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Generating Vertices of Polyhedra and
Related Problems of Monotone Generation

Endre Boros, Khaled Elbassioni, Vladimir Gurvich, and Kazuhisa Makino

Abstract. The well-known vertex enumeration problem calls for generating
all vertices of a polyhedron, given by its description as a system of linear
inequalities. Recently, a number of combinatorial techniques have been de-
veloped and applied successfully to a large number of monotone generation
problems in different areas. We consider four such techniques and give exam-
ples where they are applicable to vertex enumeration. We also discuss their
limitations and sketch an NP-hardness proof for generating the vertices of
general polyhedra.

1. Introduction

1.1. Vertex enumeration. The well-known Minkowski–Weyl theorem states
that any convex polyhedron P ⊆ Rn can be represented in the following two ways.

• (H-representation) the intersection of finitely many halfspaces:

(1.1) P = {x ∈ Rn : Ax ≤ b},
where A ∈ Rm×n is an m×n-real matrix and b ∈ Rm is an m-dimensional
real vector.

• (V -representation) the Minkowski sum of the convex hull of a set of vectors
and the conic hull of a set of directions in Rn:

(1.2) P = conv{v1, . . . , vr}+ cone{d1, . . . , ds},
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16 BOROS ET AL.

where V(P ) = {v1, . . . , vr} ⊆ Rn is the set of vertices or extreme points
of P , D(P ) = {d1, . . . , ds} ⊆ Rn is the set of extreme directions of P , and

conv{v1, . . . , vr} =
{ r∑

i=1

λivi :
r∑

i=1

λi = 1, λ1 ≥ 0, . . . , λr ≥ 0
}

,

cone{d1, . . . , ds} =
{ s∑

i=1

µidi : µ1 ≥ 0, . . . , µs ≥ 0
}

,

see, e.g., [48, 54] for a good introduction to polyhedral theory. In this article, we
assume that all vectors and matrices are rational, and denote by L the bit size of A
and b. For simplicity, we assume furthermore that the polyhedron P is pointed, i.e.,
has no line and hence has at least one vertex. We assume familiarity with standard
terminology of graphs, networks and hypergraphs (see, e.g., [4, 48]).

The vertex enumeration problem calls for generating all the vertices V(P ) of
a polyhedron P , given by its H-representation. As we shall see, the problem can
be formulated as a monotone generation problem. This motivates us to consider a
number of combinatorial techniques that have been recently applied to problems of
this type in different areas. We focus on four such techniques and give examples of
vertex enumeration problems when they become applicable, and also discuss some of
their limitation. In the appendix, we present some techniques to prove hardness of
generation problems, and apply them to show that the vertex enumeration problem
for polyhedra is NP-hard.

Clearly, the size of the vertex set V(P ) can be (and typically is) exponential
in n or m, and thus when we consider the computational complexity of the vertex
enumeration problem, one can only hope for output-sensitive algorithms, i.e., those
whose running time depends not only on n,m and L, but also on |V(P )|. In
particular, we consider the following decision and generation problems:

Dec(P,X ): Given a polyhedron P , represented by a system of linear inequal-
ities (1.1), and a subset X ⊆ V(P ) of its vertices, is X = V(P )?

IncGen(P,X ): Given a polyhedron P , represented by a system of linear
inequalities (1.1), and a subset of its vertices X ⊆ V(P ), find a new vertex
in V(P ) \ X , or indicate that there is none.

Gen(P ): Given a polyhedron P , represented by a system of linear inequali-
ties (1.1), generate all elements of V(P ).

When the polyhedron P is bounded, the decision problem is sometimes referred
to as the Polytope-Polyhedron problem [40]. One can distinguish different notions
of efficiency, according to the time/space complexity of the generation problem:

• Output polynomial or Total polynomial : Problem Gen(P )can be solved in
poly(n,m,L, |V(P )|) time.

• Incremental polynomial : Problem Inc Gen(P,X ) can be solved in
poly(n,m,L, |X |) time, for every X ⊆ V(P ).

• Polynomial delay : Problem Inc Gen(P,X ) can be solved in poly(n,m,L)
time. In other words, the time required to generate a new element of V(P )
is polynomial only in the input size.

• Polynomial space: The total space required to solve Gen(P ) is bounded
by a poly(n,m, L). This is only possible if the algorithm looks at no more
than poly(n,m,L) many outputs that it has already generated.
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• Strongly P-enumerable: V(P ) can be enumerated with amortized polyno-
mial delay (i.e., in poly(n,m, L)|V(P )| time) using polynomial space.

• NP-hard : the decision problem Dec(P,X ) is NP-hard, which means that
Dec(P,X ) is coNP-complete, since it belongs to coNP.

It is obvious that any incremental polynomial-time algorithm for generating
V(P ) is also output-polynomial. Perhaps, the next statement, stated implicitly in
[39], is less obvious.

Proposition 1.1. The following three claims are equivalent :
(i) Dec(P,X ) is polynomial-time solvable.
(ii) Gen(P ) is solvable in incremental polynomial.
(iii) Gen(P ) is solvable in output polynomial-time.

Proof. Since (ii) ⇒ (iii) clearly holds, we show that (i) ⇒ (ii) and (iii) ⇒ (i).
(i) ⇒ (ii): We show that IncGen(P,X )can be solved, i.e., a new vertex in

V(P ) \ X can be found, by at most m calls to the decision problem Dec(P,X ).
Let J be an algorithm that solves Dec(P,X ). For I ⊆ [m] def= {1, . . . , m},

denote respectively by AI and bI the submatrices of A and b formed by the rows
i ∈ I, and let Ī = [m] \ I. Define the polyhedron

(1.3) PI = {x ∈ Rn : AIx = bI , AĪ ≤ bĪ}
and XI = {x ∈ X | x ∈ PI}. We initialize I = ∅, and iterate the following, for
i = 1, . . . , m:

Call J on PI′ and XI′ , where I ′ = I ∪ {i}.
If J answers “No,” then update I := I ′.
It is not difficult to see that a new x ∈ V(P ) \ X can be computed by solving

linear equations AIx = bI for I obtained by the above procedure.
(iii) ⇒ (i): Let J be an algorithm that solves Gen(P ) in time t(n,m, L, |V(P )|).

Given X ⊆ V(P ), we run J , and stop as soon as one of the following conditions is
satisfied:

(I) a vertex x ∈ V(P ) \ X is found,
(II) the running time of J exceeds t(n,m, L, |X |), or

(III) all vertices of P are found.
If (I) happens, we return “No.” If (II) happens, we know that |X | < |V(P )| and
thus we return also “No.” Otherwise, we can conclude that X = V(P ), and hence
we return “Yes.” The procedure above clearly implies (iii) ⇒ (i). ¤

In view of this proposition, if the decision problem is NP-hard, then no al-
gorithm can generate all the elements of V(P ) in incremental or total polynomial
time, unless P = NP.

Given a polytope (i.e., bounded polyhedron) P by its representation (1.1), and
a set X ⊆ Rn, checking if P ⊆ conv(X ) was shown to be coNP-complete in [27].
If X ⊆ V(P ), then conv(X ) ⊆ P , and hence the problem becomes equivalent to
problem Dec(P,X ). More recently, it was shown [34] that, for general polyhedra,
problem Dec(P,X ) is NP-hard. Let us remark that polyhedra in the reduction of
[34] are unbounded. Thus, it remains open whether the vertex generation problem
for polytopes is also hard. On the other hand, it is well-known (as we shall also
see below) that the problem of generating jointly the extreme points and extreme
directions of a given polyhedron P (i.e., enumerating the elements of the set V(P )∪
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D(P )) is equivalent to generating the vertices V(P ′) of some polytope P ′ derived
from P . In particular, if the vertex enumeration problem is polynomially solvable
then the following statement will be somewhat surprising.

Proposition 1.2. Let P be a polyhedron, given by its representation (1.1).
Then:

(i) If vertex enumeration for polytopes is solvable in output polynomial time,
then there is an incremental polynomial-time algorithm that outputs
V(P )∪D(P ) in the following order: all the elements of D(P ) are generated
first then all the elements of V(P ).

(ii) Unless P = NP, there is no incremental polynomial-time algorithm that
outputs V(P ) ∪ D(P ) such that all the elements of V(P ) are generated
before any element of D(P ).

Proof. The second statement follows from the NP-hardness of Dec(P,X ) [34].
Let us prove the first one. Let U = 2poly(n,m,L) be a strict upper bound on the
`1-norm ‖x‖1 of any vertex x of P (such bounds are known to exists for rational
polyhedra, see, e.g., [48]). Let P ′ be the polytope P ∩ {x ∈ Rn : −U ≤ eT x ≤ U},
where e is the vector of all ones. Then it can be verified that the set V(P ) ∪D(P )
is in one-to-one correspondence with V(P ′), and furthermore that V(P ) = V(P ′)∩
{x ∈ Rn : ‖x‖1 < U}. It is also known that the extreme directions of P are in
one-to-one correspondence with the vertices of the polytope P ′′ = {x ∈ Rn : Ax ≤
0, cT x = 1}, where c ∈ Rn is a vector not orthogonal to any extreme direction
of P . Thus, in the first stage, we use our polynomial-time vertex enumeration
routine to solve problem Gen(P ′′) and get all extreme directions of P , in time
poly(n,m, L, |D(P )|). In the second stage, we start with X = D(P ) and use the
routine to solve Inc Gen(P ′,X ).

The total time for the second stage is poly(n,m, L, |D(P )|+ |V(P )|). ¤

1.2. Monotone generation. We consider a monotone property1 π : 2W →
{0, 1} defined over the subsets of a finite set W : π(X) ≤ π(Y ) whenever X ⊆ Y ⊆
W . We assume that there exists a polynomial-time evaluation oracle for π, that
is, an algorithm that, given any X ⊆ W , determines in polynomial time in the
size of W (and maybe some other input parameters), the value of π(X) ∈ {0, 1}.
We denote by Min(π) ⊆ 2W (respectively, Max(π) ⊆ 2W ) the family of all mini-
mal (respectively, maximal) subsets of W satisfying (respectively, not satisfying) a
monotone property π. We will be interested in the generation of the families Min(π)
(and/or Max(π)), and so we can define, as before, the corresponding decision and
generation problems DecMin(π)(π,X ), Inc GenMin(π)(π,X ), and GenMin(π)(π).

