantees a unique path frognstarting \ertex to the optimum ertex. If we look at
the set of all such paths from all vertices of the polyhedron, we get a spanning tree of the edge graph of
the polyhedron rooted at the optimurartex. Our algorithm simply starts at an "optimurarte<" and
traces out the tree in depth first order byérsing” Blands rule. Ewen if the polyhedron is not simple,
the same basic ideaovks. A vertex lying on more thamd bounding hyperplanes is calleggenerate.

Care must be taken to only output a degenematiexvonce, and additional procedures are required if the

-3-

optimum vertg is itself dgenerate. Amxample of the xecution of the algorithm is gen in Section 5.

A remarkable feature is that no additional storage is needed at intermediate nodes in the tree. Going
down the tree we explore all valid \rerse" piots in lexicographical order from mmgiven intermediate
node. Going back up the tree, we simply use Biandé to return to the parent node along with the cur
rent pvot indices. From there it is simple to continue by considering tle leeicographic "reerse”
pivot, etc. The algorithm is therefore non-recuesind requires no stack or other data structure. One pos-
sible difficulty arises at so-called degenerate vertices, vertices which lie on mocelibanding lyper-
planes. It is desirable to report eaertex once only and this can be achied without storing the output
and searching. By using dualitye an also use this algorithm for enumerating the facets of theexon
hull of a set of points ilRY. It can also be used for enumerating all of the vertices of the Voronoi Dia-

gram of a set of points iRY, since this can be reformulated as av@ntull problem inR%** (see [9]).

A variant of this method can be used fertex enumeration of arrangements wfyperplanes in
RY. For the case of simple arrangements, where eadix\vs contained on xeactly d hyperplanes, the
method is of no interest. Here one simply needs to calculatesalsets of the hyperplanes and com-
pute their intersection, which can easily be done without addtional stdeage.for non-simple arrange-
ments with no parallel planes, this simple method can be modifiedrtowell. Our method is only of
practical interest when the arrangement containsyrparallel typerplanes. Agin consider the linear
programming problem discussed aboEach inequality defining the polyhedron is bounded bypeh
plane. Thecorresponding arrangement of hyperplanes containy watices, some of which arerices
of the polyhedron, known ageasible vertices. The others are known ageasible vertices. Arecent
development in linear programming is avpt rule that starts at grnvertex of this arrangement, feasible or
infeasible, and finds a unique path to the optimum solution of the linear progtamis known as the
criss-cross method, and wassdeped independently byeflaky[19], [20] and WAng[22]. Reersing this

algorithm along the lines described abgields our algorithm for enumerating vertices of arrangements.

The problems discussed in this papereha bng history which we briefly mention here. The prob-
lem of enumerating all of the vertices of a polyhedron isesaxd by Mattheiss and Rubin in[13] and by

Dyer in[7]. There are essentially tndasses of deterministic methods. One class is basedvotingi

-4 -

and is discussed in detail in[7] and[6]. In this method a depth first search is initiated feotex &y try-
ing all possible simplepivots. The difficulty is in determining whether or notertex has already been
visited. For this all vertices must be stored in a balanc®l-tkee. An implementation that tas
O(nd?v) time andO(dv) space for a polyhedron with vertices defined by a non-generate system of
inequalities inRY is given in[7]. A dual version that computes a@x hulls was disceered by Chand and
Kapur[4], and has similar compii¢y. Using sophisticated data structures, Seidel[18$ able to achie
a running time ofO(d3vlogn + nf(d — 1, n- 1)) for sets ofn points in RY, when each facet contains

exactly d given points. Heref (d, n) is the time to solg a inear program witm constraints ind vari-

ables, and/ is the number ofdcets of the camx hull. The space required for this algorithmQgn"@25.
The algorithm presented in this paper fits into this class. It\ashi& dvn) time andO(dn) space com-
plexity for facet enumeration of the ox hull of n points inRY, when each facet containsaetly d
given points.

A second class of methods for computing the vertices of aegoplyhedron is the "double
description" method of Motzkin et al.[14] that dates back to 1953adnthe origin of these methods is
even earlier, as he double description method is in fact dual to therierMotzkin method for the solu-
tion of linear inequality systemsn the double description method, the polyhedron is constructed sequen-
tially by adding a constraint at a time. Allweertices produced must lie on the hyperplane bounding the
constraint currently being inserted. A dual version for constructingezamills is known as the "beneath
and bgond" method. Assuming the dimensidnis fixed, an algorithm of this class that is optimal in

even dimensions is due to Seidel [18] (also see [9]). Chazelle[5] has recently presented an algorithm that

is optimal in all dimensions, hence requir@gn"®?3 time and space, in dimensidr 3.

With d fixed, the complete facial structure of a hyperplane arrangement can be constructed by an
algorithm due to Edelsbrunné'Rourke and Seidel [8] in optimal time and spa®én®). Thealgorithm
works by inserting the hyperplanes one at a time and can handle degeneratdgasewith d fixed, a
method for enumerating just the edges and vertices (with repetitio@)nf) time andO(n) space is

given by Edelsbrunner and Guibas[10Houle et al.[1] gie veal applications in data approximation

-5-

where it is required to enumerate all vertices of an arrangement.

