
A Pivoting Algorithm for Convex Hulls and Vertex Enumeration of

Arrangements and Polyhedra

David Avis

School of Computer Science

McGill University

3480 University, Montreal, Quebec H3A 2A7

Komei Fukuda

Graduate School of Systems Management

The University of Tsukuba

Otsuka, Bunkyo-ku, Tokyo 112

November 1990, Revised January 1992

ABSTRACT

We present a new piv ot-based algorithm which can be used with minor modifica-
tion for the enumeration of the facets of the convex hull of a set of points, or for the enu-
meration of the vertices of an arrangement or of a convex polyhedron, in arbitrary
dimension. Thealgorithm has the following properties:

(a) Virtually no additional storage is required beyond the input data;
(b) The output list produced is free of duplicates;
(c) The algorithm is extremely simple, requires no data structures, and handles all
degenerate cases;
(d) The running time is output sensitive for non-degenerate inputs;
(e) The algorithm is easy to efficiently parallelize.

For example, the algorithm finds thev vertices of a polyhedron inRd defined by a non-
degenerate system ofn inequalities (or dually, thev facets of the convex hull of n points
in Rd , where each facet contains exactly d given points) in timeO(ndv) and O(nd)
space. Thev vertices in a simple arrangement ofn hyperplanes inRd can be found in
O(n2dv) time andO(nd) space complexity. The algorithm is based on inverting finite
pivot algorithms for linear programming.

- 2 -

1. Introduction

In this paper we give an algorithm, which with minor variations can be used to solve three basic

enumeration problems in computational geometry: facets of the convex hull of a set of points, vertices of

a convex polyhedron given by a system of linear inequalities, and vertices of an arrangement of hyper-

planes. The algorithm is based on pivoting and has many nice properties. Among these are that virtually

no additional space is required apart from that required to store the input, and that the algorithm produces

a list that is free of duplicates even for degenerate inputs. The algorithm is based on "inverting" finite piv-

oting algorithms for linear programming.No special knowledge of linear programming or arrangements

is assumed, and necessary terminology is defined here.For additional information the reader is referred

to Chvátal[6] for linear programming and Edelsbrunner[9] for arrangements.In the the rest of this section

we give an informal description of the algorithm beginning with the vertex enumeration problem for

convex polyhedra.

Suppose we have a system of linear inequalities defining a polyhedron inRd and a vertex of that

polyhedron. Avertex is specified by giving the indices ofd half-spaces whose bounding hyperplanes

intersect at the vertex. For any giv en linear objective function, the simplex method generates a path along

edges of the polyhedron until a vertex maximizing this objective function is found.For simplicity, let us

assume for the moment that the polyhedron is simple, which means that each vertex is contained on

exactly d bounding hyperplanes. Thepath is found by pivoting, which involves interchanging one of the

equations defining the vertex with one not currently used.The path chosen from an initial given vertex

depends on the pivot rule used. In fact, care must be taken because some pivot rules generate cycles and

do not lead to the optimum vertex. However, a particularly simple rule, known as Bland’s rule or the least

subscript rule[3], guarantees a unique path from any starting vertex to the optimum vertex. If we look at

the set of all such paths from all vertices of the polyhedron, we get a spanning tree of the edge graph of

the polyhedron rooted at the optimum vertex. Our algorithm simply starts at an "optimum vertex" and

traces out the tree in depth first order by "reversing" Bland’s rule. Even if the polyhedron is not simple,

the same basic idea works. A vertex lying on more thand bounding hyperplanes is calleddegenerate.

Care must be taken to only output a degenerate vertex once, and additional procedures are required if the

- 3 -

optimum vertex is itself degenerate. Anexample of the execution of the algorithm is given in Section 5.

A remarkable feature is that no additional storage is needed at intermediate nodes in the tree. Going

down the tree we explore all valid "reverse" pivots in lexicographical order from any giv en intermediate

node. Going back up the tree, we simply use Bland’s rule to return to the parent node along with the cur-

rent pivot indices. From there it is simple to continue by considering the next lexicographic "reverse"

pivot, etc. The algorithm is therefore non-recursive and requires no stack or other data structure. One pos-

sible difficulty arises at so-called degenerate vertices, vertices which lie on more thand bounding hyper-

planes. It is desirable to report each vertex once only, and this can be achieved without storing the output

and searching. By using duality, we can also use this algorithm for enumerating the facets of the convex

hull of a set of points inRd . It can also be used for enumerating all of the vertices of the Voronoi Dia-

gram of a set of points inRd , since this can be reformulated as a convex hull problem inRd+1 (see [9]).

A variant of this method can be used for vertex enumeration of arrangements ofn hyperplanes in

Rd . For the case of simple arrangements, where each vertex is contained on exactly d hyperplanes, the

method is of no interest. Here one simply needs to calculate alld subsets of then hyperplanes and com-

pute their intersection, which can easily be done without addtional storage.Even for non-simple arrange-

ments with no parallel planes, this simple method can be modified to work well. Our method is only of

practical interest when the arrangement contains many parallel hyperplanes. Again consider the linear

programming problem discussed above. Each inequality defining the polyhedron is bounded by a hyper-

plane. Thecorresponding arrangement of hyperplanes contains many vertices, some of which are vertices

of the polyhedron, known asfeasible vertices. The others are known asinfeasible vertices. A recent

development in linear programming is a pivot rule that starts at any vertex of this arrangement, feasible or

infeasible, and finds a unique path to the optimum solution of the linear program.This is known as the

criss-cross method, and was developed independently by Terlaky[19], [20] and Wang[22]. Reversing this

algorithm along the lines described above yields our algorithm for enumerating vertices of arrangements.

