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Recently R.G. Bland proposed two new rules for pivot selection in the simplex method. 
These elegant rules arise from Bland's work on oriented matroids; their virtue is that they 
never lead to cycling. We investigate the efficiency of the first of them. On randomly 
generated problems with 50 nonnegative ,variables and 50 additional inequalities, Bland's rule 
requires about 400 iterations on the average; the corresponding figure for the popular "largest 
coefficient" rule is only about 100. Comparable behaviour seems to persist even on highly 
degenerate problems. On the theoretical side, we analyse the performance of Bland's rule on 
the classical Klee-Minty examples: for problems with n nonnegative variables and n ad- 
ditional inequalities, the number of iterations is bounded from below by the n-th Fibonacci 
number. 

Key words: Simplex Method, Pivoting, Number of Iterations, Degeneracy and Cycling, 
Monte Carlo Experiments, Klee-Minty Examples. 

1. Introduction 

The c o m m o n l y  used pivoting rules for  the simplex method  can  lead to cycl ing:  

examples  of  that  p h e n o m e n o n  have been  cons t ruc ted  by  H o f f m a n  [5], Beale [1] 

and others.  Al though cycl ing is virtually u n k n o w n  in pract ice ,  its potent ial  threat  

is unpleasant  f rom the theoret ical  point  of  view. For tuna te ly ,  it can  be avoided 

by  precaut ions  such  as the per turba t ion  technique  [3] or, equivalent ly ,  the 

lexicographic  t echnique  [4]. Quite recent ly ,  R.G. Bland [2] deal t  cycl ing an 

impress ive  coup de grace by present ing an elegant  p roof  that  a cer tain simple 

and natural  pivot ing rule never  leads to cycl ing.  Bland 's  rule is ex t remely  simple 

indeed:  
(i) among  all the candidates  to enter  the basis,  select  the var iable  w i th  the 

smallest  subscript ,  
(ii) if two or more  variables compe te  fo r  leaving the basis,  select  again the 

variable with the smallest  subscript .  
The  impor tance  of  this "smal les t  subscr ip t"  rule is primarily theoret ical :  it was 

Bland ' s  work  on or iented  matroids  that  led him to the d i scove ry  of  the rule. (In 

* This research was supported by NRC grant A9211. 
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fact, [2] contains two different pivoting rules that never lead to cycling: the 
second of them is slightly more complicated and we shall not discuss it here.) It 
seems likely that Bland's pivoting rules may find applications in other theoretical 
studies involving the simplex method. 

Even though the smallest subscript rule was not meant to compete with other 
pivoting rules in actual computations, it makes sense to ask how its performance 
compares with those of the commonly used pivoting rules. (On the intuitive 
level, it may seem that the odds are stacked against the smallest subscript rule 
since that rule ignores much of the valuable information contained in a simplex 
tableau: taking into account only the signs of the coefficients in the objective 
row, it disregards their magnitudes. In our opinion, such feeling does not carry 
much weight unless confirmed experimentally: one might as well argue that the 
smallest subscript rule should have the edge because of its highly systematic 
nature. After all, doesn't it have the edge where cycling is concerned?) A 
satisfactory approximation to the precise answer can be provided by Monte 
Carlo experiments. In the early Sixties, Kuhn and Quandt [8] carried out such 
experiments to compare the performances of nine different pivoting rules. 
Following their example, we have compared the smallest subscript rule with two 
of the most popular pivoting rules: 

(a) among all the candidates to enter the basis, select that variable whose 
"relative cost" has the largest absolute value, 

(/3) among all the candidates to enter the basis, select that variable whose 
enti-ance will bring about the largest increase of the objective function. The 
results are reported in the next section: the smallest subscript rule (3') did not 
fare too well. For problems with fifty nonnegative variables and fifty additional 
inequality constraints, it required close to four hundred iterations on the 
average; the average number of iterations required by (a) to solve the same 
problems was less than one hundred. Experimenting with some highly 
degenerate problems, we were surprised to find that (a) was still better than (3'). 
In fact, the ratios of the corresponding numbers of iterations were quite close to 
those for nondegenerate problems of comparable sizes. 