In the next section we g by introducing the notion of a dictionary for a system of equations.
Next we shav how the problems mentioned in the title can be transformed into the enumeration of certain
types of dictionaries. In the third section weeghe algorithm for enumeration of dictionaries. Finally in

the last section we discuss complexity issues, and other properties of the algorithm proposed.

2. Dictionaries

Let A be anmxn matrix, with columns indeed by the setE = {1, 2, ..., n}. Fix distinct indicesf

andg of E. Consider the system of equations:

Ax=0, x4=1. (2.2)

For any J U E, x; denotes the swiactor of x indexed by J, and A; denotes the submatrix @ consisting
of columns indeed by J. A basis B for (2.1) is a subset dE of cardinalitym containingf but not g, for
which Ag is nonsingularWe will only be concerned with systems (2.1) thavéa least one basis, and

will assume this for the rest of the pap@iven any basisB, we @an transform (2.1) into thdictionary:

Xg = — Ag Ay XN = A Xy, (2.2)

whereN = E - B is theco - basis, and A denotes—A'BlAN. Ais called thecoefficient matrix of the dic-
tionary, with rows indexed by B and columns indeed by N, so that A = (a; :i0B, jON). Notethat the

co-basis aliays contains the indeg.

A variablex; is primal feasibleif iCIB - f andajg > 0. A variable x; is dual feasibleif jCN —g
anday <0. Adictionary isprimal feasible if x; is primal feasible for alilIB - f anddual feasible if
X; is dual feasible for all IN — g. A dictionary isoptimal if it is both primal and dual feasible. An opti-
mal dictionary is shown schematically in Figure 24 basic solution to (2.1) is obtained from a dictio-
nary by settingy-g = 0, Xg = 1. If ary basic variable hasalue zero, we call the basic solution and corre-
sponding dictionangegenerate. In Section 3 of the paper wewg a1 dgorithm for enumerating all dis-

tinct basic solutions of the system (2.1) without repetition, using only the space required to store the

9 N-g
f OO0 00006
@
@ —
B-f | ® = A
@
@

Figure2.1: An Optimal Dictionary (® = non-n@aive entry, © = non-positive entry)
input. The algorithm is initiated with an optimal dictionakyvariant of the algorithm enumerates all pri-

mal feasible dictionaries reporting the corresponding basic feasible solutions without repetition.

In the following subsections, wehav how the problems mentioned in the title can be transformed

into the problem of enumerating basic (feasible) solutions of a system of equations in the form (2.1).

2.1. Vertex enumeration in hyper plane arrangements

A hyperplanein RY, d = 0, is denoted by the paib,(c), whereb is a vector of lengtll andc is a
scalay and is the solution set of the equatisn=—c, y=(y; : j =1, ..., d). A hyperplane arrangement
is a collection oy hyperplaneslgj, c;), for some intgerny. A vertex of the arrangement is the unique
solution to the system ofd equations corresponding ta intersecting hyperplanes. The
vertex enumeration problem for hyperplane arrangements is to list all of tleetices of an arrangement.
It is a simple matter to find a&xex of an arangement, or sliothat none exists, since vertices correspond
to subsets ofl hyperplanes whose normatatorsh; are linearly independenie anly consider arrange-

ments that contain at least one vertex.

We may assume, by relabeling if necessémgat the ectors{by 41, ..., by} are linearly indepen-

dent. Considethe system of equations

Xi = CiXpee1 —byy, 1=1,...,Ng.
By assumption, the last equations are linearly independent, and so #m&ablesy,, ..., yq can be
expressed in terms of, _g+1, ..., Xn,,» aNd eliminated from the firsty — d equations. Thisesults in a

system of the form:

-7-

Xg = AXN,

for a suitable o — d) x(d + 1) matrix A, whereB={1, ..., np—d} and N ={ng—-d +1, ..., ny +1}.
Furthermore, by a change of variables if necessayray assume that eaé, 1 is non-ngaive. We

augmentA by adding a rev of of al -1 ’s. We augmentB by adding indexng + 2. Setting

f=ng+2, g=ng+1, m=nyg—-d+1,n=ng+2,

we hare onstructed an optimal dictionaryhis dictionary is obtained from the following system which

has the form of (2.1):

Ixg = Axy =0, Xq=1. (2.3)

It is easy to shwe that for erery co-basisN of (2.3), the set ofl hyperplanes indeed by N — g inter-

sect at some verntef the arrangement. The vextean be computed by setting

Xj = dig ioB-f, ijo jON-g

and solving fory , which was expressed in terms)Qf g1, .. ., Xn,. Smilarly every index set ofd inter-
secting hyperplanes augmented by indegives a ®-basis for (2.3).We sy that a @rtex is degenerate
if it is contained in more thad hyperplanes. For suctextices, there may be manorresponding bases
of (2.3), each giving rise to a degenerate dictiondny essential part of our enumeration algorithm will

be to output a degenerate vartaly once.

The linear program formulated in this section has a unique optireaex.Mf this vertex is degener-
ate, havever, there will be may optimal dictionaries that correspond to it. Thertex enumeration algo-

rithm must be initiated at each of these dictionaries, an issue that is addressed in Section 3.2.