The problems discussed in this paper have a long history, which we briefly mention here. The prob-

lem of enumerating all of the vertices of a polyhedron is surveyed by Mattheiss and Rubin in[13] and by

Dyer in[7]. There are essentially two classes of deterministic methods. One class is based on pivoting

- 4 -

and is discussed in detail in[7] and[6]. In this method a depth first search is initiated from a vertex by try-

ing all possible simplex piv ots. The difficulty is in determining whether or not a vertex has already been

visited. For this all vertices must be stored in a balanced AVL-tree. An implementation that takes

O(nd2v) time andO(dv) space for a polyhedron withv vertices defined by a non-degenerate system ofn

inequalities inRd is given in[7]. A dual version that computes convex hulls was discovered by Chand and

Kapur[4], and has similar complexity. Using sophisticated data structures, Seidel[17] was able to achieve

a running time ofO(d3v log n + nf (d − 1, n − 1)) for sets ofn points in Rd , when each facet contains

exactly d given points. Here f (d, n) is the time to solve a linear program withn constraints ind vari-

ables, andv is the number of facets of the convex hull. The space required for this algorithm isO(nd/2).

The algorithm presented in this paper fits into this class. It achieves O(dvn) time andO(dn) space com-

plexity for facet enumeration of the convex hull of n points in Rd , when each facet contains exactly d

given points.

A second class of methods for computing the vertices of a convex polyhedron is the "double

description" method of Motzkin et al.[14] that dates back to 1953. In fact the origin of these methods is

ev en earlier, as the double description method is in fact dual to the Fourier-Motzkin method for the solu-

tion of linear inequality systems.In the double description method, the polyhedron is constructed sequen-

tially by adding a constraint at a time. All new vertices produced must lie on the hyperplane bounding the

constraint currently being inserted. A dual version for constructing convex hulls is known as the "beneath

and beyond" method. Assuming the dimensiond is fixed, an algorithm of this class that is optimal in

ev en dimensions is due to Seidel [18] (also see [9]). Chazelle[5] has recently presented an algorithm that

is optimal in all dimensions, hence requiringO(nd/2) time and space, in dimensiond ≥ 3.

With d fixed, the complete facial structure of a hyperplane arrangement can be constructed by an

algorithm due to Edelsbrunner, O’Rourke and Seidel [8] in optimal time and spaceO(nd). Thealgorithm

works by inserting the hyperplanes one at a time and can handle degenerate cases.Again with d fixed, a

method for enumerating just the edges and vertices (with repetitions) inO(nd) time andO(n) space is

given by Edelsbrunner and Guibas[10].Houle et al.[1] give sev eral applications in data approximation

- 5 -

where it is required to enumerate all vertices of an arrangement.

In the next section we begin by introducing the notion of a dictionary for a system of equations.

Next we show how the problems mentioned in the title can be transformed into the enumeration of certain

types of dictionaries. In the third section we give the algorithm for enumeration of dictionaries. Finally in

the last section we discuss complexity issues, and other properties of the algorithm proposed.

2. Dictionaries

Let A be anm×n matrix, with columns indexed by the setE = {1, 2, .. . , n}. Fix distinct indicesf

andg of E. Consider the system of equations:

A x = 0, xg = 1. (2.1)

For any J ⊆ E, xJ denotes the subvector of x indexed by J , and AJ denotes the submatrix ofA consisting

of columns indexed by J . A basis B for (2.1) is a subset ofE of cardinalitym containing f but not g, for

which AB is nonsingular. We will only be concerned with systems (2.1) that have at least one basis, and

will assume this for the rest of the paper. Giv en any basisB, we can transform (2.1) into thedictionary:

xB = − A−1
B AN xN = A xN , (2.2)

whereN = E − B is theco − basis, and A denotes−A−1
B AN . A is called thecoefficient matrix of the dic-

tionary, with rows indexed by B and columns indexed by N , so that A = (aij : i∈B, j ∈N). Notethat the

co-basis always contains the indexg.

A variablexi is primal feasible if i∈B − f andaig ≥ 0. A variable x j is dual feasible if j ∈N − g

anda fj ≤ 0. A dictionary isprimal feasible if xi is primal feasible for alli∈B − f anddual feasible if

x j is dual feasible for allj ∈N − g. A dictionary isoptimal if it is both primal and dual feasible. An opti-

mal dictionary is shown schematically in Figure 2.1.A basic solution to (2.1) is obtained from a dictio-

nary by settingxN−g = 0, xg = 1. If any basic variable has value zero, we call the basic solution and corre-

sponding dictionarydegenerate. In Section 3 of the paper we give an algorithm for enumerating all dis-

tinct basic solutions of the system (2.1) without repetition, using only the space required to store the

- 6 -

g N − g

f O- O- O- O- O- O-
O+
O+

B − f O+ = A
O+
O+

Figure 2.1 : An Optimal Dictionary (O+ = non-negative entry, O− = non-positive entry)

input. The algorithm is initiated with an optimal dictionary. A variant of the algorithm enumerates all pri-

mal feasible dictionaries reporting the corresponding basic feasible solutions without repetition.

In the following subsections, weshow how the problems mentioned in the title can be transformed

into the problem of enumerating basic (feasible) solutions of a system of equations in the form (2.1).

2.1. Vertex enumeration in hyperplane arrangements

A hyperplane in Rd , d ≥ 0, is denoted by the pair (b, c), whereb is a vector of lengthd andc is a

scalar, and is the solution set of the equationby = c, y = (y j : j = 1, .. . , d). A hyperplane arrangement

is a collection ofn0 hyperplanes (bi, ci), for some integer n0. A vertex of the arrangement is the unique

solution to the system ofd equations corresponding tod intersecting hyperplanes. The

vertex enumeration problem for hyperplane arrangements is to list all of the vertices of an arrangement.