Another question of possible interest is theoretical: could it be that the 
number of iterations required by (3') is bounded from above by a fixed poly- 
nomial in the size of the problem? For the pivoting rule (a), the same question 
was answered negatively in the pioneering paper [7] by Klee and Minty; later on, 
a similar result for (/3) was established by Jeroslow [6]. Klee and Minty begin 
their exposition by presenting very simple problems with n nonnegative vari- 
ables and n additional inequalities for which the simplex method may take 2 ~ - 1 

iterations if the entering variables are chosen in a consistently ill-advised way. 
We shall prove that the number of iterations required by (3') to solve these 
problems is bounded from below by the n-th Fibonacci number. The same holds 
for the completely degenerate problems resulting from the original examples 
when each right-hand side is replaced by a zero. 
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2. The experiments  

There are many different ways of formalizing the intuitive concept of a 

random linear programming problem. It seems that each of them is open to some 
criticism; furthermore, it is questionable whether the LP problems solved in 

practice are " random"  in some sense. For the purpose of our Monte Carlo 
experiments, we adopted the format used by Kuhn and Quandt [8] and we have 
considered problems of the form 

maximize ~ xj, 
j=n 

subject to ~_~ a~jx~ ~ 104 (i = 1,2 . . . . .  m), 
j=n 

x i ~ 0  ( j =  1,2 . . . . .  n) 

with m and n coming from {10, 20 . . . . .  50} and such that m ~ n. For each of the 

fifteen combinations of m and n, we have generated 100 problems by selecting 

the coefficients aii at random from the set {1,2 . . . . .  1000}. Each of these prob- 

lems was solved by the revised simplex method three times over: with (a), with 

(/3) and with Bland's rule (y). The mean numbers MI of iterations per problem 

and their standard deviations ~rl (in parentheses) are shown in Table 1. The mean 

times MT per problem and their standard deviations CrT appear in Table 2. The 

computations where done on Control Data Cyber 70 Model 74 at Universit6 de 
Montr6al. 

These results may be compared with those reported by Kuhn and Quandt [8] 

when the problem sizes overlap (10 • 10 and 20 x 20). Our values of MI agree to 

within 5% of the values given there for methods a and/3. Although the values of 

MT are not directly comparable, it appears that method/3 performs worse in our 

study. The reason for this is that we used the revised simplex method whereas 
the standard simplex method is used in [8]. 

Table 1 
Mean iterations (M0; standard deviation (tr0 in parentheses. 

m•n 10 20 30 40 50 

10 9.40 14.2 17.4 19.4 20.2 
(2.60) (3.8) (3.93) (4.36) (4.82) 

20 25.2 30.7 38.0 41.5 
(6.12) (8.55) (8.90) (9.62) 

30 44.4 52.7 62.9 
(10.5) (13.0) (14.7) 

40 67.6 78.7 
(14.4) (18.2) 

95.2 
50 (17.0) 

Method a 
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m• 10 20 30 40 50 

10 7.02 9.17 10.8 12.1 12.6 
(1.90) (2.72) (2.87) (3.24) (3.04) 

20 16.2 20.24 24.2 27.3 
(3.55) (4.03) (4.65) (5.97) 

30 28.7 34.5 39.4 
(4.80) (6.17) (7.83) 

40 43.3 39.9 
(7.30) (8.92) 

50 58.9 
(9.35) 

Method fl 

m 10 20 30 40 50 

10 15.0 31.1 42.3 51.0 58.7 
(5.51) (10.4) (13.3) (15.8) (14.8) 

20 56.1 85.6 122 154 
(15.4) (23.7) (29.1) (33.6) 

30 128 182 238 
(30.3) (42.9) (55.7) 

40 242 316 
(44.6) (68.1) 

50 391 
(76.3) 

Method y 

Table 2 
Mean time (Mr); standard deviation (~rT) in parentheses 

m ~  10 20 30 40 50 

10 0.035 0.064 0.083 0.112 0.134 
(0.019) (0.032) (0.035) (0.035) (0.033) 

20 0.271 0.363 0.445 0.500 
(0.066) (0 .106)  (0.102) (0.150) 

30 0.871 1.20 1.49 
(0.219) (0.305) (0.362) 

40 2.29 2.91 
(0.482) (0.677) 

50 5.20 
(0.924) 

Method a 
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m• 10 20 30 40 50 

10 0.056 0.108 0.165 0.222 0.270 
(0.023) (0.040) (0.052) (0.061) (0.070) 

20 0.498 0.828 1.07 1.37 
(0.112) (0.188) (0.227) (0.327) 

30 1.99 3.33 4.48 
(0.351) (0.600) (0.947) 

40 6.39 9.18 
(1.14) (1.73) 

50 16.70 
(2.79) 

Method/3 

m• 10 20 30 40 50 

10 0.048 0.097 0.141 0.180 0.215 
(0.026) (0.036) (0.048) (0.060) (0.054) 

