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Abstract. We present a new pivot-based algorithm which can be used with minor modification 
for the enumeration of all bases, or all feasible bases, of a linear system. The algorithm has the 
following properties: no additional storage is required beyond the input data; the output list 
produced is free of duplicates; the running time is output sensitive for non-degenerate inputs; 

the algorithm is easy to efficiently parallelize. It can be used for various geometric enumeration 
problems including Snding all facets of the convex hull of a set of points and the enumeration of 

all vertices of a convex polyhedron or hyperplane arrangement, and can be extended to oriented 
matroids. 

Let A be a m x n matrix, with columns indexed by the set E = {1,2, . . ..n}. Fix distinct 
indices f and g of E. Consider the system of equations: 

Ax = 0, x9 = 1. (I) 

For any J C E, XJ denotes the subvector of x indexed by J, and AJ denotes the submatrix 
of A consisting of columns indexed by J. A basis B for (1) is a subset of E of cardinality m 
containing f but not g, for which Ag is nonsingular. We will only be concerned with 
systems (1) that have at least one basis, and will assume this for the rest of the paper. 
Given any basis B, we can transform (1) into the dictionary: 

XB = -A,‘AN XN = A XN, 

where N = E - B is the co-basis, and A denotes -ASIAN. A is called the coeficient 
matrix of the dictionary, with rows indexed by B and columns indexed by N, so that 
A = (Sij 1 i E B, j E N). Note that the co-basis always contains the index g. 

A variable xi is primal feasible if i E B - f and Zig 2 0. A variable xj is dual feasible 
if j E N - g and Z/j 5 0. A dictionary is primal feasible if ti is primal feasible for 
all i E B - f and dual feasible if xj is dual feasible for all j E N - g. A dictionary is 
optimal if it is both primal and dual feasible. A basic solution to (1) is obtained from a 
dictionary by setting XN_g = 0, x = 1. If any basic variable has value zero, we call the basic 

.solution and corresponding dictionary degenerate. In thii note we outline an algorithm for 
enumerating all distinct basic solutions of the system (1) without repetition, using only the 
space required to store the input. Full details and proofs are given in the report [l]. The 
algorithm is initiated with an optimal dictionary. A variant of the algorithm enumerates 
all primal feasible dictionaries reporting the corresponding basic feasible solutions without 
repetition. 

Several geometric problems can be transformed to dictionary enumeration problems. A 
(convex) polyhedron P is the solution set to a system of no inequalities in d non-negative 
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variables: P = {y E Rd 1 A’y 5 b, y > 0}, h w ere A’ is an no x d matrix and b is a no- 
vector. A vertex of the polyhedron is a vector y E P that satisfies a linearly independent set 
of d of the inequalities as equations. The vertet enumeration problem for P is to enumerate 
all of its vertices. In fact to find even a single vertex of P is computationally equivalent to 
linear programming. As we wish to separate this from the enumeration problem, we will 
assume we are given an initial vertex. An optimal dictionary for P can be constructed with 
m = no + 1 and n = no + d + 2. It can be shown that each primal feasible dictionary 
has a basic solution which gives a vertex y of P. By employing a standard duality between 
points and hyperplanes, we may transform the facet enumeration problem for the convex 
hull of a set of points into a vertex enumeration problem for a convex polyhedron. Similarly 
the algorithm can be used to enumerate the vertices of a Voronoi diagram and cells of a 
Delaunay triangulation. The variant of the algorithm that lists all dictionaries may be used 
to enumerate the vertices of an arrangement of hyperplanes. For surveys of other approaches 
to these problems, the reader is referred to [2-41. 