It is a simple matter to find a vertex of an arrangement, or show that none exists, since vertices correspond

to subsets ofd hyperplanes whose normal vectorsbi are linearly independent.We only consider arrange-

ments that contain at least one vertex.

We may assume, by relabeling if necessary, that the vectors{bn0−d+1, . . . , bn0
} are linearly indepen-

dent. Considerthe system of equations

xi = ci xn0+1 − bi y, i = 1, .. . , n0.

By assumption, the lastd equations are linearly independent, and so the variablesy1, . . . , yd can be

expressed in terms ofxn0−d+1, . . . , xn0
, and eliminated from the firstn0 − d equations. Thisresults in a

system of the form:

- 7 -

xB = AxN ,

for a suitable (n0 − d) ×(d + 1) matrix A, where B = {1, .. . , n0 − d} and N = {n0 − d + 1, .. . , n0 + 1}.

Furthermore, by a change of variables if necessary, we may assume that eachai,n0+1 is non-negative. We

augmentA by adding a row of of all -1 ’s. We augmentB by adding indexn0 + 2. Setting

f = n0 + 2, g = n0 + 1, m = n0 − d + 1, n = n0 + 2,

we have constructed an optimal dictionary. This dictionary is obtained from the following system which

has the form of (2.1):

IxB − AxN = 0, xg = 1. (2.3)

It is easy to show that for every co-basisN of (2.3), the set ofd hyperplanes indexed by N − g inter-

sect at some vertex of the arrangement. The vertex can be computed by setting

xi = aig i∈B − f , x j = 0 j ∈N − g

and solving fory , which was expressed in terms ofxn0−d+1, . . . , xn0
. Similarly every index set of d inter-

secting hyperplanes augmented by index f gives a co-basis for (2.3).We say that a vertex is degenerate

if it is contained in more thand hyperplanes. For such vertices, there may be many corresponding bases

of (2.3), each giving rise to a degenerate dictionary. An essential part of our enumeration algorithm will

be to output a degenerate vertex only once.

The linear program formulated in this section has a unique optimum vertex. If this vertex is degener-

ate, however, there will be many optimal dictionaries that correspond to it. The vertex enumeration algo-

rithm must be initiated at each of these dictionaries, an issue that is addressed in Section 3.2.

2.2. Vertex enumeration for polyhedra

In this section we relate the vertex enumeration problem for polyhedra to the dictionary enumeration

problem. For a fuller discussion and proofs of the facts stated here, the reader is referred to any standard

linear programming text, such as[6].A (convex) polyhedron P is the solution set to a system ofn0

- 8 -

inequalities ind non-negative variables:

P = {y ∈Rd | A′y ≤ b, y ≥ 0}, (2.4)

whereA′ is ann0 × d matrix andb is an0-vector. A vertex of the polyhedron is a vectory∈P that satis-

fies a linearly independent set ofd of the inequalities as equations.The vertex enumeration problem for

P is to enumerate all of its vertices. In fact to find even a single vertex of P is computationally equivalent

to linear programming. As we wish to separate this from the enumeration problem, we will assume we

are given an initial vertex. By transforming the problem as necessary, we may assume that the origin is

the given vertex. This implies that the vectorb is non-negative. We also note that the assumption of non-

negative variables is not essential: a system of inequalities in unrestricted variables with known feasible

point can be transformed into a system such as (2.4) along the lines described in the previous subsection.

Let n = n0 + d + 2, f = n − 1, g = n, B = {1, .. . , n0, n − 1} and N = {n0 + 1, .. . , n0 + d, n}. Con-

sider the following system of equations in the form of (2.1):

1xN−g + x f = 0

IxB− f + A′xN−g − bxg = 0 (2.5)

xg = 1.

Here I is an identity matrix and 1 is a vector of all ones, of appropriate dimensions. Setm = n0 + 1 and

let A be them×n matrix corresponding to the coefficients in the firstm equations of (2.5). Then (2.2) is

an optimal dictionary for the system (2.5).It can be shown that eachprimal feasible dictionary for (2.5)

has a basic solution which gives a vertexy of P: set y j = xn0+ j , j = 1, .. . , d. A vertex of P is degenerate

if it satisfies more thand inequalities of (2.4) as equations. Again, degenerate vertices correspond to

degenerate dictionaries. In order to enumerate all vertices ofP, it is sufficient to enumerate all primal fea-

sible dictionaries for (2.5), outputting a degenerate basic solution once only.

2.3. Facet enumeration of the convex hull of a set of points

Let Q = {q1, . . . , qn0
} denote a set ofn0 points in Rd . A facet of the convex hull of Q is a

- 9 -

hyperplane containingd affinely independent points ofQ. There is no loss of generality in assuming that

the origin is contained in the convex hull of Q. By employing a standard duality between points and

hyperplanes, we may transform this problem into a vertex enumeration problem for a convex polyhedron.

3. Enumeration of Dictionaries

Suppose we are given a system of equations of the form (2.1), for somem×n matrix A. The

linear programming problem (LP) for (2.1) is to maximizex f over (2.1) subject to the additional con-

straint that each variable except x f and xg is non-negative. Each optimal dictionary is a solution toLP.