20 0.458 0.719 0.948 1.19 
(0.122) (0.203) (0.215) (0.273) 

30 1.88 2.94 3.80 
(0.445) (0.684) (0.898) 

40 6.10 8.16 
(L15) (1.75) 

50 15.66 
(3.03) 

Method 

In many practical LP problems, the coefficient matrices are sparse. In order to 
provide at least a crude approximation of this situation, we also considered 
random LP problems in which the coefficients were set to zero with probability 
0.75. (Needless to point out, the resulting problems lacked the special structure 
found in sparse problems occurring in practice.) We ran 100 such problems of 
sizes 10• 10 and 10 • 50; the smallest subscript rule performed a little better 
than in the original tests, although it was still inferior to (a). 

In addition, we considered LP problems of the form 

maximize ~ cjx~, 
j=t 

subject to ~a:pc~-<b,- ( i = 1 , 2  . . . . .  m), 
j=t 

x~-->0 ( j =  1,2 . . . . .  n). 

To solve these problems, we used a modified version of the smallest subscript 
rule in which the variables were first renumbered to satisfy the inequalities 
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C 1 ~ C 2 ~ "'" ~ C n. On 100 test problems of sizes m = n = 10 and m = 10, n = 50, 
the smallest subscript rule actually had slightly lower values of Mr than either of 
(a)  and (/3). (The value of MT for  method (3') included the time required to 
renumber the variables.) Similar "hybr id"  pivoting rules, combining the practical 
virtues of (a)  with the theoretical virtues of (3'), might be worth exploring. 

Since cycling cannot occur  in nondegenerate problems, there is hardly any reas- 
on to use (3") in the absence of degeneracy.  Even for degenerate problems cyc- 
ling is extremely rare: Wolfe [9] seems to be the only source reporting a p r a c t i c a l  

problem that cycled. However ,  degeneracy often indicates the advent of another 
unpleasantness: for  highly degenerate problems, the simplex method may stay at 
the same solution for many iterations, changing o n l y  the bases. This 
phenomenon may be called s t a l l i n g ;  since the smallest subscript rule provides an 
effective cure for  cycling, one might hope that it will also reduce stalling. Led by 
this sentiment, we experimented with some highly degenerate problems as 
described below. To our surprise, (a)  still turned out to be superior to (3"). 

Of all the highly degenerate problems that come up in practice, the assignment 
problem is perhaps the most notorious. We solved 100 assignment problems of 
size 5 x 5 using the standard simplex code (the constraint matrix has size 
10• The cost coefficients were drawn at random from the set 
{0, 1, 2 . . . . .  "100}; the average number of iterations required by (3') was 28.8 as 
opposed to only 8.58 required by (a).  For  10 assignment problems of size 
10 • 10, the corresponding numbers were 98.7 and 19.3. 

Finally, we considered problems of the form 

minimize ~ ,  biYi, 
i=| 

(1) m 

subject  to ~ a i j y i - > 0  ( j = l , 2  . . . . .  n), 
i =1  

y i ~ 0  ( i = 1 , 2  . . . . .  m). 

In solving these problems, the simplex method remains stalled at each iteration 
except possibly the final one. Indeed, (1) has feasible origin; if it has any other 
solution then the entire ray defined by this solution is feasible. The practical 
significance of (1) stems from solving the system of inequalities 

~_j aljx i <-- bi ( i = 1, 2 . . . . .  m ), 
i=' (2) 

x i > - O  ( j =  1,2 . . . . .  n) 

since (1) is, in a sense, dual to (2). We generated 100 problems (I) of size 
m = n = 10 with coefficients a~ i, bi selected at random and independently of each 
other from the set {-500, -499  . . . . .  500}. On average, (3') required 15.48 iterations 
whereas (a)  required only 7.88 iterations. For 10 problems of size m = n = 20, 
the numbers were 63.0 and 32.3. 
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From the computat ional  point of view, one further  comment  is in order. Due 
to round-off errors,  the numerical value zero may  be stored in the computer  as a 
nonzero number  of a very small magnitude.  Therefore  a coefficient must  be 
considered negative if and only if it is less than some fixed small negative 6. We 
found that the number  of iterations depended on the value of 6 and finally 
settled on 8 = 10 -6. 

3. The example 

Denoting by E a real number  such that 0 <  e <�89 we shall consider the 
following LP problem.  

maximize ~] ~"-ix i, 
j=l 

i-I (3) 
subject  to 2 ~ i - S x  i + x i + x . + i = l  ( i = 1 , 2  . . . . .  n), 

i=l 

xj->0 ( j =  1,2 . . . . .  2n). 