2.2. Vertex enumeration for polyhedra

In this section we relate thenex enumeration problem for polyhedra to the dictionary enumeration
problem. fer a fuller discussion and proofs of the facts stated here, the reader is referngdtamadard

linear programming text, such as[6A (corvex) polyhedronP is the solution set to a system mf

inequalities ind non-ngdive \ariables:

P={yORY|Ay<b,y=0} (2.4)

where A’ is anng x d matrix andb is ang-vector A vertex of the polyhedron is aectory[IP that satis-

fies a linearly independent set@bf the inequalities as equation§he vertex enumeration problem for

P is to enumerate all of its vertices. In fact to fiverea sngle vertex of P is computationally equaent

to linear programming. As we wish to separate this from the enumeration problem, we will assume we
are gven an nitial vertex. By transforming the problem as necessarg may assume that the origin is

the given vertex. This implies that theactorb is non-ngaive. We dso note that the assumption of non-
negdive \ariables is not essential: a system of inequalities in unrestricted variables with fe@sible

point can be transformed into a system such as (2.4) along the lines described in the previous subsection.

Letn=ng+d+2,f=n-1,g=n,B={1,...,ng,n=1} andN ={ny+1, ..., ng+d, n}. Con-

sider the following system of equations in the form of (2.1):

IXN-g + Xg =0
IXg-t + A'XN-g —bxg =0 (2.5)
Xg=1

Herel is an identity matrix and 1 is astor of all ones, of appropriate dimensions. 18etny + 1 and

let A be themxn matrix corresponding to the cdiefents in the firsim equations of (2.5). Then (2.2) is

an optimal dictionary for the system (2.3).can be shown that eaghimal feasible dictionary for (2.5)

has a basic solution whichvgs a \ertexy of P: sety; = X+j, j =1, ..., d. Avertex of P is degenerate

if it satisfies more thaml inequalities of (2.4) as equations. Again, degenerate vertices correspond to
degenerate dictionaries. In order to enumerateatices ofP, it is sufficient to enumerate all primal fea-

sible dictionaries for (2.5), outputting a degenerate basic solution once only.

2.3. Facet enumeration of the convex hull of a set of points

Let Q={qi, ..., dn,} denote a set ohy points in RI. A facet of the cowex hull of Q is a

-9-

hyperplane containing affinely independent points @. There is no loss of generality in assuming that
the origin is contained in the ogex hull of Q. By employing a standard duality between points and

hyperplanes, we may transform this problem int@det enumeration problem for a ceex plyhedron.

3. Enumeration of Dictionaries

Suppose we are \@n a g/stem of equations of the form (2.1), for sommen matrix A. The
linear programming problem (LP) for (2.1) is to maximize; over (2.1) subject to the additional con-
straint that each variable@&ptx; and x4 is non-ngative. Each optimal dictionary is a solution td°.
To begn with, we will assume that there is a unique optimal dictianAnpivot (r, s) on a kasisB, and
corresponding dictionaryg = AXg, is an nterchange of somelB — f with some inde sCN - g giving
a rew kasisB'. The nev coefficient matrixA’ = (a}j) is given by

1 T a = & g - aifarj

a, = ; , iOB-r, JOON-5). 3.1
aI’S afS 9 a'I’S aI’S (J) ()

The pvot is primal feasible (respectiely, dual feasible) if both of the dictionaries corresponding Bo
andB' are primal (respeatély, dual) feasible. The simptemethod is a method of solvirgP by begin-
ning with an initial dictionary and yoting until an optimal dictionary is foundNe cnsider tvo rules

for choosing a piot.

The first rule, known as Blargliule, performs primal feasibleymits. LetB be a basis such that the

dictionary (2.2) is primal feasible.
Bland’sRule.

(1) Letsbe the smallest indesuch thatxg is dual infeasible, that ig;5 > O.

a.
(2) Seth =min{- =2 :i0B- f, &g < 0}. Letr be the smallest inateobtaining this minimum.
is

The pvot (r, s) maintains the primal feasibility of the dictionaftystep (1) does not applshe dictionary

is also dual feasible and hence optimal.

The second rule, known as the criss-cross rule, starts withears.

-10 -

Criss-Cross Rule
(1) Leti # f, gbe the smallest indesuch that; is (primal or dual)infeasible.

(2) Ifi0B, letr =i and lets be the minimum indesuch thata,s > 0, otherwise lets =i and letr be the

minimum inde such thata,s < 0.

The criss-cross pot (r, s) interchanges, andXxg, and may not preseevdather primal or dual feasibility

If step (1) does not apply then the dictionary is optimal.

In both cases, if step (1) applies, then step (2) amayalbe &ecuted. Thevalidity of these rules is
given by the following proposition.Pat (a) is prared in[3] and part (b) in[19] for linear programs, and
in[20] [22] in the more general setting of oriented matroidssimple proof of part (b) also appears in

[12].

Proposition 3.1. Let (2.1) be a system that admits an optimal dictionary art8i bet aty basis.
(a) If B is primal feasible, then repeated application of Blamdle leads to an optimal dictionargnd
each basis generated is primal feasible.