To begin with, we will assume that there is a unique optimal dictionary. A pivot (r, s) on a basisB, and

corresponding dictionaryxB = AxB, is an interchange of somer ∈B − f with some index s∈N − g giving

a new basisB′. The new coefficient matrixA′ = (a′
ij) is giv en by

a′
sr =

1

ars
, a′

ir =
ais

ars
, a′

sj = −
arj

ars
, a′

ij = aij −
aisarj

ars
, (i∈B − r, j ∈N − s). (3.1)

The pivot is primal feasible (respectively, dual feasible) if both of the dictionaries corresponding toB

andB′ are primal (respectively, dual) feasible. The simplex method is a method of solvingLP by begin-

ning with an initial dictionary and pivoting until an optimal dictionary is found.We consider two rules

for choosing a pivot.

The first rule, known as Bland’s rule, performs primal feasible pivots. LetB be a basis such that the

dictionary (2.2) is primal feasible.

Bland’s Rule.

(1) Let s be the smallest index such thatxs is dual infeasible, that is,a fs > 0.

(2) Setλ = min{ −
aig

ais
: i∈B − f , ais < 0}. Let r be the smallest index obtaining this minimum.

The pivot (r, s) maintains the primal feasibility of the dictionary. If step (1) does not apply, the dictionary

is also dual feasible and hence optimal.

The second rule, known as the criss-cross rule, starts with any basis.

- 10 -

Criss-Cross Rule

(1) Let i ≠ f , g be the smallest index such thatxi is (primal or dual)infeasible.

(2) If i∈B, let r = i and lets be the minimum index such thatars > 0, otherwise lets = i and letr be the

minimum index such thatars < 0.

The criss-cross pivot (r, s) interchangesxr and xs, and may not preserve either primal or dual feasibility.

If step (1) does not apply then the dictionary is optimal.

In both cases, if step (1) applies, then step (2) can always be executed. Thevalidity of these rules is

given by the following proposition.Part (a) is proved in[3] and part (b) in[19] for linear programs, and

in[20] [22] in the more general setting of oriented matroids.A simple proof of part (b) also appears in

[12].

Proposition 3.1. Let (2.1) be a system that admits an optimal dictionary and letB be any basis.

(a) If B is primal feasible, then repeated application of Bland’s rule leads to an optimal dictionary, and

each basis generated is primal feasible.

(b) Repeated application of the criss-cross rule starting with basisB leads to an optimal dictionary.

3.1. Unique Optimal Dictionaries

In this subsection we give a dictionary enumeration algorithm for systems (2.1) that admit a unique

optimal dictionary. Consider a graph where vertices are dictionaries and two vertices are adjacent if the

corresponding two dictionaries differ in only one basic variable. Thenpart (b) of the proposition tells us

that there is a unique path consisting of criss-cross pivots from any dictionary to the optimal dictionary.

The set of all such paths gives us a spanning tree in this graph. Consider a non-optimal dictionaryD with

basisB. Let (r, s), r ∈B − f , s∈N − g, be the pivot obtained by applying the criss-cross rule toD giving a

dictionaryD′. We call (s, r) a reverse criss − cross pivot for D′. Suppose we start at the optimal dictio-

nary and explore reverse criss-cross pivots in lexicographic order. This corresponds to a depth first search

of the spanning tree defined above. When moving down the tree, each dictionary is encountered exactly

once.

- 11 -

A similar analysis applies to part (a) of the proposition. We form a similar graph, except that ver-

tices are just the primal feasible dictionaries.We define areverse Bland pivot in the analogous way. A

depth first search of this graph provides all primal feasible dictionaries.

Our enumeration algorithmsearch for dictionaries is given in Figure 3.1. For a given system (2.1)

we have an initial basisB = {1, .. . , m}, co-basisN = {m + 1, .. . , n} and optimal dictionaryxB = AxN .

We further assume thatf = 1, g = n, and thatm andn are global constants. The efficiency of the proce-

dure depends greatly on the procedurereverse. The simplest way to check if

(r, s), rmoB − f , smoN − g, is a rev erse pivot is to actually perform the pivot, then use procedure

select − pivot on the new dictionary. If this produces the same pair of variables, then (r, s) is a valid

reverse pivot. Since a pivot inv olves O(mn) operations, a faster method is desirable. In fact to determine

the pivot by the criss-cross or Bland’s rules, procedureselect − pivot. does not require the entire dictio-

nary. To test whetherA arises from a coefficient matrixA′ by a criss-cross (resp., Bland) pivot inter-

changingB[i] with N [j], it is only necessary to examine rows f , i and columnsj, g of A′. These can be

computed fromA in O(m + n) time, and checked to see if (B[i], N [j]) is a criss-cross (resp., Bland) pivot.

Further savings are possible, as certain potential reverse pivots can be eliminated without any piv oting.

For the criss-cross rule we have the following necessary condition for a reverse pivot.

Proposition 3.2 If (s, r), smoB − f and rmoN − g, is a valid reverse criss-cross pivot for a dictionary

xB = AxN , then either

(a) asg > 0, asr > 0, asj ≥ 0 for j ∈N − g, j < s, or

(b) a fr < 0, asr < 0, air ≤ 0 for i∈B − f , i < r.

Proof: Let A′ = (a′ij), with basisB′ and co-basisN ′, be a dictionary that yieldsA after the valid criss-

cross pivot (r, s), with r ∈B′ − f , and s∈N ′ − g. One of the indicesr, s must be the smallest infeasible

index in A′. Suppose first that it isr. By the criss-cross rule we must therefore have a′rg < 0, a′rs > 0, and

a′rj ≤ 0 for all j ∈N ′ − g, j < s. Now applying the pivot formula (3.1) to the pivot row of A′ we obtain

the signs indicated in part (a) of the proposition inA. A similar analysis applies to the case wheres is the

smallest infeasible index in A′, giving the sign pattern of part (b) of the proposition.