Given a polyhedron P , defined as (1.1), one can express the vertex enumeration
problem for P as a monotone generation problem, for instance, as follows. Let
W = [m] and for I ⊆ W , denote by PI the polyhedron (1.3). Define the monotone
property π1 : 2W → {0, 1} as follows

π1(I) = 1 ⇐⇒ PI 6= ∅.
Then Max(π1) is the family of maximal tight feasible subsystems of P , and it is not
difficult to verify that they are in one-to-one correspondence with the vertices of P :

1We shall say that X ⊆ W satisfies π if and only if π(X) = 1.
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Fact 1. If V(P ) 6= ∅, then there exists a one-to-one correspondence between
Max(π1) and V(P ).

We now give another monotone formulation of the vertex enumeration problem.
Consider a polyhedron P = {x ∈ Rn : Ax = b, x ≥ 0} given in standard form, and
let A ⊆ Rm be a set of n + 1 vectors in Rm consisting of the columns of A and −b.
Define the monotone property π2 : 2A → {0, 1}:
(1.4) π2(X) = 1 ⇐⇒ 0 ∈ conv(X).

Let us call the families Min(π2) and Max(π2) simplices and anti-simplices, respec-
tively, with respect to A. Then it turns out that the vertex enumeration problem
for polytopes is equivalent to the generation of such simplices. More precisely, we
have the following relationship.

Fact 2 ([34]). There exists a one-to-one correspondence between Min(π2) and
V(P ) ∪ D(P ).

It is worth mentioning that if we change the monotone property above to be
defined as: π3(X) = 1 if and only if 0 ∈ int

(
conv(X)

)
, where int(Y ) denotes the

interior of a set Y , then we can say more about status of the problem. Namely, it
was shown in [10] that DecMax(π3)(π3,X ) (and hence the generation of the so-called
anti-bodies) is NP-hard. On the other hand, the generation of the family Min(π) of
minimal subsets of A that contain 0 in the interior of their convex hull (these are
called bodies in [10]) turns out to be at least as hard as the hypergraph transversal
generation problem, described in the next section.

1.3. Hypergraph transversals. Let H ⊆ 2V be a hypergraph on a finite
set of vertices V . A subset X ⊆ V is said to be a transversal of H if X ∩ H 6=
∅ for all H ∈ H. We denote by Hd the transversal hypergraph of H, i.e., the
hypergraph consisting of all minimal transversals of H. Clearly, if we define a
monotone property π : 2V → {0, 1} by π(X) = 1 if and only if X∩H 6= ∅ for all H ∈
H, then we have a one-to-one correspondence between Hd and Min(π). It turns out
that the generation problem for many interesting monotone properties is reducible
to problem GenHd(H) of generating all minimal transversals of a hypergraph H,
see, e.g., [8, 23, 36].

The best known algorithm [24] for this problem runs in quasi-polynomial time
No(log N), where N = |V |+ |H|+ |Hd|. No polynomial algorithm is known, though
such algorithms exist for many special cases, e.g., for graphs or, more generally, for
the hypergraphs of bounded edge-size [9, 21, 42, 43].

A similarity between the polytope-polyhedron and hypergraph transversal prob-
lems is pointed out in [40]. It is also mentioned there that the latter problem may
be strictly between P and coNP, a conjecture attributed to Georg Gottlob.

2. Four generation techniques

In this section, we describe four methods that have been successfully applied to
monotone generation problems. We then survey some of the known results about
vertex enumeration and put them in the framework of these enumeration techniques.
On the way, we also obtain some new results. Namely, we show in Section 3 that the
method used for enumerating vertices of 0/1-polytopes is unlikely to extend for 0/1-
polyhedra. We also give incremental polynomial-time algorithms for enumerating
all vertices of polyhedra associated with 0/1-network matrices.
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2.1. The supergraph (or graph search) approach. Let W be a finite set
and assume that we are interested in generating the family Fπ of all subsets of
W satisfying a certain (not necessarily monotone) property π : 2W → {0, 1}. This
technique works by building and traversing a directed graph G = (Fπ, E), defined on
the family Fπ ⊆ 2W to be generated. The arcs of G are defined by a neighborhood
function N : Fπ → 2Fπ that to any X ∈ Fπ assigns a set of its successors N (X)
in G. A special vertex X0 ∈ Fπ is identified from which all other vertices of G
are reachable. The algorithm, shown in Algorithm 1, works by traversing, say, in
the breadth-first search order, the vertices of G, starting from X0. If G is strongly
connected then X0 can be any vertex in Fπ.

The following facts are known about this approach (see, e.g., [32, 49]):

Proposition 2.1. (i) If N (X) is polynomial-time computable for all
X ∈ Fπ, then GEN-A yields a polynomial-delay algorithm for enumer-
ating Fπ.

(ii) If N (X) can be generated in incremental polynomial time for all X ∈ Fπ,
then GEN-A yields a incremental polynomial-time algorithm for enumer-
ating Fπ.

(iii) If both N (X) and N−1(X) are polynomial-time computable for all X ∈
Fπ, and G is a tree, then using depth-first search instead of breadth-first
search in GEN-A, Fπ can be generated with polynomial delay and polyno-
mial space.

We remark that if neighborhood function is polynomial-time computable, then
we have |N (X)| ≤ poly(|W |) for every X ∈ Fπ. For (iii), it is not difficult to see
that Fπ can be generated in incremental polynomial time if N (X) is polynomial-
time computable and G is a tree. In order to obtain a polynomial-delay algorithm,
X ∈ Fπ is output just after the first visit to it, if the depth of X is odd; Otherwise,
X is output just before coming back to the parent.

2.1.1. The neighborhood operator for vertices of polyhedra. Let P be a poly-
hedron given by (1.1). For a vertex v ∈ V(P ), it is natural to define the neighbors

Algorithm 1. The supergraph method.

GEN-A(G)
Input: A supergraph G on the family Fπ satisfying a property π
Output: The elements of family Fπ

1: Find an initial vertex X0 ∈ Fπ

2: Initialize a queue Q = {X0} and a dictionary of output vertices D = {X0}. {(*
Perform a breadth-first search of G starting from X0 *)}

3: while Q 6= ∅ do
4: Take the first vertex X out of the queue Q and output X
5: for each Y ∈ N (X) do
6: if Y /∈ D then
7: Insert it to Q and to D
8: end if
9: end for

10: end while
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of v as the “polyhedral” neighbors, that is

N (v) = {v′ ∈ V(P ) : (v′, v) forms an edge of P}.
As is well-known, the supergraph G, defined with this neighborhood operator is
strongly connected. Thus, by Proposition 2.1, enumerating the vertices of V(P )
reduces to the neighborhood computation. Conversely, as observed in [46], the
generation of N (v) for a given v is at least as hard as the vertex enumeration
problem for polytopes. For, consider the generation of the vertices adjacent to the
(n + 1)st-unit vector 1n+1 in the pyramid pyr(x, P ) ⊆ Rn+1 with base P and apex
1n+1. However in some cases, as the two examples given below, the neighborhood
computation can be done with polynomial delay or in incremental polynomial time.

2.1.2. Simple polyhedra. Recall that a polyhedron P ⊆ Rn is simple if each
vertex of P is the intersection of exactly n facet-defining inequalities for P . For
such polyhedra, the vertices are in one-to-one correspondence with the subsets of
linearly independent tight inequalities (whose unique solution belongs to P ), and
hence the neighborhood operator can be computed in polynomial time. Indeed, let
v, v′ ∈ V(P ) be two vertices of P , and I, I ′ ⊆ [m] be the linearly independent tight
inequalities of P , defining these vertices respectively. Then v and v′ are neighbors
if and only if |I \ I ′| = 1. Thus for any vertex v, we have |N (v)| ≤ n(m− n), and
hence by Proposition 2.1(i), Traversal(G) enumerates V(P ) with polynomial delay.
It was furthermore observed by Avis and Fukuda [3] that the supergraph G can
be turned into a tree as follows. Fix an arbitrary vector c ∈ Rn, for which there
is v0 ∈ V(P ) such that cv0 < cx for all x ∈ P . Then starting from any vertex
v ∈ V(P ) and using the simplex method with any anti-cyclic rule, there is a unique
path from v to v0 on P . This defines a tree with root v0, for which the children of
a given vertex v can be generated by finding first all candidates v′ as above, but
only keeping the vertices v′ such that v is obtained from v′ by a single simplex
pivoting operation. By traversing the tree in depth-first search, we obtain thus by
Proposition 2.1(iii) that the vertices of P can be enumerated with polynomial delay
and space. Clearly, the same can also be said about polyhedra in which every vertex
is the intersection of at most n + δ tight inequalities, for some constant δ, since a
vertex can correspond to at most

(
n+δ

n

) ≤ O(nδ) sets of linearly independent tight
inequalities.