Suppose we are given a system of equations of the form (l), for some m x n matrix A. 
The linear programming problem (LP) for (1) is to maximize xf over (1) subject to the 
additional constraint that each variable except xf and z9 is non-negative. Each optimal 
dictionary is a solution to LP. To begin with, we will assume that there is a unique optimal 
dictionary. A pivot (r, s) on a basis B, and corresponding dictionary XB = AXE, is an 
interchange of some T E B - f with some index s E N - g giving a new basis B’. The new 
coefficient matrix A’ = (aij) is given by 

1 a;, 
a:, = - 7, a:, = -, 

Gj aid&j 

ara ars 
aFj = 7, aij = aij - -_, 

ars ars 
(iEB-r, HEN-s). 

The pivot is primal feasible (respectively, dual feasible) if both of the dictionaries cor- 
responding to B and B’ are primal (respectively, dual) feasible. The simplex method is a 
method of solving LP by beginning with an initial dictionary and piyoting until an optimal 
dictionary is found. We consider two rules for choosing a pivot. The first rule, known as 
Bland’s rule starts with primal feasible basis B. 

BLAND’S RULE. 

(1) Let s be the smallest index such that x3 is dual infeasible, that is, 7ifs > 0. 

(2) Set A = min{- 2 : i E B - f, 7ii, < 0). Let T be the smallest index obtaining 

this minimum. 

The pivot (T, s) maintains the primal feasibility of the dictionary. The second rule, known 
as the criss-cross rule, starts with any basis. 

CRISS-CROSS RULE. 

(1) Let i # f, g be the smallest index such that zi is (primal or dual) infeasible. 
(2) If i E B, let T = i and let s be the minimum index such that ii,, > 0, otherwise let 

s = i and let T be the minimum index such that a,, < 0. 

The criss-cross pivot (T, s) interchanges 2, and x8, and may not preserve either primal 

or dual feasibility. In both cases, if step (1) d oes not apply then the dictionary is optimal. 

The validity of these rules is given by the following proposition. Part (a) is proved in [5] 
and part (b) in [6] for linear programs, and in [7,8] in the more general setting of oriented 
matroids. A simple proof of part (b) also appears in [9]. 

PROPOSITION 1. Let (1) be a system that admits an optimal dictionary and let B be any 
basis. 

(a) If B is primal feasible, then successive application of Bland’s rule leads to an optimal 
dictionary, and each basis generated is primal feasible. 

(b) Successive application of the criss-cross rule starting with basis B leads to an optimal 
dictionary. 
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We now outline a dictionary enumeration algorithm for systems (1) that admit a unique 
optimal dictionary. Consider a graph where vertices are dictionaries and two vertices are 
adjacent if the corresponding two dictionaries differ in only one basic variable. Then part (b) 
of the proposition tells us that there is a unique path consisting of criss-cross pivots from any 
dictionary to the optimal dictionary. The set of all such paths gives us a spanning tree in this 
graph. Consider a non-optimal dictionary D with basis B. Let (P, s), P E B-f, s E N-g, 
be the pivot obtained by applying the c&s-cross rule to D giving a dictionary D’. We call 
(6, r) a reverse criss-cross pivot for D’. Suppose we start at the optimal dictionary and 
explore reverse c&s-cross pivots in lexicographic order. This corresponds to a depth first 
search of the spanning tree defined above. When moving down the tree, each dictionary is 
encountered exactly once. In order to backtrack, the algorithm simply performs a c&s-cross 
pivot on the current dictionary to return to the parent in the tree. From here the algorithm 
continues by considering the next candidate reverse pivot in lexicographical order. A similar 
analysis applies to part (a) of the proposition. We form a similar graph, except that vertices 
are just the primal feasible dictionaries. We define a reverse Bland pivot in the analogous 
way. A depth first search of this graph provides all primal feasible dictionaries. 

The efficiency of the procedure depends greatly on efficiently checking candidate reverse 
pivots. To test whether a coefficient matrix A arises from a coefficient matrix A’ by a criss- 
cross (resp., Bland) pivot interchanging row P with column s of A’, it is only necessary to 

examine rows f, r and columns g, s of A’. These can be computed from A in O(m + n) 
time, and checked to see if (P, s) is a criss-cross (resp., Bland) pivot. Further savings are 

possible, as certain potential reverse pivots can be eliminated without any pivoting. 