- 12 -

__

procedure search (B, N , A);
/* B = {1, .. . , m}, N = {m + 1, .. . , n}, f = 1, g = n, xB = AxN is a unique optimal dictionary for a sys-
tem (2.1) */

begin
i: = 2; j: = 1;
repeat

while (i ≤ m and not reverse (B, N , A, i, j)) increment (i, j);
if (i ≤ m) then /* reverse pivot found */

begin
pivot (B, N , A, i, j);
if lex-min (B, N , A) then print (B);
i: = 2; j: = 1;

end;
else /* go back to previous dictionary */

begin
select-pivot (A, i, j);
pivot (B, N , A, i, j);
increment (i, j);

end;
until (i > m and B[m] = m)

end; /* search */

function reverse (B, N , A, i, j):boolean;
/* true if (s, r), with s = B[i], r = N [j], is a valid reverse cross-pivot (resp., Bland-pivot) for A,
otherwisefalse */

procedure pivot (B, N , A, i, j);
/* pivot A on row i and columnj, updateB andN . Reorder as necessary and seti and j to be the
indices of the interchangedB[i] and N [j]. */

function lex-min (B, N , A):boolean;
/* true if A is non-degenerate, or degenerate andB is the lexicographically minimum basis for this
basic solution, elsefalse */

procedure select-pivot (A, i, j);
/* Find criss-cross (resp., Bland) pivot for coefficient matrix A. Return the index i of the pivot row
and indexj of the pivot column*/

procedure increment (i, j);
begin

j: = j + 1; if (j = n − m) then begin j: = 1; i: = i + 1; end;
end; /* i ncrement */

Figure 3.1

__

- 13 -

For rev ersing Bland’s rule, we can exploit the fact that the reverse pivot must maintain primal feasi-

bility.

Proposition 3.3 Let xB = AxN be a dictionary, let rmoN − g and setλ = min{ −
aig

air
: i∈B − f , air < 0}.

If (s, r), s∈B − f , is a valid reverse Bland’s rule pivot thens must be an index that obtains this minimum.

Proof: Under the conditions of the proposition, ifs is not an index realizing the minimum, then the dic-

tionary obtained after the pivot (s, r) is not primal feasible. In the next section, we see how this simple

observation reduces the complexity ofsearch in non-degenerate situations.

The procedurelex − min is used to ensure that each basic solution is output exactly once, when the

lexicographically minimum basis for that basic solution is reached. The correctness of the procedure is

based on the following proposition.

Proposition 3.4 Let B be a basis for a degenerate dictionaryxB = AxN . B is not lexicographically mini-

mum for the corresponding basic solution if and only if there exists r ∈B − f and s∈N − g such that

r > s, arg = 0 and ars ≠ 0.

Proof: For the sufficiency of the condition, letr and s have the above properties. LetB′ = B − r + s.

Sincears ≠ 0, B′ is a basis, and it is lexicographically smaller thanB.

On the other hand, supposeB′ is a basis lexicographically smaller thanB with the same basic solu-

tion. Let s be the smallest index in B′ but not in B. Since both bases have the same basic solution,asg = 0.

If we augmentB by s, there must exist some index r such thatB = B − r + s is a basis. Now r > s for

otherwise r ∈B′, by the choice ofs, and there is a linear dependence among the set of columns

{ A j : j ∈ B′, j ≤ s }. Also ars ≠ 0, otherwiseB would not be a basis.Finally sinceasg = 0, we have

arg = 0 and B has the same basic solution asB.

3.2. Degenerate Optimal Dictionaries

Proceduresearch as given in the previous subsection will only generate all (feasible) dictionaries if

the system (2.1) has a unique optimal dictionary. Suppose there are many optimal dictionaries. This situ-

ation arises when one of the basic variables has value zero, ie. the dictionary is degenerate. Then instead

- 14 -

of a spanning tree in the graph described after Proposition 3.1, we obtain a spanning forest. Each of the

two piv ot algorithms terminates when any optimal solution is found. Therefore, proceduresearch must be

applied to each optimal dictionary. Fortunately, from any optimal dictionary we can generate all optimal

dictionaries by a procedure very similar to search. We can and will assume that there is a unique optimal

basic solution. This corresponds to the condition that all of the coefficientsa fj , j ∈N − g are non-zero in

the optimal dictionary. We are free to assume this since in our applications we are free to choose this row,

which corresponds to the "objective function" of the linear program.

Let xB = AxN be a degenerate optimal dictionary. Let B′⊆ B denote the indices of the variables

with value zero in the corresponding basic solution and the index f . We augmentA by a column with

index g′ = n + 1, consisting of all ones. This column temporarily replaces columng. Let

N ′ = N − g + g′. This augmented dictionary is shown schematically in Figure 3.2.

g′ g N ′ − g′

f − − − − − −
+ 0

B′ − f + 0
+ 0

= A
+ +

B − B′ − f + +
+ +

Figure 3.2 : An Augmented Degenerate Optimal Dictionary

We now consider the sub-dictionary consisting of rows indexed by B′ and columns byN ′. This is a non-

degenerate optimum dictionary. To obtain all optimal dictionaries for the original problem, we apply a

variant of procedure search to the sub-dictionary using a dual form of Bland’s rule in procedures reverse

and lex-min. This form takes any dual feasible dictionary and gives a dual feasible pivot.

Dual Bland’s Rule

(1) Letr ∈B′ − f be the smallest index that is primal infeasible, that isarg′ < 0.

(2) Setλ = min{ −
a fj

arj
: j ∈N ′ − g′, arj > 0}. Let r be the smallest index attaining this minimum.

- 15 -

The pivot (r, s) maintains the dual feasibility of the dictionary. If step (1) does not apply, the dictionary is

optimal. Proposition 3.1(a) applies with "primal" replaced by "dual".