(b) Repeated application of the criss-cross rule starting with Bdseds to an optimal dictionaryl

3.1. Unique Optimal Dictionaries

In this subsection we g a dctionary enumeration algorithm for systems (2.1) that admit a unique
optimal dictionary Consider a graph whereestices are dictionaries anddwertices are adjacent if the
corresponding tw dictionaries differ in only one basi@xiable. Therpart (b) of the proposition tells us
that there is a unique path consisting of criss-croggpirom ary dictionary to the optimal dictionary
The set of all such pathsvgs us a panning tree in this graph. Consider a non-optimal dictioDawith
basisB. Let (, s), r OB - f, sLIN — g, be te pvot obtained by applying the criss-cross ruldXagiving a
dictionaryD'. We all (s, r) areverse criss— cross pivot for D'. Suppose we start at the optimal dictio-
nary and explore werse criss-cross yots in lexicographic ordefhis corresponds to a depth first search
of the spanning tree defined &koWhen moving down the tree, each dictionary is encountetactig

once.

-11 -

A similar analysis applies to part (a) of the propositiore #¢m a similar graph,xeept that er-
tices are just the primal feasible dictionari&¥e define areverse Bland pivot in the analogous ay. A

depth first search of this graph provides all primal feasible dictionaries.

Our enumeration algorithrsearch for dictionaries is gien in Hgure 3.1. For a gen system (2.1)
we hae an initial basisB ={1, ..., m}, co-basisN ={m+1, ..., n} and optimal dictionarkg = Axy.
We further assume thét = 1, g = n, and thatm andn are global constants. Thefiefengy of the proce-
dure depends greatly on the procedumneverse. The simplest way to check if
(r,s),rmoB-f,smoN — g, is a evease pvot is to atually perform the piot, then use procedure
select — pivot on the ne dictionary If this produces the same pair of variables, thems)(is a \alid
reverse pvot. Since a piot invaves O(mn) operations, adster method is desirable. In fact to determine
the pvot by the criss-cross or Blarsltules, procedurselect — pivot. does not require the entire dictio-
nary To test whetherA arises from a coefficient matri& by a criss-cross (resp., Bland yaqti inter-
changingBJi] with N[j], it is only necessary to examineu®f, i and columng, g of A'. These can be
computed fromA in O(m+ n) time, and checked to see B[{], N[]]) is a criss-cross (resp., Blandygi.
Further saings are possible, as certain potentialerse pvots can be eliminated without yapivoting.

For the criss-cross rule we Vete following necessary condition for aseese pvot.

Proposition 3.2 If (s, r), smoB - f andrmoN — g, is a \alid reverse criss-cross it for a dictionary

Xg = Axy, then either
@ ag>0, ag >0, ag=0forjON-g,j<s,or
(b) ayx <0, a4 <0, §,<O0foriB-f,i<r.

Proof: Let A" = (@j;), with basisB" and co-basiN’, be a dctionary that yieldsA after the valid criss-
cross piot (r, s), with r OB’ — f, and sON' — g. One of the indices, s must be the smallest infeasible
index in A", Suppose first that it is. By the criss-cross rule we must thereforgendl,y < 0, a';s > 0, and
ayj<0forall jON"-g, j<s. Now gplying the pvot formula (3.1) to the pot row of A" we obtain
the signs indicated in part (a) of the propositio\irA similar analysis applies to the case wheis the

smallest infeasible inddn A', giving the sign pattern of part (b) of the propositian.

-12 -

procedure search B, N, A);

FB={1,....,m), N={m+1, ...,n}, f =1,g=n, xg = Axy is a unique optimal dictionary for a sys-
tem (2.1) */
begin
i:=2;j:=1;
repeat
while (i <m and not reverse B, N, A, i, j)) incrementi(, j);
if (i <m)then /* reverse pvot found */
begin

pivot (B, N, A/ i, j);
if lex-min (B, N, A) then print (B);

i:=2;j:=1;

end;

else [* go back to previous dictionary */

begin
select-pvot (A, i, j);
pivot (B, N, A/ i, j);
increment{, j);

end,

until (i >m and B[m] = m)
end, [* search */

function reverse B, N, A, i, j):boolean; B
[* trueif (s, r), with s=B[i], r = N[j], is a \alid reverse cross-piot (resp., Bland-piot) for A,
otherwisefalse */

procedurepivot (B, N, A, i, j);
[* pivot A on rov i and columnj, updateB andN. Reorder as necessary andisand j to be the
indices of the interchangdg]i] and N[j]. */

function lex-min (B, N, A):boolean;
/* trueif Ais non-degenerate, or degenerate Bnsl the lexicographically minimum basis for this
basic solution, elskalse */

procedure select-piot (A, i, j); B
[* Find criss-cross (resp., Bland)vpt for coeficient matrix A. Return the indei of the pvot row
and indexj of the pvot column*/

procedureincrementy j);
begin
j:=j+1;if (j =n—-m)then begin j:=1;i:=i+1; end;
end; [* increment */

Figure3.1

-13-

For revesing Blands rule, we can exploit theatt that the neerse pvot must maintain primal feasi-

bility.