(The reader acquainted with the paper  [7] by Klee and Minty will recognize in 
(3) a disguised version of their example of  Section 4.) Our aim is to show that the 

simplex method with Bland's  pivoting rule, initialized by x~ = x2 . . . . .  x, = 0, 
takes a very large number  of iterations to arr ive at the optimal solution. 

It  will be convenient  to present  first the purely combinatorial  part  of our 
argument.  For  the moment ,  let n be a posit ive integer and let Q denote  the set of 

all zero-one sequences of length n. For  every  two different sequences  a~a2 ... a ,  

a n d  blb2  ... b ,  in Q, there is the largest subscr ipt  k such that ak:J ~ bk', i f  En=k ai is 
even,  then we shall write ala2  ... a ,  < b ib2  ... b , .  It  is easy to ver i fy  that < is a 
linear order on Q and that the last sequence in that order is 000 ... 01. For  every  
other sequence a~a2 . . ,  a ,  there is the smallest  subscript  k such that ~?=k ai is 
even;  it is again easy  to verify that a~a2 . . ,  a ,  is related to its immediate 
successor  b~b2 ... b ,  by the formula  

b , = { l i  - for  i~  k, 
ai for  i =  k. (4) 

For  every  sequence a l a 2 . . ,  an other than 000... 01 we shall define a sequence 

f ( a l a 2  ... an) = b lb2  ... b ,  as follows. If  there is a subscript  k such that ak = 0 and 
~ 7 = k  ai is even,  then take the smallest subscript  with that p roper ty  and define 

b t b z  ... b ,  by (4); o therwise  let btb2  ... b ,  be the immediate  successor  of  a la2  ... a , .  

Clearly, 

ala2  ... a ,  < f ( a l a 2  ... a . )  (5) 

whenever  the right-hand side is defined. I t  follows that there is a posit ive integer 
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t = t (n )  such  that  

f ' (111 ... 1111) = 000 ... 0001. 

We are about  to obse rve  that  

f " " - 2 ) ( 1 1 1  ... 1111) = 000 ... 0111 

and that  

(6) 

(7) 

can be 

Since 

/ s (000 . . .0000)  = 000. . .0001.  

/ " (000 . . . 0000)  = 111. . .1111,  

we have  s ( n )  = n + t (n )  and so s (n )  = s (n  - 1)+ s (n  - 2 ) -  1 w h e n e v e r  n -> 3. 

No te  that  s ( 1 ) =  1, s ( 2 ) =  3 and so s (n )  is bounded  f rom below by  the n-th 

F ibonacc i  number .  More  precisely ,  

2 (1 + V'5"~ "+' 2 "+1_1 . 
s ( n ) = ~ , ,  2 / V '5  

(We are indebted  to R.G. Bland fo r  a substantial  simplification of  our  original 

proof .)  

Le t  us re turn  to our  example  (3) in its inequali ty fo rm,  

max imize  ~ e"-'xj, 

i-, (8) 
sub jec t  to 2 ~ ~i-Jx~ + xi <-- 1 (i = 1, 2, . . . ,  n), 

]=1 
x j > O  ( j =  1,2 . . . . .  n). 

It will be conven ien t  to denote  the ob jec t ive  func t ion  in (8) by  z~ and to deno te  

the feasibil i ty region in (8) by  P,. I f  x .  is fixed at zero  then  (8) r educes  to 

max imize  ez~_~ over  P,_~; 

f("-l)(111 ... 1101) = 000 ... 0001. 

Indeed,  if a ,_~= a,  = 1 but  a~a2.., a, # 000 ... 0111, then f ( a t a 2 . . . a , )  

obta ined by  adding 11 at the end  of  f (a~a2. . ,  a,-2). Similarly,  if a,-1 = 0, a,  = 1 

but  a~a2 ... a , #  000 ... 0001, then f(a~a2 ... a , )  can be obta ined  by  slipping a zero  

before  the last digit of  f(a~a2 ... a~-2an). Combining  (6) and (7) with the easy  

observa t ions  tha t  

/ (000  ... 0111) = 0 0 0  . . .  0 1 0 1  

and 
f"-3(000 ... 0101)=  111 ... 1101 

We conc lude  that  

t ( n ) =  t ( n -  1)+ t ( n -  2 )+  n - 2  

wheneve r  n > 3. N o w  let s = s (n )  be the posi t ive integer such that 



32 D. Avis,  V. Chv6tal/  Notes  on Bland 's  pivoting rule 

if x2., defined as in (3), is fixed at zero then (8) reduces to 

maximize 1 -  ez.-i over  P._I. 