We initiate the procedure search on the augmented dictionary with basisB′ and co-basisN ′.

Although only rows indexed by B′ are considered for pivots, we manipulate the entire coefficient matrix

A in procedure pivot, and update the vectorsB andN . Now each reverse pivot found by search applied to

the modified problem yields a new optimal dictionary for the original problem. After the call to procedure

pivot in search, we now insert a call to the original procedure search, with the dictionaryA and the

updated vectorsB andN .

The validity of this approach is based on the following observations. Again let xB = AxN be a

degenerate optimal dictionary for a system (2.1) with a unique optimum basic solution. LetB′ and N ′ be

defined as above. Each optimal basis for (2.1) contains the indicesB − B′ augmented by a linearly inde-

pendent set fromN − g + B′. Such bases will always be primal feasible forA, if they are also dual feasi-

ble then they correspond to an optimal dictionary for the original system.Using the dual form of Bland’s

rule, this latter condition is always satisfied. Since the modified problem is has a unique optimal dictio-

nary, each dual feasible dictionary for the modified problem must be connected by a unique path by dual

Bland pivots to this optimum dictionary. Rev ersing the pivots allows us to visit each optimal dictionary

for the original problem.

4. Complexity

In this section we discuss the complexity of the dictionary enumeration algorithm, and apply the

results to the geometric applications described in Section 2. Suppose we have a system (2.1) for some

m×n matrix A. Let f (A) denote the number of dictionaries that can represent (2.1).f (A) is just the num-

ber of linearly independent subsets ofm columns ofA, with the condition that the column with index f is

always included, and index g is always excluded. Thisis at most


n − 2

m − 1


, but may be much smaller. For

each dictionary, we may evaluate (m − 1)(n − m − 2) candidates for reverse pivots, each candidate requir-

ing O(m + n) time as shown in the previous section. Procedurepivot requiresO(m(n − m)) time per

execution as does procedurelex − min. These complexities are valid for the case of multiple optimal

- 16 -

solutions. Therefore the overall time-complexity ofsearch is

O((m + n) m (n − m) f (A)) = O((m + n) m n 


n − 2

m − 1



). (4.1)

Apart from a few indices, no additional space is required other than that required to represent the input.

We now consider the complexity of evaluating all feasible dictionaries. Letg(A) denote the number

of primal feasible dictionaries representing (2.1). The above analysis and (4.1) hold, withg(A) replacing

f (A). In the non-degenerate case we can do better. Recalling Proposition 3.3, we see that we only need to

consider one candidate reverse pivot per column of the dictionary: if there are two or more indices realiz-

ing the minimum then a pivot would give a degenerate dictionary. For each column, the candidate basic

variable can be found by computing the minimum ratioλ in O(m) time. To check if a candidate is in fact

a rev erse pivot, we need to construct the objective row of the dictionary after the pivot, takingO(n − m)

time. Therefore since there aren − m − 2 candidate columns, all reverse Bland pivots from the given dic-

tionary can be found inO((n − m)n) time, in the non-degenerate case. This gives an overall complexity of

O((n − m)ng(A)) for the non-degenerate case.

We now return to the geometric problems mentioned in Section 2. Suppose we have a collection of

n0 hyperplanes inRd . For this problem,m = n0 − d + 1 and n = n0 + 2. The time-complexity of enumerat-

ing all vertices of a hyperplane arrangement by this method becomes:

O(n2
0 d f (A)) = O(n2

0 d


n0

d



).

In the case of simple arrangements,f (A) is the number of the vertices, ie. the size of the output. This

method should be particularly useful for simple arrangements with few vertices. This could occur if many

hyperplanes are parallel. In any event, the simplicity of the arrangement does not have to be known in

advance.

Consider now the enumeration of the vertices of a polyhedron given by a list of n0 inequalities ind

variables. Sincewe assume the polyhedron has at least one vertex, n0 ≥ d. We hav e m = n0 + 1 and

n = n0 + d + 2. Thetime-complexity of enumerating all of the vertices is

- 17 -

O(n2
0d g(A)) = O(n2

0 d


n0

d



).

Again the complexity is output sensitive for non-degenerate polyhedra, for whichg(A) is just the number

of vertices. Ifthe polyhedron is simple (ie. all dictionaries are non-degenerate) then we get an improved

complexity bound. The algorithm produces vertices at a cost ofO(n0 d) per vertex with no repetitions

and no additional space.

The complexities in the previous paragraph apply to the convex hull problem, wheren0 is the num-

ber of input points. In the non-degenerate case where no more thand points lie on any facet (ie., the

facets are simplicial), we can enumerate thev facets in timeO(n0dv) and spaceO(n0d).

5. Example

In this section we give an example of the operation of proceduresearch for the vertex enumeration

of the set ofn0 = 5 lines shown in Figure 5.1. This arrangement is generated by the coefficients:

b1 = (1, 3), b2 = (5, 1), b3 = (3, 2), b4 = (−1, − 3), b5 = (−2, 1),

c1 = 4, c2 = 5, c3 = 2, c4 = 1, c5 = 2.

Proceeding as described in Section 2.1, we add variablesx1, . . . , x5 obtaining the system:

x1 = 4 − y1 − 3y2

x2 = 5 − 5y1 − y2

x3 = 2 − 3y1 − 2y2

x4 = 1 + y1 + 3y2

x5 = 2 + 2y1 − y2

Since the last two equations are linearly independent, we may solve for y1 and y2 in terms ofx4 and x5,

getting:

y1 = − 1 +
x4

7
+ 3

x5

7

y2 = 2
x4

7
−

x5

7
.