— a
Proposition 3.3 Let xg = Axy be a dictionaryletr moN — g and setd = min{ - %g i0B-f, &, <0}.

r
If (s, r), sUB - f, is a\alid reverse Blands rule piot thens must be an indethat obtains this minimum.
Proof: Under the conditions of the propositionsifs not an inde realizing the minimum, then the dic-
tionary obtained after thevut (s, r) is not primal feasible.cl In the next section, we seewthis simple

observation reduces the complexityseérch in non-degenerate situations.

The proceduréex — min is used to ensure that each basic solution is ouiaatlg once, when the
lexicographically minimum basis for that basic solution is reached. The correctness of the procedure is

based on the following proposition.

Proposition 3.4 Let B be a basis for a degenerate dictionagy= Axy. B is not lexicographically mini-
mum for the corresponding basic solution if and only if thedister OB — f and sUN — g such that

r>s ag=0anda;#0.

Proof: For the suficiengy of the condition, letr and s have the abee poperties. LetB' =B -r +s.

Sincea, # 0, B' is a basis, and it is lexicographically smaller tiBan

On the other hand, suppoBeis a basis lexicographically smaller thBrwith the same basic solu-
tion. Lets be the smallest inaten B' but not in B. Since both bases fia the same basic solutioasy = 0.
If we augmentB by s, there must exist some inde such thatB = B —r + s is a basis. N r > s for
otherwiser 0OB', by the choice ofs, and there is a linear dependence among the set of columns
{Aj:j OB, j<s}. Alsoas# 0, otherwiseB would not be a basisFinally sinceag, =0, we hae

;g = 0 and B has the same basic solutionBasO

3.2. Degenerate Optimal Dictionaries

Proceduresearch as gven in the previous subsection will only generate all (feasible) dictionaries if
the system (2.1) has a unique optimal diction&@yppose there are manoptimal dictionaries. This situ-

ation arises when one of the basic variables hhgewero, ie. the dictionary is degenerate. Then instead

-14 -

of a spanning tree in the graph described after Proposition 3.1, we obtain a spanning forest. Each of the
two pivot agorithms terminates when yoptimal solution is found. Therefore, procedsearch must be

applied to each optimal dictionarfrortunately from ary optimal dictionary we can generate all optimal
dictionaries by a procedure very similar to search.ca and will assume that there is a unique optimal
basic solution. This corresponds to the condition that all of théi@eatsay, j[IN — g are non-zero in

the optimal dictionaryWe ae free to assume this since in our applications we are free to choosevthis ro

which corresponds to the "objeaifunction” of the linear program.

Let xg = Axy be a degenerate optimal dictionafdyet B'l] B denote the indices of theanables
with value zero in the corresponding basic solution and thecifidéVe augmentA by a column with
index g =n+1, consisting of all ones. This column temporarily replaces column Let

N'=N-g+d. This augmented dictionary is shown schematically in Figure 3.2.

g 9 N'-¢
f - - - - - =
+ 10
B' - f + 10
+ 10
= A

+ +
B-B'-f | + | +
+ +

Figure 3.2 : An Augmented Degener ate Optimal Dictionary

We rmow consider the sub-dictionary consisting ofveindexed by B’ and columns byN'. This is a non-
degenerate optimum dictionaryfo obtain all optimal dictionaries for the original problem, we apply a
variant of procedure search to the sub-dictionary using a dual form of Blahe'in procedures verse

and lex-min. This form takes wpiual feasible dictionary andwgs a dial feasible piot.
Dual Bland’sRule

(1) LetrB' - f be the smallest indtethat is primal infeasible, that &y < O.

a .
(2) SetA =min{ - a—f’ : JON' =g, a; > 0}. Letr be the smallest inatesttaining this minimum.
Tj

-15 -

The pvot (r, s) maintains the dual feasibility of the dictionany step (1) does not applthe dictionary is

optimal. Proposition 3.1(a) applies with "primal” replaced by "dual".

We initiate the procedure search on the augmented dictionary with Basied co-basisN'.
Although only rows indeed by B' are considered for yots, we manipulate the entire coefficient matrix
Ain procedure piot, and update theeetorsB andN. Now each reerse piot found by search applied to
the modified problem yields aweptimal dictionary for the original problem. After the call to procedure
pivot in search, we ne insert a call to the original procedure search, with the dictioAaand the

updated vectorB andN.

The validity of this approach is based on the following olz&ms. Agin let xg = Axy be a
degenerate optimal dictionary for a system (2.1) with a unique optimum basic solutidsl. dret N' be
defined as ahe@. Each optimal basis for (2.1) contains the indiBes B’ augmented by a linearly inde-
pendent set fronN — g + B'. Such bases will atays be primal feasible foA, if they are also dual feasi-
ble then thg correspond to an optimal dictionary for the original systéiaing the dual form of Blang’
rule, this latter condition is whys satisfied. Since the modified problem is has a unique optimal dictio-
nary each dual feasible dictionary for the modified problem must be connected by a unique path by dual
Bland piots to this optimum dictionanRevesing the prots allovs us to visit each optimal dictionary

for the original problem.