2.1.3. Flow polyhedra. Let G = (V,E) be a directed graph with vertex set V
and arc set E, and let A ∈ {−1, 0, 1}V×E be the the vertex-arc incidence matrix of
G, that is

au,e =





1 if arc e enters u,
−1 if arc e leaves u,

0 otherwise

for a vertex u ∈ V and an arc e ∈ E. For b ∈ RV , let P = P (A, b) = {x ∈ RE :
Ax = b, x ≥ 0} be the flow polyhedron associated with G. Provan [46] considered
such a class of polyhedra (even with upper and lower bounds on the variables
l ≤ x ≤ c, for some l, c ∈ RE) and showed that they can be highly degenerate. Fur-
thermore, he gave an incremental polynomial time algorithm for enumerating the
vertices using the supergraph approach as follows. Let v ∈ V(P ) be a given vertex
of P , and construct a graph G′ = (V ′, E′) from G by contracting all arcs e with
ve > 0. Then the polyhedral edges adjacent to v are in one-to-one correspondence
with the directed cycles of G′, which can be enumerated with polynomial delay [47].
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This gives an incremental polynomial time procedure for enumerating V(P )∪D(P )
(cf. Proposition 2.1(ii)). Furthermore, one can also list the set of vertices V(P ) by
observing that an unbounded edge (that is, an extreme direction) of P corresponds
to a directed cycle of G′, for which all the contracted arcs, that have both vertices
on the cycle, are on the same direction of the cycle. Let E′′ = {e ∈ E : ve > 0},
and for an arc e ∈ E′′, let Ge be the graph obtained from G by contracting all arcs
in E′′ − e. Let P(u,w) be the set of directed paths from u to w in G(u,w), which
can be found with polynomial delay [47]. Then the set of bounded edges adjacent
to v (that correspond to neighbors v′ ∈ N (v)) are in one-to-one correspondence
with the set

⋃
e∈E Pe (see [46] for more details). Since each element of N (v) can

be found at most E times, we get an output polynomial algorithm for enumerating
N (v), which can be turned into an incremental polynomial one, by Proposition 1.1.

A similar result was also obtained in [46] for the polyhedra P (AT , b) obtained
from the transpose of A and b ∈ RE . This result was furthermore generalized in [1]
to any matrix A with at most two nonzero entries in each row or with at most two
nonzero entries in each column.

2.2. Using transversal generation.
2.2.1. Polyhedra with 0/1-matrices and 0/1-vertices. For A ∈ Rm×n and b ∈

Rm, let

(2.1) P (A, b) = {x ∈ Rn | Ax ≥ b, x ≥ 0}.
For a matrix A ∈ {0, 1}m×n, let H(A) ⊆ 2[n] be a hypergraph such that the
characteristic vectors of hyperedges are the rows of A. We denote by 1m the m-
dimensional vector all of whose components are ones. The following fact relates the
vertices of an integral polyhedron P (A,1m) to the minimal transversals of H(A).

Proposition 2.2 ([38]). Let A be an m×n 0/1-matrix such that the polyhedron
P = P (A,1m) has only integral vertices. Then the vertices of P are in one-to-one
correspondence with the minimal transversals of the hypergraph H(A).

By the above proposition, the problem of enumerating the vertices of the poly-
hedron P (A,1m), when A is a 0/1-matrix and V(P ) ⊆ {0, 1}n, reduces to finding
all minimal transversals of the hypergraph H(A). As an immediate consequence of
this and the result of [24], we obtain the following statement.

Corollary 2.3. Let A be an m × n 0/1-matrix such that the polyhedron
P (A,1m) has only integral vertices. Then the vertices of P (A,1m) can be enu-
merated in incremental quasi-polynomial time.

For example, if the matrix A is totally unimodular, then the polyhedron
P (A,1m) has integral vertices which can be enumerated in incremental quasi-
polynomial time. As a further interesting special case, a matrix A ∈ {0, 1}m×n

is said to be a network matrix, if there exists a directed tree 2 T such that the rows
of A one-to-one correspond to the arcs in T and each column of A is the charac-
teristic vector of a directed path3 in T. Such a representation of a network matrix
can be found from A in polynomial time (see, e.g., [48]).

2We say that a directed graph G is a directed tree if the underlying graph of G (i.e., the
undirected graph obtained from G by ignoring orientation of arcs) is a tree.

3i.e., a set of arcs {(v1, v2), (v2, v3), . . . (vk−1, vk)}, where v1, . . . , vk are vertices of T.
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It is well-known that a network matrix is totally unimodular, and hence Corol-
lary 2.3 implies that the vertices of the polyhedron P (A,1m) can be enumerated
in incremental quasi-polynomial time. In Section 3, we show the following stronger
results for polyhedra associated with 0/1-network matrices.

Theorem 2.4. Let A ∈ {0, 1}m×n be a network matrix. Then we have:
(i) The vertices of P (A,1m) can be enumerated in incremental polynomial

time using polynomial space.
(ii) The vertices of P (AT ,1n) can be enumerated in incremental polynomial

time using polynomial space.

In the next section, we relate the problems of enumerating vertices of the poly-
hedra P (A,1m) and P (AT ,1n) for a 0/1-network matrix A to two other enumer-
ation problems on directed trees. This will turn out to be also useful in the NP-
hardness proof of Section 2.3.4.

2.2.2. Two enumeration problems on directed trees. Given a directed tree T =
(V, E) and a set of n directed paths on T, defined by source-sink pairs P = {(si, ti) |
si, ti ∈ V for i = 1, . . . , n}, let us call a minimal path cover any minimal collection
of paths X ⊆ P whose union covers all the arcs of T. Let us further call a minimal
cut conjunction any minimal collection of arcs X ⊆ E whose removal leaves no
path between si and ti for i = 1, . . . , n.

The following statement is clear form the definitions, Proposition 2.2, and the
fact that a network matrix is totally unimodular.

Proposition 2.5. Let A ∈ {0, 1}m×n be a network matrix, defined by a tree T
and a collection of directed paths P. Then:

(i) The vertices of P (A,1m) are in one-to-one correspondence with the min-
imal path covers for (T,P).

(ii) The vertices of P (AT ,1n) are in one-to-one correspondence with the min-
imal cut conjunctions for (T,P).

In view of Proposition 2.5, the two parts of Theorem 2.4 follow respectively
from the following two lemmas, proved in Section 3.

Lemma 2.6. Given a directed tree T, and a collection of directed paths P,
the family of minimal path covers with respect to (T,P) can be enumerated in
incremental polynomial time using polynomial space.

Lemma 2.7. Given a directed tree T, and a collection of directed paths P,
the family of minimal cut conjunctions with respect to (T,P) can be enumerated in
incremental polynomial time using polynomial space.

We remark that an incremental polynomial time algorithm exists [35] for the
more general problem of enumerating cut conjunctions in undirected graphs: Given
an undirected graph G = (V, E), and a collection B = {(s1, t1), . . . , (sk, tk)} of k
vertex pairs si, ti ∈ V , enumerate all minimal edge sets X ⊆ E such that for
all i = 1, . . . , k, vertices si and ti are disconnected in G′ = (V, E \ X). This is
obtained using the supergraph approach. However, in contrast to the one presented
in Section 3.2, the space used by the algorithm is not polynomial.

2.2.3. Transversal-bounded polyhedra. Recall that the vertices of a polytope
P = {x ∈ Rn : Ax = b, x ≥ 0} can be regarded as the minimal sets satisfying a
monotone property π2, given by (1.4). Let us call a polyhedron transversal-bounded
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(or dual-bounded) [8, 16] if there exists a (quasi-)polynomial q : R+ → R+, for which
the following inequality holds

(2.2) |Max(π2)| ≤ q(n,m, L, |Min(π2)|).
It follows from the results of [5, 30] that, for transversal-bounded polyhedra, prob-
lem Gen(P ) is (quasi-)polynomially reducible to the hypergraph transversal genera-
tion problem, and thus is solvable in incremental quasi-polynomial time. Probably,
the only example known so far to satisfy (2.2) is the class of simple polytopes 4 for
which it is known that (see [19] and also [29, 45]) |Max(π1)| ≤ (n + 1)|Min(π1)|.
Although an inequality of this form does not hold in general (see [10]), it will be
interesting to see if there are other types of polyhedra that belong to this class.

2.3. Flashlight approach and its applications.
2.3.1. Flashlight (or backtracking) method. Let W = {1, 2, . . . , |W |}, and sup-

pose that we want to enumerate all elements of a family Fπ of subsets of W satis-
fying a given (not necessarily monotone) property π, where Fπ 6= ∅. This method
works by building a binary search tree of depth |W | whose leaves ans some of its
internal nodes contain the elements of the family Fπ. Each node of the tree is
identified with an ordered pair (S1, S2) of two disjoint subsets S1, S2 ⊆ W , and at
the root of the tree, we have S1 = S2 = ∅. The two children of an internal node
(S1, S2) of the tree are defined as follows. We choose an element e ∈ W \ (S1 ∪ S2)
such that there is an X ∈ Fπ, satisfying X ⊇ S1 ∪ {e} and X ∩ S2 = ∅. If no such
element can be found, then the current node is a leaf. Otherwise, the left child of
the node (S1, S2) is identified with (S1∪{e}, S2). Analogously, the right child of the
node (S1, S2) is (S1, S2∪{e}), provided that there is an X ∈ Fπ, such that X ⊇ S1

and X ∩ (S2∪{e}) = ∅. A formal description of the method is given in Algorithm 2
(see [47] for general background on backtracking algorithms). We assume ∅ /∈ Fπ.

Clearly, for this method to work in polynomial time, we need to be able to
perform the following check in polynomial time:

Ext(π, S1, S2): Given two disjoint subsets S1, S2 ⊆ W , does there exist a set
X ∈ Fπ, such that X ⊇ S1 and X ∩ S2 = ∅?

The performance of this method is summarized in the following statement.

Proposition 2.8. If Ext(π, S1, S2) is solvable in polynomial time for any given
disjoint sets S1, S2 ⊆ W , then GEN-B enumerates the family Fπ with polynomial
delay using polynomial space (even in lexicographic order, if some ordering on W
is given).

In general, the check Ext(π, S1, S2) is NP-hard, but in some cases, as the ones
described below, it can be performed in polynomial time. Sometimes, it is also
possible to perform the check in polynomial time, provided that we do the extension
from the set S1 to S1 ∪ {e} in a more careful way. More precisely, let F ′π ⊆ 2E be
a family of sets, such that:

(F1) F ′π ⊇ Fπ,
(F2) for every non-empty X ∈ F ′π, there exists an element e ∈ X such that

X \ {e} ∈ F ′π (in particular, ∅ ∈ F ′π), and
(F3) we can test in polynomial time if a given set X ∈ F ′π is contained in Fπ.