We conclude that z. < �89 whenever  x. = 0 and that z. > �89 whenever  x2. = 0. An 

easy  extension of this argument  yields the following facts  whose  verifications 
are left to the reader.  

(*) The polytope P.  is combinatorial ly equivalent  to the n-dimensional  cube, 
In fact ,  there is a natural one-to-one correspondence  be tween the vertices 
(x~, x2 . . . . .  x.) of P .  and zero-one sequences a~a2 ... a,  of length n, defined by  

a j = 0  if xj = 0, 

= 1 if x ,+ i=0 .  

(*) If  a~a2 ... an < b~bz ... b, ,  then the value of zn at the ver tex corresponding to 
ata2 . . ,  an is strictly smaller than the value of zn at the ver tex corresponding to 
blbz  ... bn. 

(*) Bland's  pivoting rule directs the s implex method f rom each vertex cor- 
responding to a~a2 ... an to the vertex corresponding to [(a~a2 ... a , ) .  

(*) The simplex method with Bland's  pivoting rule, initialized by x~ = x2 = 

. . . .  xn = 0, takes s ( n )  iterations to arr ive at the optimal solution. This is the 
desired conclusion. 

Finally, we shall turn to theoretical questions that involve stalling. For each 
pivoting rule R, we may  define g ( R ,  re, n )  as the smallest integer such that the 
simplex method directed by R stalls for  at most  g ( R ,  re, n )  i terations on 

problems with rn equations and n nonnegat ive variables. Note  that every  
pivoting rule R can be used to solve L P  problems 

maximize ~ cjxj, 
i=1 

subject  to ~_. aijxj <- bi ( i = 1, 2 . . . .  , m ), 
j=l 

xi~--O ( j = 1 , 2  .... , n )  

by  solving the highly degenerate  problems 

maximize t, 

subject  to ~ a l j x i - b i t  ~-0  ( i = 1 , 2  . . . . .  m ) ,  
j=l 

- ~ ,  a~jy~ + cjt ~-- 0 (j  = l ,  2 . . . . .  n ). 

m 

- ~ CiXj + ~ biyi <-- O, 
]~1 i=1 

xi~--O ( j =  1,2 . . . . .  n), 

y i ~ O  0 = 1 , 2  . . . . .  m ) ,  

t ~ O  
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in at most  g(R ,  m + n + 1, 2m + 2n + 2) iterations. Hence  it would be quite 
exciting to discover  a pivoting rule R for  which g(R ,  m,  n)  is bounded f rom 
above by a polynomial  in m and n. We are going to show that 

g((7) ,  n, 2n) ~ s (n) .  

Consider the LP problem formed by replacing the right-hand side of (3) by 
zeroes. 

maximize  ~ E"-Jxj, 
i=l 

i-1 
subject  to 2 ~ ~i-Jx~ + xl + x,+i = 0 (i = 1, 2 . . . . .  n) ,  (9) 

j=l 

x j - - 0  ( j = 1 , 2  . . . . .  2n). 

This problem is completely  degenerate.  We will see that the smallest subscript  
rule generates the same sequence of pivots  in (9) as in (3). 

It is easy  to check that a feasible basis for  (3) is also a feasible basis for  (9). 
(The converse  is false.) We assume that the simplex method has been initiated 
on (3) and (9) with the starting basis {xn+l, xn+2 . . . . .  x2n}. Inductively,  we assume 
that at the start  of iterations 0, 1 . . . . .  k the bases of (3) and (9) coincide. Consider 

the (k + 1)-st pivot  step. Both problems have the same reduced cost coefficients, 
so the entering variable, say x,, is the same in both cases.  Le t  &j (i = 1, 2 . . . . .  n ; 
j = 1, 2 . . . . .  n) denote  the coefficients in the current simplex tableau. As we saw 
above,  at each iteration xi is a basic variable if and only if x,+i is a non-basic 
variable (i = 1, 2, . . . ,  n). Therefore  the coefficients in the tableau satisfy 

tilj = tii.n+j = 0 ( i =  1,2 . . . . .  n , j =  1,2 . . . . .  n , i < j ) ;  

fiii = ~i,~+i= l ( i = 1 , 2  . . . .  n).  

Thus the first candidate to leave the basis will be the same in both problems.  
This completes  the induction. 
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