4. Complexity

In this section we discuss the conxife of the dictionary enumeration algorithm, and apply the
results to the geometric applications described in Section 2. Supposevevea gatem (2.1) for some
mxn matrix A. Let f(A) denote the number of dictionaries that can represent ((4).is just the num-

ber of linearly independent subsetsntolumns ofA, with the condition that the column with indé is
. . . . -2
always included, and indeg is always excluded. Thids at mosg;_ 13 but may be much smalleFor

each dictionarywe may evaluate fn—1)(n — m-2) candidates for werse pvots, each candidate requir
ing O(m+ n) time as shown in the previous section. Procechivet requiresO(m(n-m)) time per

execution as does procedutex —min. These complexities are valid for the case of multiple optimal

-16 -

solutions. Therefore theverall time-complexity ofsearch is

m-20

O((m+n) m(n-m) f(A))=0((m+nymn "

). (4.1)

Apart from a fev indices, no additional space is required other than that required to represent the input.

We row consider the complexity ofveluating all feasible dictionaries. Lg{A) denote the number
of primal feasible dictionaries representing (2.1). Thevatmalysis and (4.1) hold, with(A) replacing
f(A). Inthe non-degenerate case we can do h&smalling Proposition 3.3, we see that we only need to
consider one candidateveese pvot per column of the dictionary: if there areadwsr more indices realiz-
ing the minimum then a yot would give a é&generate dictionaryFor each column, the candidate basic
variable can be found by computing the minimum ratim O(m) time. To check if a candidate is iraft
a revase piot, we need to construct the objeetiow o the dictionary after the wit, takingO(nh — m)
time. Therefore since there ame- m- 2 candidate columns, all verse Bland piots from the gien dic-
tionary can be found i®((n — m)n) time, in the non-degenerate case. Thiggan werall complexity of

O((n—m)ng(A)) for the non-degenerate case.

We row return to the geometric problems mentioned in Section 2. Supposeveva ladlection of
no hyperplanes irRY. For this problemm = ny — d + 1 and n = ny + 2. The time-complexity of enumerat-

ing all vertices of a hyperplane arrangement by this method becomes:

Mo

o(n3 d f(A))zO(ngolEloID

).

In the case of simple arrangement$A) is the number of the vertices, ie. the size of the output. This
method should be particularly useful for simple arrangements withidgtices. This could occur if mgn
hyperplanes are parallel. Inyaevent, the simplicity of the arrangement does noteh® be known in

advance.

Consider nar the enumeration of the vertices of a polyhedramrgby a Ist of ny inequalities ind
variables. Sincenve assume the polyhedron has at least @aréeex, ng >d. We havem=ng+1 and

n=ng+d+2. Thetime-complexity of enumerating all of the vertices is

-17 -

MoJ

Cd D)'

O(n3d g(A)) =0(nj d

Again the complexity is output sensiifor non-degenerate polyhedra, for whig#d) is just the number
of vertices. Ifthe polyhedron is simple (ie. all dictionaries are nogeterate) then we get an imped
complity bound. The algorithm producegntices at a cost dD(ng d) per vertex with no repetitions

and no additional space.

The complexities in the previous paragraph apply to theesohull problem, where is the num-
ber of input points. In the non-degenerate case where no moral thaimts lie on an facet (ie., the

facets are simplicial), we can enumeratewtigcets in timeO(nydv) and spacé(nyd).

5. Example

In this section we g an example of the operation of procedwsearch for the \ertex enumeration

of the set ohy = 5 lines shown in Figure 5.1. This arrangement is generated by the coefficients:
by =(1,3), bp=(51), bg=(3,2), by=(-1,-3), bs=(-2 1),

c, =4, c, =5, C3 =2, Cq =1, C5 = 2.

Proceeding as described in Section 2.1, we add varighles. , X5 obtaining the system:

Xy =4-y; -3y,
Xz =9~ 9y17 Y2
X3=2-3y1 -2y,
Xg=1+y; +3y;
Xs =2+2y; Y,

Since the last tavequations are linearly independent, we may addv y; andy, in terms ofx, and xs,

getting:

Xa X5
=-1+ —+3—
n 7 7°7

= 22-=,
Y2 7

-18 -

Eliminating variables/q, y, from the first three equations we obtain the system:

X1 = 5- Xa
X2=10 _X4_2X5
X3 = 5 - Xq — Xg
These are plotted witky, X5 as aes in Figure 5.2. Adding the speciariablesx; andxy and the addi-
tional rav representing the "objewg# function”, we obtain our initial optimal dictionary:
X1 =OXg — X4
X = 10Xy = X4 = 2Xs (5.1)
X3 =5Xg — X4~ Xs
Xs = — X4 — Xg
Starting at this dictionary we consider in turn each of the candidaseegovots: (1,4), (2,4), (2,5),
(3,4), (3,5). The candidatevot (1,4) yields the dictionary:
Xo = BXg * X1 — 2X5
X3 = X1 — Xg (52)
X4 = BXg = X1
Xf ==5Xg *+ X1~ X5
Checking this dictionarywe dscover that the criss-cross rule does generate thet p4,1), so we con-
tinue from this dictionary Note that in determining this, we do not need the entire dictionarshis
example we need only the column of coefficientsXor The possible candidates are: (2,1), (2,5), (3,1),
(3,5), (4,1). We dart with (2,1), which leads to the dictionary:
X1 = —5Xg + X+ 2Xs
X3 = =5Xg + X+ Xs (5.3)
X4 = 10Xg = Xp = 2Xs
Xf ==10%g +Xo+ Xs
Again the criss-cross rule applied to this dictionary generates the reqwise(lL®). In this case we need

only check the coefficients of, andx, in the rav for x;.