4each vertex of which is non-degenerate and has exactly m positive components, if the row
rank of A is m.
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Algorithm 2. The flashlight method.

Procedure GEN − B(π, S1, S2):
Input: A property π : 2W → {0, 1} and two disjoint sets S1, S2 ⊆ W
Output: The family Fπ of all subsets X of W satisfying X ⊇ S1, X ∩S2 = ∅, and

π(X) = 1
1: if there is an e ∈ W \ (S1 ∪ S2) s.t. Ext(π, S1 ∪ {e}, S2) is feasible then
2: if If S1 ∪ {e} ∈ Fπ then
3: output S1 ∪ {e}
4: GEN− B(π, S1 ∪ {e}, S2)
5: GEN− B(π, S1, S2 ∪ {e})
6: end if
7: end if
8: return

In the backtracking procedure, if we always maintain the invariant S1 ∈ F ′π, Then
checking Ext(π, S1, S2) could be easier, see the example in Section 2.3.3.

2.3.2. 0/1-polytopes. Bussieck and Lübbecke [18] used the flashlight method to
show the strong P-enumerability of the vertex set of 0/1-polytopes (more generally,
of polytopes that are combinatorially equivalent with 0/1-polytopes). Recall that
a polyhedron P is 0/1 if V(P ) ⊆ {0, 1}n. Let W = [n] and π : 2W → {0, 1} be
defined as follows: for X ⊆ W , π(X) = 1 if and only if X ⊆ [n] is the support set
of a vertex. Then Problem Ext(π, S1, S2) calls for the following check:

Ext(π, S1, S2): Given a 0/1-polyhedron P defined by (2.1) and two disjoint
sets of variables S1, S2 ⊆ [n], determine if there is a vertex x of P such
that xi = 1 for all i ∈ S1 and xi = 0 for all i ∈ S2.

If the polyhedron P is bounded, i.e., P is a 0/1-polytope, then the extension
problem above is equivalent to checking if the polytope

P ′ = {x ∈ P | xi = 1 for all i ∈ S1, and xi = 0 for all i ∈ S2}.
is non-empty, and hence it can be checked in polynomial time by solving a linear
programming problem. Thus Proposition 1.1 implies that V(P ) is strongly P-
enumerable in this case. Note that this remains true even if the polytope is given by
a polynomial-time separation oracle. However, the problem seems to be intractable
for unbounded 0/1-polyhedra (see Theorem 2.11).

2.3.3. The perfect 2-matchings polytope. Let G = (V,E) be a graph. Consider
the polytope

P (G) = {x ∈ RE | Ax = 1n, x ≥ 0},
where A ∈ {0, 1}V×E denotes the vertex-edge incidence matrix of G, and n = |V |.
When G is bipartite, the vertices of P (G) are in one-to-one correspondence with
the perfect matchings of G, and the result of the the previous section implies that
V(P ) can be enumerated with polynomial delay. More efficient algorithms are
known [25, 26, 52, 53].

For non-bipartite graphs G, it is well-know that the vertices of P (G) are half-
integral [41] (i.e., the components of each vertex are in {0, 1, 1/2}), and that they
correspond to the basic perfect 2-matchings of G, i.e., subsets of edges that form
a cover of the vertices with vertex-disjoint edges and vertex-disjoint odd cycles. A
(not necessarily basic) perfect 2-matchings of G is a subset of edges that covers
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the vertices of G with vertex-disjoint edges and (even or odd) cycles. Denote
respectively by M2(G) and M′

2(G) the families of perfect 2-matchings and basic
perfect 2-matchings of a graph G. It was shown in [6] that the family M2(G) can
be enumerated with polynomial delay, and the family M′

2(G) can be enumerated in
incremental polynomial time. To illustrate the application of the flashlight method,
we include the proof of Lemma 2.9 from [6].

Lemma 2.9 ([6]). All perfect 2-matchings of a graph G can be generated with
polynomial delay.

Proof. We use the flashlight method with a slight modification. For X ⊆ E,
let π(X) be the property that the graph (V,X) has a perfect 2-matchings. Then
Fπ = M2(G). Define

F ′π = {X ⊆ E | the graph (V, X) is a vertex-disjoint union

of some cycles, some edges, and possibly a single path}.
It is easy to check if conditions (F1), (F2) and (F3) are satisfied. Given S1 ∈ F ′π,
S2 ⊆ E, we modify the basic approach described in Section 2.3 in two ways. First,
when we consider a new edge e ∈ E \ (S1 ∪ S2) to be added to S1, we first try an
edge incident to an endpoint of the path in S1, if this path exists. If there is no such
path in S1, then any edge e ∈ E \ (S1 ∪S2) can be chosen and defined to be a path
of length one in S1 ∪ {e}. Second, when we backtrack on an edge e defining a path
of length one in S1, we redefine S1 by considering e as a single edge rather than a
path of length one. Now it remains to verify that Ext(π, S1, S2) can be checked in
polynomial time. Given S1 ∈ F ′π, S2 ⊆ E, and an edge e ∈ E \ (S1 ∪S2), chosen as
above, such that S1 ∪ {e} ∈ F ′π, we can check in polynomial time whether there is
an X ∈M2(G) such that X ⊇ S1∪{e} and X ∩S2 = ∅ in the following way. First,
we delete from G all edges in S2, and all vertices incident to edges in S1, except the
end-points x and y of the single path P in S1. Let us call the resulting graph G′.
Then, we construct an auxiliary bipartite graph Gb from G′ as follows (see [41]).
For every vertex v 6= x, y of G′ we define two vertices v′ and v′′ in Gb. In addition,
Bb also contains two other vertices x′ and y′′. For every edge {u, v} in G′, with
{u, v} ∩ {x, y} = 0, we define two edges {u′, v′′} and {u′′, v′} in Gb. For each edge
{x, u} in G′, we introduce an edge {u′, x′′} in Gb, and for each edge {u, y} in G′,
we introduce an edge {u′, y′′} in Gb. It is easy to see that there is an X ∈ M2(G)
such that X ⊇ S1 ∪ {e} and X ∩ S2 = ∅ if and only if there is a perfect matching
in Gb. ¤

Lemma 2.10 ([6]). For a graph G = (V, E), we have

(2.3) |M2(G)| ≤
(|M′

2(G)|+ 1
2

)
.

Thus by generating all perfect 2-matchings of G and discarding the non-basic
ones, we can generate all basic perfect 2-matchings. By Lemma 2.10, the total time
for this generation is polynomial in |V |, |E|, and |M′

2(G)|. By Proposition 1.1, we
get an incremental polynomial-time algorithm for enumerating V(

P (G)
)
.

2.3.4. NP-hardness of flashlight for enumerating vertices of 0/1-polyhedra. It
is natural to ask whether the same method used for generating the vertices of 0/1-
polytopes can be extended to polyhedra with 0/1-vertices. In this section we answer
this question in the negative: we show that the extension problem, on which the
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efficiency of this method relies, is generally NP-hard. Our reduction will use poly-
hedra associated with network matrices of the form (2.1). Note that, if the vertices
of a polyhedron P = P (A,1m), defined by (2.1), are integral, then the vertices of
the polytope P ∩ {0, 1}n correspond to the transversals of the hypergraph H(A),
which might be exponentially larger in cardinality than the minimal transversals.
More directly, we have the following negative results.

Theorem 2.11. Let A is an m× n 0/1-network matrix. Then we have:

(i) For a set S ⊆ [n], problem Ext(P (A,1m), S, ∅) is NP-complete.
(ii) For a set S ⊆ [m], problem Ext(P (AT ,1n), S, ∅) is NP-complete.

Proof. We reduce the following monotone satisfiability problem, which is
known to be NP-complete [28] (see also Section A.2.1), to the two problems.

Problem Monotone SAT
Input: A conjunctive normal form (CNF) φ(x1, . . . , xN ) = C1∧· · ·∧CM ,

where each Cj , j = 1, . . . ,M ′, is a disjunction of some literals in
{x1, . . . , xN}, and each Cj , j = M ′ + 1, . . . , M , is a disjunction
of some literals in {x1, . . . , xN}.

Question: Is there a satisfying truth assignment for CNF φ, i.e., x ∈ {0, 1}N

such that φ(x) = 1?
(i) Ext(P (A,1m), S, ∅): Given a CNF φ, we define a network matrix A by

constructing a directed tree T = (V, E) and a set P of directed paths in T as
follows:

(2.4)

V = {u′i, u′′i | i ∈ [N ]} ∪ {cj | j ∈ [M ]} ∪ {u0}

E = {(u′i, u0), (u0, u
′′
i ) | i ∈ [N ]} ∪ {(u0, cj) | j ∈ [M ′]}

∪ {
(cj , u0) | j ∈ {M ′ + 1, . . . , M}}

P = {(u′i, u0, u
′′
i ) | i ∈ [N ]} ∪ {(u′i, u0, cj) | xi ∈ Cj}

∪ {(cj , u0, u
′′
i ) | xi ∈ Cj}

Here vertices u′i and u′′i , i ∈ [N ], correspond to positive and negative literals xi and
xi, respectively, and cj , j ∈ [M ] corresponds to clause Cj in φ. Finally, we define
the subfamily S of P by

S = {(u′i, u0, u
′′
i ) | i ∈ [N ]}

and claim that Ext(P (A,1n), S, ∅) is equivalent to Monotone SAT.
From Proposition 1.2, we note that Ext(P (A,1n), S, ∅) is to check if S can be

extended to a minimal path cover for (T,P), i.e., a minimal family of paths whose
union contains all the arcs in E. Thus, to see our claim, we show that φ is satisfiable
if and only if S is extendable to a minimal path cover for (T,P).