- 18 -

Eliminating variablesy1, y2 from the first three equations we obtain the system:

x1 = 5 − x4

x2 = 10 − x4 − 2x5

x3 = 5 − x4 − x5

These are plotted withx4, x5 as axes in Figure 5.2. Adding the special variablesx f andxg and the addi-

tional row representing the "objective function", we obtain our initial optimal dictionary:

x1 = 5xg − x4

x2 = 10xg − x4 − 2x5 (5.1)

x3 = 5xg − x4 − x5

x f = − x4 − x5

Starting at this dictionary we consider in turn each of the candidate reverse pivots: (1,4), (2,4), (2,5),

(3,4), (3,5). The candidate pivot (1,4) yields the dictionary:

x2 = 5xg + x1 − 2x5

x3 = x1 − x5 (5.2)

x4 = 5xg − x1

x f = − 5xg + x1 − x5

Checking this dictionary, we discover that the criss-cross rule does generate the pivot (4,1), so we con-

tinue from this dictionary. Note that in determining this, we do not need the entire dictionary. In this

example we need only the column of coefficients forx1. The possible candidates are: (2,1), (2,5), (3,1),

(3,5), (4,1).We start with (2,1), which leads to the dictionary:

x1 = − 5xg + x2 + 2x5

x3 = − 5xg + x2 + x5 (5.3)

x4 = 10xg − x2 − 2x5

x f = − 10xg + x2 + x5

Again the criss-cross rule applied to this dictionary generates the required pivot (1,2). In this case we need

only check the coefficients ofxg andx2 in the row for x1.

Continuing from this dictionary, the first candidate pivot is (1,2). This leads us back to (5.2), for

which the criss-cross rule generates the pivot (4,1) which is not the same. Therefore (1,2) is not a valid

- 19 -

reverse pivot from (5.3). Next we try the pivot (1,5) on dictionary (5.3). This gives the dictionary:

x3 = −
5

2
xg +

x1

2
+

x2

2
x4 = 5xg − x1

x5 =
5

2
xg +

x1

2
−

x2

2

x f = −
15

2
xg +

x1

2
+

x2

2

The criss-cross rule applied to this dictionary yields the pivot (4,1), so (1,5) is not a reverse pivot. Contin-

uing in this way we discover that no dictionaries lead to (5.3) by the criss-cross rule. We therefore back-

track to the parent dictionary of (5.3), which we do by performing the criss-cross pivot (1,2) leading back

to (5.2). Note that no storage is required to determine the parent of a dictionary.

In Figure 5.3 we show the complete tree enumerating all dictionaries from (5.3). Due to degeneracy

in the original arrangement, the same vertex in the arrangement may occur as different dictionaries in the

tree. Dictionaries with bases {1,2,4}, {2,3,4}, {2,4,5} correspond to one vertex. We output this vertex

when its lexicographically minimum basis {1,2,4} is reached.

6. Concluding Remarks

We hav epresented a new algorithm that can be used to solve three important geometric enumeration

problems without additional space. The simplicity of the algorithm renders it suitable for symbolic com-

putation in a language such asMaple or Mathematica. Using exact arithmetic, the problem of numerical

accuracy which occurs with most geometric algorithms is avoided. The second author and Ichiro

Mizukoshi have in fact implemented the algorithms of this paper as a package inMathematica, which is

publicly available at no charge from the second author.

Another useful feature of the algorithm is that it is easy to efficiently parallelize. Since in the enu-

meration no dictionary is ever reached by two different paths and no additional storage is required, sub-

problems can be scheduled arbitrarily onto free processors. If the enumeration tree is relatively "bushy"

one would expect considerable speed-up from parallelization. However in the worst case little if any

speed-up would be achieved: consider the so-called Klee-Minty examples. Itis known[2] that Bland’s

rule applied to these examples generates a path of exponential length from some vertex to the optimum

- 20 -

vertex. By reordering the variables, this path in fact visits every vertex of the polyhedron[15]. In this

case the enumeration tree generated by reverse pivoting is also a path!However, since the simplex

method seems to work well in practice, the enumeration tree will normally have high fan-out and rela-

tively shallow depth, and so substantial speed-up may be expected. Thisrepresents an area for future

research. Bysubstituting other pivot rules in our algorithm, different enumeration trees are generated.

Study of these trees should prove useful in evaluating pivoting rules for the simplex method.

The reverse pivoting approach is quite general and can be applied to a wide variety of enumeration

problems. Thealgorithms in this paper can be extended to the setting of oriented matroids, and in partic-

ular to pseudo-line arrangements. While the criss-cross method works correctly in the setting of oriented

matroids, Bland’s rule is not finite for oriented matroid programming [11].Todd[21] has found a finite

rule that can replace Bland’s rule in the oriented matroid setting.

We hav ealso recently used the reverse pivoting method to develop an algorithm for enumerating all

the cells in an arrangement ofn hyperplanes. For enumerating all the vertices of an arrangement, a

related technique gives a different algorithm than that presented here. The time complexity for vertex

enumeration in a simple arrangement is improved to O(nd2v) with space complexity again O(nd). In

both cases, the enumeration tree has depth bounded byn, which should enable an efficient parallel imple-

mentation. We can also apply reverse enumeration to find all triangulations and spanning trees of a fixed

set of points. These results will be described in detail in a forthcoming paper. Also, in very recent work,

G"unter Rote has modified the technique of the present paper to address degeneracy in the vertex enumera-

tion problem directly with improved complexity results[16].