PROPOSITION 2. If (s, T), s E B - f and P E N - g, is a valid reverse criss-cross pivot for 
a dictionary zB = AXN, then either 

(a) %3 > 0, &, > 0, ii,j 2 0 for j E N -9, j < s, or 
(b) Zifr < 0, 7i,, < 0, zii, 5 0 for i E B-f, i < r. 

PROPOSITION 3. Let XB = AXJV be a dictionary, let P E N -g and set 
A = min{- 2 : i E B - f, iii, < 0). If (s, r), s E B - f, is a valid reverse Bland’s rule 
pivot then s must be an index that obtains this minimum. 

We use a lexicographic procedure to ensure that each basic solution is output exactly 
once, based on the following proposition. 

PROPOSITION 4. Let B be a basis for a degenerate dictionary XB = Ax,. B is not 
lexicographically minimum for the corresponding basic solution if and only if there exists 
r E B - f and s E N - g such that r > s, ii,, = 0 and TL,.~ # 0. 

The procedure outlined above will only generate all (feasible) dictionaries if the system (1) 
has a unique optimal dictionary. In case there are many optimal dictionaries, we modify the 
procedure to use the dual form of Bland’s rule to construct all optimal dictionaries to the 
original problem. Details are given in the full paper [l]. 

We now discuss the complexity of the dictionary enumeration algorithm. Let f(A) denote 
the number of dictionaries that can represent (1). For each dictionary, we may evaluate 
(m - l)(n - m - 2) candidates for reverse pivots, each candidate requiring O(m + n) time. 
Therefore the overall time-complexity of the enumeration algorithm is 

O((m+n) m (n -m)f(A)) = O((m+n)mn (:I:))- 

Apart from a few indices, no additional space is required other than that required to represent 
the input. Let g(A) denote the number of primal feasible dictionaries representing (1). The 
above analysis and (2) hold, with g(A) replacing f(A). In the non-degenerate case we can 
do better. Recalling Proposition 3, we see that we only need to consider one candidate 
reverse pivot per column of the dictionary: if there are two or more indices realizing the 
minimum then a pivot would give a degenerate dictionary. For each column, the candidate 
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basic variable can be found by computing the minimum ratio X in O(m) time. To check if a _ 
candidate is in fact a reverse pivot, we need to construct the objective row of the dictionary 
after the pivot, taking O(n - m) time. Therefore since there are n - m - 2 candidate 
columns, all reverse Bland pivots from the given dictionary csn be found in O((n - m)n) 
time, in the non-degenerate case. This gives an overall complexity of O((n - m)ng(A)) for 
the non-degenerate case. 

Consider now the enumeration of the vertices of a polyhedron given by a list of no in- 
equalities in d variables. Since we assume the polyhedron has at least one vertex, no 2 d. 
We have m = no + 1 and n = no + d + 2. The time-complexity of enumerating all of 
the vertices is O(ngd g(A)). Ag ain the complexity is output sensitive for non-degenerate 
polyhedra, for which g(A) is just the number of vertices. If the polyhedron is simple (i.e., all 
dictionaries are non-degenerate) then we get an improved complexity bound. The algorithm 
produces vertices at a cost of O(no d) per vertex with no repetitions and no additional 
space. As far as we know, this is the first solution to this problem that does not require 
exponential space. These complexities apply to the convex hull problem, where no is the 
number of input points. In the non-degenerate csse where no more than d points lie on any 
facet (i.e., the facets are simplicial), we can enumerate the v facets in time O(nodv) and 
space O(nod). For the vertex enumeration of an arrangement of no hyperplanes in Rd, the 
complexity is O(nidf(A)) time and O(nod) space. 
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