Let X be such a minimal extension, and let us define an assignment by setting
xi := 1 if and only if (u′i, u0) is covered with X − S. Since the minimality of X
implies that any path in S is not covered with X − S, (u0, u

′′
i ) is covered with

X −S only if xi = 0. Now, since X is a path cover, for each j = 1, . . . , M ′, (u0, cj)
is covered with some path in X, and hence Cj contains a literal xi with value 1.
Similarly, for each j = M ′+1, . . . , M , (cj , u0) is covered with some path in X, and
hence Cj contains a literal xi with value 0. These imply that CNF φ is satisfiable.
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Conversely, from any satisfying assignment x for φ, we can construct a minimal
path cover X that contains S by

X = S ∪ {(u′i, u0, cj) | i is the least index s.t.xi = 1 and xi ∈ Cj for j ∈ [M ′]}
∪ {

(cj , u0, u
′′
i ) | i is the least index s.t. xi = 0 and xi ∈ Cj

for j ∈ {M ′ + 1, . . . , M}}.

This completes the proof of (i).
(ii) Ext(P (AT ,1n), S, ∅): Given a CNF φ, we define a network matrix A (i.e.,

a directed tree T = (V,E) and a set P of directed paths in T) by (2.4). Moreover,
we define the subset S of arcs by

S = {(u0, cj) | j ∈ [M ′]} ∪ {
(cj , u0) | j ∈ {M ′ + 1, . . . ,M}},

and claim that Ext(P (AT ,1m), S, ∅) is equivalent to Monotone SAT.
From Proposition 1.2, we note that Ext(P (AT ,1m), S, ∅) is to check if S can be

extended to a minimal cut conjunction for5 (T,P), i.e., a minimal set of arcs that
hits every directed path in P. Thus, to see our claim, we show that φ is satisfiable
if and only if S is extendable to a minimal cut conjunction for (T,P).

Let X be such a minimal extension. Then clearly, it can be obtained from S
and exactly one of the two arcs (u′i, u0) and (u0, u

′′
i ) for every i ∈ [N ] (no other

arc is contained in X). This defines an assignment by setting xi := 1 if and only
if (u′i, u0) 6∈ X (i.e., (u0, u

′′
i ) ∈ X). Now the minimality of X implies that for

each j = 1, . . . ,M ′, there is a path (u′i, u0, cj) in P such that (u′i, u0) 6∈ X, and
and similarly, for j = M ′ + 1, . . . , M , there is a path (cj , u0, u

′′
i ) in P such that

(u0, u
′′
i ) 6∈ X. This implies that CNF φ is satisfiable.

Conversely, from any satisfying assignment x for φ, we can construct a minimal
cut conjunction X that contains S by

X = S ∪ {(u0, u
′′
i ) | xi = 1} ∪ {(u′i, u0) | xi = 0}. ¤

We conclude with the following remark. If flashlight works it results in a
polynomial delay algorithm, while we get only an incremental polynomial one using
the supergraph approach. However, for this reason, the flashlight subroutine is
frequently NP-hard.

For example, for the transversal hypergraph problem, the flashlight technique
calls the following decision subproblem. Given a hypergraph H and a subset of its
vertices X, check whether X can be extended to a minimal transversal of H. A
simple criterion is given in [14], see also [7]. However, the corresponding conditions
are NP-hard to verify [14] already for graphs [7] unless the size of X is bounded by
a constant.

The same happens for many generation problems on graphs. Given a (directed)
graph G = (V, E), a pair of vertices s, t ∈ V , and a subset X ⊆ E, it is NP-hard
to decide whether X can be extended to a simple (directed) cycle, or to an s, t
(directed) path, or to a minimal s, t-cut in G [37].

2.4. The projection technique. The proof of Lemma 2.6 and 2.7 is based
on the following enumeration technique, developed originally in [51] (see also [32]
and [39]). Let W = [w] = {1, . . . , w} be a finite set of elements, and let π be a
monotone property defined over 2W . Here we assume that W satisfies π. Let Fπ

be the family of minimal subsets satisfying π. By assumption, we have Fπ 6= ∅.
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Algorithm 3. The projection method.

Procedure GEN − C(π, i, X):
Input: A monotone property π, an index i ∈ [w], and an i-minimal satisfying set

X ∈ F i
π.

Output: The family Fπ of all minimal subsets of [w] satisfying π.
1: if i = w + 1 then
2: output X;
3: else
4: if X \ {i} is satisfies π then
5: GEN− C(π, i + 1, X \ {i});
6: else
7: GEN− C(π, i + 1, X);
8: for each minimal set Y ∈ Fπ(i,X) do
9: if X ∪ Y \ {i} ∈ F i+1

π then
10: Compute the lexicographically largest set Z ⊆ X ∪ Y s.t. Z ∈ F i

π.
11: if Z = X then
12: GEN− C(π, i + 1, X ∪ Y \ {i});
13: end if
14: end if
15: end for
16: end if
17: end if

For i = 1, . . . , w, denote by [i : w] the set {i, i + 1, . . . , w}, where we define
[w + 1 : w] = ∅. By definition, we have [1 : i] = [i]. We shall say that a set X ⊆ W
i-minimally satisfies π if X ⊇ [i : w], X satisfies π, and X \ {j} does not satisfy π
for all j ∈ X ∩ [i− 1]. Thus, (w + 1)-minimally satisfying sets are just the minimal
satisfying sets, i.e., the ones in the family Fπ. For i = 1, . . . , w, denote by F i

π

the family of sets that i-minimally satisfy property π. Given i ∈ W and X ∈ F i
π,

denote by Fπ(i,X) the family of minimal subsets Y ⊆ [i−1], such that X ∪Y \{i}
satisfies π.

Proposition 2.12 (See [22, 39]). Let Fπ, F i
π, and Fπ(i,X) be defined as

above. Then:
(i) |F i

π| ≤ |Fπ| holds for all i ∈ [w + 1].
(ii) |Fπ(i,X)| ≤ |F i+1

π | holds for all i ∈ [w] and all X ∈ F i
π.

Let us now formally describe a general procedure for generating all minimal
sets that satisfy a monotone property π.

Given i ∈ [w], and X ∈ F i
π, we assume in the algorithm below that the min-

imal sets in Fπ(i,X) are computed by calling a process A(i,X), in which, once
A(i,X) finds an element Y ∈ Fπ(i, X), it returns control to the calling process
GEN(π, i, X), and when called the next time, it returns the next element of Fπ(i,X)
that has not been generated yet, if such an element exits.

Proposition 2.13 ([9, 51]). If the family Fπ(i,X) can be enumerated in in-
cremental polynomial time using polynomial space, for every i ∈ [w] and every
X ∈ F i

π, then so can the family Fπ using GEN− C.
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3. Enumerating vertices of polyhedra associated with 0/1-network
matrices

In this section, we show how to enumerate the families Fπ(i,X), in the two
cases of path covers and cut conjunctions on trees.

3.1. Enumerating minimal path covers. Let T = (V, E) be a directed
tree, and let P be a collection of directed paths in T. To apply the generation
algorithm described in the previous section, we order the paths in P arbitrarily, say
P = {P1, . . . , Pn}, let W = [n], and for each X ⊆ W , let π be the property that
{Pi | i ∈ X} is a path cover. For simplicity, we may sometimes refer to a path Pi

directly by its index i. In this setting, we show the following.

Lemma 3.1. Given an i ∈ W and a set X ∈ F i
π such that X \{i} is not a path

cover, all elements of the family Fπ(i,X) can be enumerated with delay O(|V | |P|)
and space O(|V |+ |P|).

To generate the family Fπ(i,X), let U be a set of arcs in E that are not covered
with the paths in X \{i}, and we define a hypergraph H ⊆ 2U by H = {Pj∩U | j ∈
W \X}. By definition, we have U ⊆ Pi and H is interval, i.e., every hyperedge in
H defines an interval (i.e., a subpath) in U , where U is regarded as a path obtained
from Pi by contracting arcs which are contained in some path Pj ∈ X \ {i}.

Now, we can see that Fπ(i,X) corresponds the family of all minimal covers of
an interval hypergraph H, and show that they can be enumerated efficiently, from
which Lemma 3.1 follows.

The latter problem is known to be solvable in incremental polynomial time.
Indeed, an interval hypergraph H is 2-Helly : a subset of hyperedges from H has a
common vertex whenever every 2 hyperedges of this subset have one. The trans-
posed hypergraph HT is 2-conformal [4], and for this class for hypergraphs, it is
known that the set of minimal transversals can be enumerated in incremental poly-
nomial time [9]. Equivalently, if HT is 2-conformal, all minimal covers for H can be
enumerated in incremental polynomial time. Here we obtain the following stronger
result, from which Lemma 3.1 follows.

Theorem 3.2. Let H ⊆ 2U be an interval hypergraph on a finite set U . Then
all minimal covers of H can be generated with delay O(|U | |H|) and space O(|U |+
|H|).

Proof of Theorem 3.2. Let U = {1, . . . , |U |}, and each hyperedge H in
an interval hypergraph H is given by IH = [LH : RH ], where LH ≤ RH . Let
X = {[L1 : R1], . . . , [Lk : Rk]} be a sub-hypergraph of H, i.e., X ⊆ H. If X is
a minimal cover, then Li 6= Lj clearly holds for all i and j with i 6= j, since no
interval in X contains another. Moreover, we have the following characterization.

Proposition 3.3. Let X = {[L1 : R1], . . . , [Lk : Rk]} be a sub-hypergraph of
H ⊆ 2U , such that L1 < L2 < · · · < Lk. Then X is a minimal cover if and only if

(i) Li+1 ≤ Ri + 1 < Li+2, for i = 1, . . . , k − 2,
(ii) Lk ≤ Rk−1 + 1 < Rk + 1, and
(iii) [L1 : Rk] = U .