The complexity analysis presented in this paper is quite rudimentary. We allow a worst case time of

O(m + n) to determine whether a pair of indices is a reverse pivot. This seems certain to be an overesti-

mate. For theith basic variable to interchange with thejth non-basic variable, at leasti + j signs have to

be "correct". We may compute these signs consecutively and stop the first time an "incorrect" sign is

encountered. Amortizing this cost over the complete enumeration of an arrangement, it is possible that

just a constant amount of work has to be done on the average to determine that a potential reverse pivot is

invalid.

- 21 -

Finally we remark that our algorithm can be easily modified to enumerate all of theedges of a poly-

hedron in the given time and space complexity. Initally, suppose we have a simple polyhedron and we are

at a vertexa of the polyhedron with its associated dictionary. For each entering basic variable we compute

a leaving variable via the ratio test.Since the polyhedron is simple, this variable is unique and gives a

new vertexb of the polyhedron. Then the edgeab is always an edge of the polyhedron and we can report

it using a simple lexicographic rule: to avoid reporting both edgeab and edgeba , check if the basis fora

is lexicographically less than that forb, and if so reportab.

For non-simple polyhedra, the situation is more complex since two endpoints of an edge, and even

the edge itself, may be degenerate. Furthermore, the example of a square pyramid inR3 can be used to

show that the lexicographically minimum basis for one vertex may not be adjacent in the enumeration tree

to the lexicographically minimum basis for an adjacent vertex in the polyhedron.Nevertheless we can

apply a technique similar to that described at the end of Section 3.1 for degenerate vertices. An edge cor-

responds to a non-degenerate pivot (r, s) from some basisB. We can considerB − r − s as a basis for the

edge, and output the edge whenever this basis is minimal. The condition can be tested in a way similar to

that described in Proposition 3.4.

7. Acknowledgements

The work of the first author was performed while visiting the laboratory of Professor Masakazu

Kojima of Tokyo Institute of Technology, supported by the JSPS/NSERC bilateral exchange program.

We would also like to thank G"unter Rote and two anonymous referees for a careful reading of the paper

and many helpful suggestions.

References

1.

2. D. Avis and V. Chvatal, ‘‘Notes on Bland’s Piv oting Rule,’’ Math. Programming Study, vol. 8, pp.

24-34, 1978.

3. R. G. Bland, ‘‘New Finite Pivoting Rules for the Simplex Method,’’ Math. Operations Research,

- 22 -

vol. 2, pp. 103-107, 1977.

4. D.R. Chand and S.S. Kapur, ‘‘A n Algorithm for Convex Polytopes,’’ J. ACM, vol. 17, pp. 78-86,

1970.

5. B. Chazelle, ‘‘A n Optimal Convex Hull Algorithm and New Results on Cuttings,’’ Proc. 32nd

Annual IEEE Symposium on Foundations of Computer Science, pp. 29-38, 1991.

6. V. Chvátal,Linear Programming, W.H. Freeman, 1983.

7. M.E. Dyer, ‘‘The Complexity of Vertex Enumeration Methods,’’ Math. Oper. Res., vol. 8, pp.

381-402, 1983.

8. H. Edelsbrunner, J. O’Rourke, and R. Seidel, ‘‘Constructing Arrangements of Lines and Hyper-

planes with Applications,’’ SIAM J. Computer Science, pp. 341-363, 1986.

9. H.Edelsbrunner,Algorithms in Combinatorial Geometry, Springer-Verlag, 1987.

10. H. Edelsbrunner and L. Guibas, ‘‘Topologically Sweeping an Arrangement,’’ J. Comp. Syst. Sci-

ences, vol. 38, pp. 165-194, 1989.

11. K.Fukuda, ‘‘Oriented Matroid Programming,’’ Ph.D. Thesis, University of Waterloo, 1982.

12. K. Fukuda and T. Matsui, ‘‘On the Finiteness of the Criss-Cross Method,’’ European J. O.R., to

appear.

13. T.H. Matheiss and D. S. Rubin, ‘‘A Survey and Comparison of Methods for Finding all Vertices of

Convex Polyhedral Sets,’’ Math. Oper. Res., vol. 5, pp. 167-185, 1980.

14. T.S. Motzkin, H. Raiffa, G.L. Thompson, and R. M. Thrall, ‘‘The Double Description Method,’’

Annals of Math. Studies 8, pp. 51-73, Princeton University Press, 1953.

15. K. Paparrizos, ‘‘Pivoting Rules Directing the Simplex Method Through All Feasible Vertices of

Klee-Minty Examples,’’ OPSEARCH, vol. 26, pp. 77-95, 1989.

16. G.Rote, ‘‘Degenerate Convex Hulls in High Dimensions Without Extra Storage,’’ Proc. 8th Annual

Symposium on Computational Geometry, 1992, to appear.

17. R.Seidel, ‘‘Constructing Higher-Dimensional Convex Hulls at Logarithmic Cost per Face,’’ Proc.

- 23 -

1986 S.T.O.C., pp. 404-413.

18. R.Seidel, ‘‘A Convex Hull Algorithm Optimal for Point Sets in Even Dimensions,’’ Report 81-14,

University of British Columbia, Dept. of Computer Science, 1981.

19. T. Terlaky, ‘‘A Convergent Criss-Cross Method,’’ Math. Oper. und Stat. ser. Optimization, vol. 16,

pp. 683-690, 1985.

20. T. Terlaky, ‘‘A Finite Criss-Cross Method for Oriented Matroids,’’ J. Combin. Theory B, vol. 42, pp.

319-327, 1987.

21. M. Todd, ‘‘Linear and Quadratic Programming in Oriented Matroids,’’ J. Comb. Theory B, vol. 39,

pp. 105-133, 1985.

22. Z.Wang, ‘‘A Conformal Elimination Free Algorithm for Oriented Matroid Programming,’’ Chinese

Annals of Mathematics, vol. 8,B,1, 1987.