Continuing from this dictionarythe first candidate pot is (1,2). This leads us back to (5.2), for

which the criss-cross rule generates thetpi4,1) which is not the same. Therefore (1,2) is noalav

-19-

reverse pvot from (5.3). Next we try the pot (1,5) on dictionary (5.3). Thisggs the dictionary:

5 X1 Xo
X Xy t—+ 2
3 279 "2 2
Xg= OXg —X;
5 Xl X2
Xe = _ = -
°T 279 T2 2
X = 15 X1 X2
f 279 "2 "2

The criss-cross rule applied to this dictionary yields thet§4,1), so (1,5) is not averse pvot. Contin-
uing in this way we disa@r that no dictionaries lead to (5.3) by the criss-cross rugethéfefore back-
track to the parent dictionary of (5.3), which we do by performing the criss-cras$IpR) leading back

to (5.2). Note that no storage is required to determine the parent of a dictionary.

In Figure 5.3 we shwthe complete tree enumerating all dictionaries from (5.3). Duegengeacy
in the original arrangement, the sanegtex in the arrangement may occur adeliént dictionaries in the
tree. Dictionaries with bases {1,2,4}, {2,3,4}, {2,4,5} correspond to oeder. We autput this ertex

when its lexicographically minimum basis {1,2,4} is reached.

6. Concluding Remarks

We havepresented a mealgorithm that can be used to selirree important geometric enumeration
problems without additional space. The simplicity of the algorithm renders it suitable for symbolic com-
putation in a language such Baple or Mathematica. Using exact arithmetic, the problem of numerical
accurag which occurs with most geometric algorithms oided. Thesecond author and Ichiro
Mizukoshi hae in fact implemented the algorithms of this paper as a packagetimematica, which is

publicly available at no charge from the second author.

Another useful feature of the algorithm is that it is easy to efficiently parallelize. Since in the enu-
meration no dictionary isver reached by tw different paths and no additional storage is required, sub-
problems can be scheduled arbitrarily onto free processors. If the enumeration treevélyrdsathy”
one would expect considerable speed-up from parallelizatioweldo in the worst case little if an
speed-up would be ackel: consider the so-called Klee-Mintyxamples. Itis known[2] that Bland

rule applied to these examples generates a patkpohential length from someextex to the optimum

-20 -

vertex. By reordering the variables, this path in fact visisrg vertex of the polyhedron[15]. In this
case the enumeration tree generated bgrse pvoting is also a path!However, snce the simpbe
method seems to work well in practice, the enumeration tree will normaléy ligh fan-out and rela-
tively shallov depth, and so substantial speed-up mayxpeaed. Thigepresents an area for future
research. Bysubstituting other pot rules in our algorithm, different enumeration trees are generated.

Study of these trees should peaseful in ealuating pwoting rules for the simplemethod.

The reverse pvoting approach is quite general and can be applied to a &y of enumeration
problems. Thealgorithms in this paper can betended to the setting of oriented matroids, and in partic-
ular to pseudo-line arrangements. While the criss-cross metbidd worrectly in the setting of oriented
matroids, Bland rule is not finite for oriented matroid programming [1Tpdd[21] has found a finite

rule that can replace Blarsdule in the oriented matroid setting.

We havealso recently used thevese pvoting method to deslop an algorithm for enumerating all
the cells in an arrangement ofhyperplanes. & enumerating all the vertices of an arrangement, a
related technique ges a dfferent algorithm than that presented here. The time complexityefoexv
enumeration in a simple arrangement is impdoto O(nd?v) with space complexity @in O(nd). In
both cases, the enumeration tree has depth boundedahych should enable anfefient parallel imple-
mentation. V& can also apply rerse enumeration to find all triangulations and spanning trees adch fix
set of points. These results will be described in detail in a forthcoming. paiser, in very recent ork,
Glinter Rote has modified the technique of the present paper to addyexssreg in the \ertex enumera-

tion problem directly with impneed complexity results[16].

The complexity analysis presented in this paper is quite rudimentgadlow a worst case time of
O(m+ n) to determine whether a pair of indices is aerse pvot. This seems certain to be aveeesti-
mate. r theith basic variable to interchange with tfth non-basic variable, at ledst j signs hae ©
be "correct”. V& may compute these signs consealyi and stop the first time an "incorrect" sign is
encountered. Amortizing this costap the complete enumeration of an arrangement, it is possible that
just a constant amount of work has to be done onvrage to determine that a potentialase pvot is

invalid.