Proof. Suppose that X ⊆ H be a minimal cover. Then the minimality of X
implies Rk−1 < Rk. Note also that, for all i = 1, . . . , k− 1, we have Li+1 ≤ Ri + 1,
for otherwise the point Ri+1 cannot be covered by any interval in X. Furthermore,
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for i = 1, . . . , k−2, we have Li+2 > Ri +1, for otherwise, [Li : Ri]∪ [Li+2 : Ri+2] ⊇
[Li+1 : Ri+1], contradicting the minimality of X. Since X is a cover of U , (i) and
(ii) imply [L1 : Rk] = U .

Conversely, if X = {[L1 : R1], . . . , [Lk : Rk]} satisfies properties (i)–(iii) stated
in the proposition, then it is not difficult to see that X is a minimal cover of U . ¤

Let F be the family of minimal collections of intervals in H that cover U , and
let F ′ be the family of all collections X = {[L1 : R1], . . . , [Lk : Rk]} of intervals in H
satisfying properties (i)–(ii) of Proposition 3.3 such that L1 = 1. By definition, we
have F ⊆ F ′, and any X ∈ F ′ is a minimal cover of [1 : Rk] ⊆ U(= {1, . . . , |U |}).
In our backtracking procedure, we shall always choose S1 from F ′.

Given two disjoint subsets S1 = {[L1 : R1], . . . , [Lk : Rk]} ∈ F ′ and S2 ⊆ H,
any interval I = [Lk+1 : Rk+1] ∈ H \ (S1 ∪ S2) satisfies S1 ∪ {I} ∈ F ′ if and only if
Rk−1 + 1 < Lk+1 ≤ Rk + 1 and Rk+1 > Rk. Furthermore, by Proposition 3.3, the
check whether there is an X ∈ F such that X ⊇ S1 ∪ {I} and X ∩ S2 = ∅, can be
performed in O(|H|) by checking if

(3.1) ∪{H ∈ H \ (S1 ∪ S2) | LH > Rk + 1} ⊇ [Rk+1 + 1 : max U ].

Since the depth of the backtracking tree is at most |U | by Proposition 3.3, the
theorem follows. ¤

3.2. Enumerating minimal cut conjunctions. Let T = (V, E) be a di-
rected tree with a vertex set V and an arc set E, and let P = {(si, ti) | si, ti ∈
V, for i = 1, . . . , n} be a collection of directed paths in T, defined by source-sink
pairs. To apply the generation algorithm described in the previous section, we let
W = E, and for each X ⊆ E, we let π be the property that the graph (V, E \X)
has no path between si and ti for i = 1, . . . , n. Clearly, we may assume, without
loss of generality, that every leaf of T is either a source or sink, or both. Let us
pick a vertex r ∈ V arbitrarily to be a root of T, and label all arcs of T by their
breadth- first search orders {1, . . . , |E|} from r, in the underlying tree of T.

Lemma 3.4. Given an arc i ∈ W and a set X ∈ F i
π of i-minimal cut conjunc-

tions such that X \{i} is not a cut conjunction, all elements of the family Fπ(i,X)
can be enumerated with delay O(|V |) and space O(|V |).

Proof. Since X \ {i} does not satisfy π, the graph
(
V,E \ (X \ {i})) contains

a set of paths P ′ ⊆ P. Since no such path exists in (V, E \X), each such path must
contain arc i = (a, b). Assume without loss of generality that the arc (a, b) points
towards r, i.e., b is closer to r than a in the underlying tree of T. Note that the arcs
in the subtree of T rooted at a, (i.e., the arcs that are further from r than (a, b))
are labeled with values higher than i. Since all the paths in P ′ avoid all the arcs
in X \ {i} such that X ⊇ {i + 1, . . . , n}, none of these arcs appears in the paths
in P ′. In other words, all the paths in P ′ have a common source a, P ′ forms an
arborescence T′ = (V ′, E′) rooted at a, connecting a to sinks in P ′.

The family Fπ(i,X) thus consists of all minimal collection of arcs whose removal
disconnects a from every sink of P ′. We assume without loss of generality that all
sink of P ′ are leaves in T′, since disconnecting a non-leaf v from a also means
disconnecting from a all the nodes in the sub-arborescence of T′ rooted at v. To
find the elements of Fπ(i,X), we again use a backtracking method that is based on
the one described in the previous section.
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Let S1 and S2 be two disjoint subsets of arcs in E′ such that they are extendable
to some element of Fπ(i,X), i.e., there exists a Y ∈ Fπ(i,X) with Y ⊇ S1 and
Y ∩ S2 = ∅. Let j ∈ E′ \ (S1 ∪ S2). Then it is not difficult to see that S1 ∪ {j}
and S2 are extendable to some element of Fπ(i, X) if and only if S1 ∪ {j} forms an
antichain, i.e., there is no directed path in T′ containing two distinct arcs in S1.
Therefore, such an arc j can be found in O(|V |) time. Similarly, S1 and S2 ∪ {j}
are extendable to some element of Fπ(i, X) if and only if E′ \ (S2 ∪ {j}) is a cut
conjunction of P ′, which can be checked in O(|V |) time. Since the depth of the
backtracking tree is at most |V |, we have an O(|V |2) delay algorithm. To reduce
the complexity, we modify the algorithm as follows.

Let us first relabel all arcs of T′ by their breadth- first search orders {1, . . . , |E′|}
from a. In the algorithm, starting from S1 = S2 = ∅, we try to add the least arc j
such that S1 ∪ {j} and S2 are extendable to some element of Fπ(i,X). Moreover,
when we add an arc j to S1, we add to S2 all the arcs j′ such that j and j′ do not
form an antichain, i.e., there exists a directed path between j and j′, since they
are never added to S1 if j ∈ S1. Note that by this modification, all the arcs in
E′ \ (S1 ∪ S2) can be added to S1, and by the new labeling of arcs, when we add
the least arc j = (c, d) to S1, we just add to S2 all the arcs in the sub-arborescence
of T′ rooted at d. Thus we can go to the left child (and backtrack, i.e., go from the
left child to the parent) in O(∆) time, where ∆ denotes the number of the arcs in
the sub-arborescence of T′ rooted at d.

On the other hand, when we add an arc j to S2, we modify T′ by contracting
j. Then we can see that j = (c, d) can be added to S2 if and only if c = a and d is
a leaf of the current T′, and hence we can go to the right child (and backtrack) in
O(1) time.

Since the above ∆’s are pairwise disjoint in any path in the backtracking tree,
the modified algorithm generates the elements of Fπ(i,X) with O(|V |) delay and
O(|V |) space. ¤

4. Generating all vertices of a polyhedron is hard

Let us show that problem Dec(P,X ) is NP-complete. Then, as we already
mentioned, in view of Proposition 1.1, no algorithm can generate all elements of
V(P ) in incremental or total polynomial time, unless P = NP.

Given a directed graph G = (V,E) and a weight function w : E → R on its
arcs, let us define a polyhedron P (G,w) by the following formula:

P (G,w) =





y ∈ RE

∣∣∣∣∣∣∣∣∣∣∣

∑

v:(u,v)∈E

yuv −
∑

w:(w,u)∈E

ywu = 0, ∀u ∈ V

∑

(u,v)∈E

wuvyuv = −1

0 ≤ yuv, ∀(u, v) ∈ E





.

A negative (respectively, positive, or zero) cycle in G is a directed cycle whose
total weight is negative (respectively, positive, or zero). Let us denote the families
of all negative, positive, and zero-weight cycles of G by C−(G,w), C+(G,w), and
C0(G, w), respectively.

Fact 3. For any directed graph G = (V, E) and any real weight w : E → R,
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(i) there exists a one-to-one correspondence between V(
P (G,w)

)
and

C−(G,w),
(ii) there exists a one-to-one correspondence between D(

P (G,w)
)

and the set
C0(G,w)∪{(C, C ′) : C ∈ C−(G, w) and C ′ ∈ C+(G,w) and C∪C ′ contains
only 2 cycles}.

In other words, the vertices of P (G,w) correspond to the negative cycles of G,
whereas the extreme rays correspond to the zero-weight cycles and pairs of negative
and positive cycles (see [13]). In the Appendix, we will derive the result of [34] that
decision problem DecC−(G,w)(G, w,X ), of checking whether a collection of negative
cycles of G is complete, is NP-hard, thus, showing that generating all vertices of
P (G,w) is hard.

Theorem 4.1 ([34]). Given a polyhedron P by (1.1), problem Gen(P ) of gen-
erating all vertices of P is NP-hard.

However, Fact 3(ii) shows that this construction, given in the Appendix, does
not imply the same result for polytops, since the numbers of positive and negative
cycles can be exponential and, hence, polyhedron P (G,w) can be highly unbounded.

Appendix A. How to prove that a generation problem is hard?

First, let us notice that there are many generation problems (for instance,
generating all Hamiltonian cycles of a given graph) for which already finding the
first output object is difficult. However, for a monotone generation problem with
a polynomial-time oracle it is always easy to find the first output object or a few
objects. Furthermore, whenever we can generate exponentially many output objects
then, by the definition of incremental efficiency, the rest of the generation cannot
be NP-hard. Hence, the general structure of an NP-hardness proof for a monotone
generation problem consists of showing that, after we got polynomially many output
objects, deciding the existence of a next one is NP-hard. In this section, we discuss
several examples, and conclude with the problem of generating negative cycles of a
weighted directed graph. Although the latter problem is not of the monotone type,
it is possible to find the first negative cycle in polynomial time, see, e.g. [33]. In the
construction described below, we show that after a polynomial number of negative
cycles are generated, finding if there is an additional negative cycle is an NP-hard
problem.

A.1. Reduction from stability number. As an example for an NP-hard
monotone generation problem, let us consider integer programming. Given a system
Ax ≥ b of m linear inequalities in n integer variables, that is, A ∈ Rm×n and b ∈ Rm,
we are looking for integral solutions x ∈ Zn such that 0 ≤ x ≤ c, where c ∈ Rn

+ is a
non-negative vector. We get a binary programming problem if all n coordinates of c
are equal to 1, that is, c = 1n. It is well-known that in general even the feasibility of
such systems is NP-hard to verify. However, if the matrix A is non-negative, A ≥ 0,
then the system is feasible if and only if Ac ≥ b, and hence the feasibility can be
checked in polynomial time. Given such an instance, we consider the problem to
generate all integral

(i) minimal feasible and
(ii) maximal infeasible vectors.
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It is shown in [11] that (i) can be solved in incremental quasi-polynomial time,
while (ii) is NP-hard.

Proposition A.1 ([11]). Given a system Ax ≥ b with A ≥ 0 and a family X
of its integral maximal infeasible vectors, it is NP-hard to decide whether the family
X is complete or it can be extended. The problem remains NP-hard even if A is a
0/1-matrix, c = 1n, and all coordinates of b but one are equal to 1.

Proof. Let us consider the well-known NP-complete decision problem, called
Stability Number : Given a graph G = (V, E) and a threshold t ≥ 2, decide if G
contains a stable set of size t, or not. Let us introduce n = |V | binary variables xv,
v ∈ V , and write m − 1 = |E| inequalities of the form xv + xv′ ≥ 1 corresponding
to the edges e = (v, v′) ∈ E, followed by a single inequality

∑
v∈V xv ≥ n− t. It is

easy to verify that if x is the characteristic vector of an edge e ∈ E then 1n − x is
a maximal infeasible vector. Furthermore, there is another such vector if and only
if G has a stable set of size t. ¤

A few more generation problems whose hardness is proved by reduction from
stability number can be found in [15, 16]. Typically, the input of such a problem
contains at least one unbounded parameter. In the above example there is exactly
one: the coordinate n− t of vector b.

A.2. Reduction from satisfiability: sausage techniques.
A.2.1. Reformulations of satisfiability in terms of monotone DNFs and CNFs

and corresponding hard generation problems. Let C be a CNF of k Boolean variables
x1, . . . , xk. It is well-known that verifying the satisfiability of C is an NP-complete
problem that we refer to as SAT.

Remark A.1. SAT remains NP-complete even if we assume additionally that
(i) no literal appears in all clauses of C; (indeed, if x (or x) appears in all

clauses then obviously C is satisfiable.)
(ii) for every variable x, both literals x and x appear in C (and not in the

same clause, of course). (Indeed, we can substitute x = 1, if x appears in
C and x does not, and x = 0 if x appears and x does not. In both cases
the obtained CNF C′ is satisfiable if and only if C is satisfiable.)

It is also known ([50, Theorem 2.1]) that SAT remains NP-hard even if
(iii) each clause contains at most 3 variables and each variable appears in

at most 3 clauses (i.e., each variable appears in C once negatively, once
positively, and it may appear once more, either negatively or positively).

A CNF (DNF) is said to be monotone or positive if it has no negated literals.
The dual of a monotone CNF (respectively DNF) is the monotone DNF (respec-
tively CNF) obtained by replacing every ∧ with an ∨ and vice versa. The monotone
dualization problem is to find for a given monotone CNF (or DNF) the correspond-
ing monotone DNF (respectively CNF). It is easy to see that this is equivalent to
the problem of finding all minimal transversals of a given hypergraph, discussed in
Section 1.3.

As an example, the following CNF satisfies all above conditions (i), (ii), and
(iii):

C = (x1 ∨ x2 ∨ x3)(x2 ∨ x3)(x1 ∨ x2 ∨ x3)(x1 ∨ x2).
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Given a CNF C, let us assign a positive literal yi to each negative literal xi of
C, denote the obtained monotone CNF by C = C(C) and the dual monotone DNF
by D = D(C). For the above example, we get

(A.1)
C = (x1 ∨ y2 ∨ y3)(x2 ∨ x3)(x1 ∨ y2 ∨ x3)(y1 ∨ y2),

D = x1y2y3 ∨ x2x3 ∨ x1y2x3 ∨ y1y2.

Let us also introduce a pair of dual CNF C0 and DNF D0 as follows:

(A.2)
C0 = (x1 ∨ y1) ∧ · · · ∧ (xk ∨ yk),

D0 = x1y1 ∨ · · · ∨ xkyk.

Now we can reformulate SAT in many trivially equivalent ways.

Proposition A.2. The following 11 claims are equivalent :

(0) C is not satisfiable,
(1) D0 ≥ C, (2) D0 ∨ C ≡ D0, (3) D0 ∧ C ≡ C,
(4) C ⇒ D0, (5) CD0 ≡ 0;

(1′) C0 ≤ D, (2′) C0 ∧D ≡ C0, (3′) C0 ∨D ≡ D,
(4′) D ⇐ C0, (5′) C ∨D0 ≡ 1.

Proof. Equivalence of (1)–(5) is obvious. Furthermore, (i′) is dual to (i) for
i = 1, 2, 3, 4, 5. It remains to show that (0) and (1) are equivalent. Indeed, both
(0) and (1) are obviously equivalent to the following claim: each prime implicant
of C contains a pair xj , yj for some j ∈ [k] = {1, . . . , k}. ¤

Remark A.2. Given a monotone DNF D = t1 ∨ · · · ∨ tn and CNF C =
c1∧· · ·∧cm of common variables x1, . . . , xk, inequality D ≥ C is NP-hard to verify.
In contrast, D ≤ C (or equivalently, D ⇒ C, D∨C ≡ C, C ∧D ≡ D) can be easily
verified in linear time. To do so, choose some i ∈ [n] = {1, . . . , n}, set all variables
of ci to 1, and all others to 0. Then, obviously, D = 1. It is also clear that D 6≤ C
if we get cj = 0 for some j ∈ {1, . . . , m}; otherwise, C = 1 whenever D = 1, that
is, D ≤ C.

Let us also note that verification of the identity C ≡ D is exactly dualiza-
tion. As we already mentioned in Section 1.3, this problem can be solved in quasi-
polynomial time and, hence, it is not NP-hard unless each problem from NP is
quasi-polynomially solvable. Moreover, verifying each of the following dual identi-
ties

D1 ∨ · · · ∨Dn ≡ C, C1 ∧ · · · ∧ Cn ≡ D,

for arbitrary monotone DNFs D, D1, . . . , Dn and CNFs C,C1, . . . , Cn is obviously
equivalent to dualization too. In contrast, verifying each of identities

D1 ∧ · · · ∧Dn ≡ C0, C1 ∨ · · · ∨ Cn ≡ D0,

is NP-hard, since they generalize D ∧ C0 ≡ C0 and C ∨D0 ≡ D0, respectively.
Finally, let us note that CD0 is equal to a “dipole” CNF, where all clauses of C

are positive (contain no negations) and all clauses of D0 = (x1∨y1) · · · (xk∨yk) are
negative (contains only negative literals). Hence, equivalence of claims (0) and (5)
implies that SAT is NP-complete already for dipole CNFs, or in other words, that
Monotone SAT is NP-complete, a fact that we already made use of in Section 2.3.4.
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Some statements from Proposition A.2 can be naturally reformulated as (NP-
hard) generation problems. For example, (2) D0∨C ≡ D0, calls for enumerating all
prime implicants of a monotone Boolean expression D0 ∨C. One can immediately
get k of them, xiyi for i = 1, . . . k, however, it is NP-hard to decide whether the
obtained list is complete or it can be extended. In the next sections we will develop
this approach and derive corollaries for reliability theory and vertex enumeration.

Now, let us consider two similar dual identities

(A.3) D1 ∧ · · · ∧Dn ≡ D0, C1 ∨ · · · ∨ Cn ≡ C0

where D0 and C0 are defined by (A.2).

Proposition A.3. It is coNP-complete to verify any of the identities of (A.3)
already for monotone quadratic DNFs D1, . . . , Dn and CNFs C1, . . . , Cn.

Proof. By duality, it will suffice to prove the first claim only. We will reduce
it from SAT. Let C be a CNF (satisfying conditions (i), (ii), and (iii) of Remark A.1)
of k variables x1, . . . , xk. Let us substitute yj for each xj and get a monotone CNF
C = c1 ∧ · · · ∧ cn.

Now for i = 1, . . . , n let us set in (A.3) Di = D0 ∨ ci. Conventionally, we
delete the term xjyj from Di if clauses ci contains xj or yj , for i = 1, . . . , n and
j = 1, . . . ,m. Then, by assumption (i), we have D1 ∧ · · · ∧Dn = D0 if and only if
the CNF C is not satisfiable. ¤

Let us remark that the following, more general, identities

(A.4) D1 ∧ · · · ∧Dn ≡ D, C1 ∨ · · · ∨ Cn ≡ C

can be reduced to dualization, and hence, verified in quasi-polynomial time if one
of the following conditions is satisfied.

Case 1. All DNFs Di (CNFs Ci) are linear, or in other words, they are just
clauses Di = ci = x1

i ∨ · · · ∨ xki
i (resp., terms Ci = ti = x1

i · · ·xki
i ) for i = 1, . . . , n.

In this case (A.4) is reduced to the form D ≡ C which is exactly dualization.

Case 2. The number of terms (resp., clauses) in each of the DNFs D1, . . . , Dn

(resp., CNFs C1, . . . , Cn) is bounded by a constant. In this case each DNF Di

(resp., CNF Ci) can be efficiently dualized in polynomial time, and the size of each
such dual is bounded by a polynomial.

We can reformulate Proposition A.3 as NP-hardness of the following generation
problem: Product of Hypergraphs. To each monotone DNF D let us assign (as usual)
a hypergraph H = (V,E) whose vertices are the variables and whose edges are the
terms of D.

Proposition A.4. Given n hypergraphs Hi = (V, Ei), the problem of generat-
ing all minimal subsets of V which contain an edge of Hi for each i = 1, . . . , n is
NP-hard, even if all Hi are graphs.