-21 -

Finally we remark that our algorithm can be easily modified to enumerate all enfgegseof a poly-
hedron in the gien time and space compiigy. Initally, suppose we ha a #mple polyhedron and we are
at a \ertexa of the polyhedron with its associated dictiond&igr each entering basic variable we compute
a leaving variable via the ratio tesSSince the polyhedron is simple, this variable is unique aveb @i
new vertexb of the polyhedron. Then the edge is always an edge of the polyhedron and we can report
it using a simple lexicographic rule: teaid reporting both edgab and edgéa , check if the basis foa

is lexicographically less than that floyand if so reporab.

For non-simple polyhedra, the situation is more comace two endpoints of an edge, anden
the edge itself, may be degenerate. Furthermore, the example of a square pyfRidrirbe used to
shaw that the lexicographically minimum basis for oregtex may not be adjacent in the enumeration tree
to the lexicographically minimum basis for an adjacesrtex in the polyhedron.Nevertheless we can
apply a technique similar to that described at the end of Section 3.1 for degenerate vertices. An edge cor
responds to a non-degenerateop(r, s) from some basiB. We @an consideB —r — s as a basis for the
edge, and output the edge whesdhis basis is minimal. The condition can be tested in a way similar to

that described in Proposition 3.4.

7. Acknowledgements

The work of the first author was performed while visiting the laboratory of Professor Masakazu
Kojima of Tokyo Institute of Bchnology supported by the JSPS/NSERC bilateral exchange program.
We would also lile to hank Glnter Rote and twenorymous referees for a careful reading of the paper

and mag helpful suggestions.

References

2. D.Avis and V Chvatal, “Notes on Bland Hvoting Rule; Math. Programming Sudy, vol. 8, pp.

24-34, 1978.

3. R. G. Bland, ‘New Finite Pioting Rules for the SimpleMethod;, Math. Operations Research,

10.

11.

12.

13.

14,

15.

16.

17.

-22 -

vol. 2, pp. 103-107, 1977.

D.R.Chand and S.S. KapufAn Algorithm for Cowex Polytopes; J. ACM, vol. 17, pp. 78-86,

1970.

B. Chazelle, ‘An Optimal Cowex Hull Algorithm and N& Results on Cuttings, Proc. 32nd

Annual |EEE Symposium on Foundations of Computer Science, pp. 29-38, 1991.
V. Chvatal,Linear Programming, W.H. Freeman, 1983.

M.E. Dyer, “The Complexity of \értex Enumeration Methods, Math. Oper. Res., vol. 8, pp.

381-402, 1983.

H. EdelsbrunnerJ. ORourke, and R. Seidel,Constructing Arrangements of Lines and Hyper

planes with Applications,SSAM J. Computer Science, pp. 341-363, 1986.
H. EdelsbrunnerAlgorithms in Combinatorial Geometry, Springer-Verlag, 1987.

H. Edelsbrunner and L. GuibasT opologically Sweeping an Arrangemént]. Comp. Syst. Sci-

ences, vol. 38, pp. 165-194, 1989.
K.Fukuda, “Oriented Matroid ProgrammifigPh.D. Thesis, University of Waterloo, 1982.

K. Fukuda and TMatsui, “On the Finiteness of the Criss-Cross Methdeliropean J. O.R, to

appear.

TH. Matheiss and D. S. RubirA‘'Survey and Comparison of Methods for Finding akkMces of

Corvex Polyhedral Set§, Math. Oper. Res,, vol. 5, pp. 167-185, 1980.

TS. Motzkin, H. Raffa, G.L. Thompson, and R. M. Thrall, “The Double Description Method,

Annals of Math. Studies 8, pp. 51-73, Princeton Uwérsity Press, 1953.

K. Pgoarrizos, ‘Pivoting Rules Directing the SimpteMethod Through All Feasible évtices of

Klee-Minty Example$, OPSEARCH, vol. 26, pp. 77-95, 1989.

G.Rote, ‘Degenerate Corex Hulls in High Dimensions \tthout Extra Storagé,Proc. 8th Annual

Symposium on Computational Geometry, 1992, to appear.

R.Seidel, “Constructing Higher-Dimensional G@ax Hulls at Logarithmic Cost perdee’; Proc.

18.

19.

20.

21.

22.

-23-

1986 ST.O.C., pp. 404-413.

R.Seidel, ‘A Corvex Hull Algorithm Optimal for Point Sets in Ew Dimension$, Report 81-14,

University of British Columbia, Dept. of Computer Science, 1981.

T Terlaky, “A Corvergent Criss-Cross MethddMath. Oper. und Sat. ser. Optimization, vol. 16,
pp. 683-690, 1985.

T Terlaky, “A Finite Criss-Cross Method for Oriented Matrofds, Combin. Theory B, vol. 42, pp.
319-327, 1987.

M. Todd, “Linear and Quadratic Programming in Oriented Matrdids Comb. Theory B, vol. 39,

pp. 105-133, 1985.

Z.Wang, “A Conformal Elimination Free Algorithm for Oriented Matroid Programmiirghinese

Annals of Mathematics, vol. 8,B,1, 1987.