Proof. We can just translate the previous proof (of Proposition A.3) in terms
of graphs. Assign a vertex uj (resp., vj) to each literal xj (resp., yj) for j = 1, . . . , k,
introduce a new vertex w, and set V = {w, u1, v1, . . . , uk, vk}. Then for i = 1, . . . , n,
let us assign to quadratic DNF Di = D0 ∨ ci the graph Gi = (V,Ei) such that
Ei = {(uj , vj) | j = 1, . . . , k} ∪ {(w, uj) | xj ∈ ci} ∪ {(w, vj) | yj ∈ ci}. By
Proposition A.3, the product of the obtained n graphs G1, . . . , Gn, or in other



GENERATING VERTICES OF POLYHEDRA 37

words, all minimal subsets of V which contain an edge from Ei for each i = 1, . . . , n,
is NP-hard to generate. ¤

Another corollary of Propositions A.3 and A.4 is also related to the sets of n
graphs in which, however, edges, not vertices, are in common. Given n (directed)
graphs Gi = (Vi, Ei) for i = 1, . . . , n, whose edges are labeled by the same indices
E = {e1, . . . , em}, generate all minimal subsets of E such that the corresponding
edges contain a (directed) cycle in Gi for each i = 1, . . . , n. It is easy to see that, by
Propositions A.3, A.4, this problem is NP-hard. Let us remark that the problem is
open for the case when n is bounded by a constant, in particular, for n = 2.

We can fix a pair of vertices si, ti ∈ Vi for each i = 1, . . . , n and consider
(directed) (si, ti) paths instead of (directed) cycles. The corresponding generation
problem remains NP-hard.

There are also interesting corollaries of Propositions A.3 and A.4 in reliability
theory. For instance, given a directed graph G = (V, E) and n pairs of terminals
si, ti ∈ V for i = 1, . . . , n, consider the problem of generating all minimal subsets
of E that contain a directed path from si to ti for each i = 1, . . . , n. It follows from
Proposition A.3 that this generating problem is NP-hard [12].

A.2.2. Sausage technique. Given a CNF C, let us assign distinct positive vari-
ables to all its literals and denote the obtained read-once monotone CNF by C ′

and the dual read-once monotone DNF by D′. We will denote by x1
i , x

2
i , . . . and

y1
i , y2

i , . . . the variables of C ′ and D′ corresponding respectively to positive xi and
negative xi literals of C. For our example from Section A.2.1 we get

C ′ = (x1
1 ∨ y1

2 ∨ y1
3)(x1

2 ∨ x1
3)(x

2
1 ∨ x2

3)(y
1
1 ∨ y2

2),

D′ = x1
1y

1
2y1

3 ∨ x1
2x

1
3 ∨ x2

1x
2
3 ∨ y1

1y2
2 .

Let us now introduce formulae C ′0 and D′
0 as follows,

C ′0 =
m∧

i=1

(
(x1

i x
2
i · · · ) ∨ (y1

1y2
1 · · · )

)
,

D′
0 =

m∨

i=1

(
(x1

i ∨ x2
i ∨ · · · )(y1

i ∨ y2
i · · · )

)
.

Let us remark that C ′0 and D′
0 are dual (∨,∧)-formulae of depth 3 rather than a

CNF and DNF. For our example we get

C ′0 = (x1
1x

2
1 ∨ y1

1)(x1
2 ∨ y1

2y2
2)(x1

3x
2
3 ∨ y1

3),

D′
0 = (x1

1 ∨ x2
1)y

1
1 ∨ x1

2(y
1
2 ∨ y2

2) ∨ (x1
3 ∨ x2

3)y
1
3 .

Again, it is not difficult to see that the inequality C ′ ≤ D′
0 holds if and only if

the original CNF C is not satisfiable. Furthermore, as in Proposition A.2, we can
rewrite C ′ ≤ D′

0 in several obviously equivalent ways:

C ′ ∨D′
0 ≡ D′

0, C ′ ∧D′
0 ≡ C ′, C ′ ≤ D′

0, C ′ ⇒ D′
0;

D′ ∧ C ′0 ≡ C ′0, D′ ∨ C ′0 ≡ D′, D′ ≥ C ′0; D′ ⇐ C ′0.

Given a CNF C, let us standardly assign series-parallel graphs G(C ′), G(D′),
G(C ′0), and G(D′

0) to the monotone (∨,∧) Boolean formulae C ′, D′, C ′0, and D′
0,

respectively. Each of these four graphs has two terminals s and t. Let us also note
that all four have a common edge-set. By construction, all four are series-parallel
and, in particular, planar. Moreover,

(
G(C ′), G(D′)

)
and

(
G(C ′0), G(D′

0)
)

form two
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pairs of dual planar graphs. (More precisely, they will if we add the edge (s, t) to
each one.) Figure 1 shows all four graphs corresponding to the CNF C considered
above.

We can reformulate SAT, as before, in many trivially equivalent ways.

Proposition A.5. The following 5 statements are equivalent :
(0) CNF C is satisfiable.
(1) Graph G(C ′0) has an s, t-path whose edge-set contains the edge-set of an

s, t-path in G(C ′).
(1’) There are two edge-disjoint s, t-paths: one in G(C ′), another in G(C ′0).
(2) Graph G(C ′0) has an s, t-path whose edge-set contains the edge-set of no

s, t-path in G(D′).
(2’) Graph G(C ′0) has an s, t-path whose edge-set intersects the edge-set of

every s, t-path in G(D′).

Proof. Let us show that claims (0) and (1) are equivalent. Indeed, it is easy
to see that each s, t-path p0 in G(C ′0) is an assignment of variables of C and this
assignment is satisfying iff the edge-set of p0 contains the edge-set of some s, t-path
p in G(C). Hence, (1) means exactly that there is a satisfying assignment for C.

Now let us note that for each s, t-path in G(C ′0) there exists another s, t-path
such that the corresponding two edge-sets are complementary.

Moreover, the s, t-paths in G(C ′) (respectively, in G(C ′0)) are in a one-to-
one correspondence with the s, t-cuts in G(D′) (respectively, in G(D′

0)), since(
G(C ′), G(D′)

)
and

(
G(C ′0), G(D′

0)
)

form two pairs of dual planar graphs.

Figure 1. Four labeled graphs corresponding to the CNF C.
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These two observations easily imply that all 5 above claims are equivalent. ¤
Furthermore, we can substantially extend the list substituting a path of a graph

by the corresponding cut of the dual graph.
Since SAT is NP-complete, we get a long list of NP-complete problems related

to pairs of graphs G′ = (V ′, E), G′′ = (V ′′, E) with common edge-sets.
In particular, it is NP-hard to check if G′ and G′′ have edge-disjoint (or edge

nested) s, t-paths (or s, t-cuts); whether they have edge-disjoint (or edge-nested)
pair of an s, t-path and s, t-cut; whether G′ has an s, t-cut (or s, t-path) whose edge
set contains no s, t-path (or s, t-cut, or vice versa) of G′′, etc.

Remark A.3. All the problems above remain NP-complete for directed graphs
too. To get a proof it is sufficient to orient all edges of all four graphs in direction
from s to t. It is well known that for series-parallel graphs (and, in fact, only for
them) this operation is well-defined.

Finally, let us note that each of the above problems still remains NP-complete
if we substitute simple (directed) cycles for (directed) s, t-paths. Indeed, let us
identify the terminals s and t in G(C ′) and in G(C ′0). Then in these two (directed)
graphs each (directed) s, t-path turns into a simple (directed) cycle. We should
note that:

(a) the number of s, t-paths may be exponential in size of CNF C for G(C ′) and
G(C ′0), while for G(D′) and G(D′

0) it is at most linear and, respectively,
quadratic in size of C;

(b) in all four graphs there are other simple (directed) cycles, not related to
(directed) s, t-paths. However, their number is at most linear in the size
of C. Hence, they can be checked separately and cannot influence the
complexity.

We showed that Proposition A.5 leads to many NP-hard decision problems. Let
us now demonstrate that they can be easily reformulated as generation problems.
The following statement explains the method.

Given two (directed) graphs G′ = (V ′, E) and G′′ = (V ′′, E) with a common
edge-set E, generate all minimal subsets of E that contain a simple (directed) cycle
in G′ or in G′′. This problem is called disjunction of cycles [37].

Proposition A.6. Disjunction of cycles is an NP-hard generation problem.

Proof. Consider the non-directed case first. Let us merge vertices s and t
in G(D′) and G(C ′0) and denote the obtained graphs by G′ and G′′, respectively.
Then we can easily enumerate all simple cycles of G′ and all “short” simple cycles
of G′′. However, by Proposition A.5 it is NP-complete to decide if there is a “long”
simple cycle in G′′ whose edge-set contains no edge-set of a simple cycle in G′.

Exactly the same arguments work in the directed case too. We only have to
orient all edges of G(D′) and G(C ′0) from s to t. Let us note that in this case there
are no “short” simple cycles in G′′. ¤

Remark A.4. Clearly, the similar statement holds if we substitute (directed)
s, t-paths or s, t-cuts for simple (directed) cycles.

In the previous subsection we considered the similar concept of conjunction of
(directed) s, t-paths or simple cycles in n graphs. Let us recall that the correspond-
ing generation problem is NP-hard when n is a part of the input, and it is open
when n is bounded, already for n = 2.
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We refer to the method of this subsection as “sausage technique,” because the
graphs G(C ′) and G(C ′0) look like a sausage.

A.2.3. Generating all negative directed cycles is hard. Given a directed graph
G = (V, E) and a real weight function w : E → R on its edges, consider the problem
of generating all negative directed cycles, or more precisely, all simple directed
cycles C in G such that

∑
e∈E(C) w(e) < 0. This generation problem turns out to

be NP-hard.

Proposition A.7. Given G,w and a collection of negative cycles X , it is NP-
hard to decide whether this collection is complete or it can be extended. The problem
remains NP-hard, even if w takes only two values: +1 and −1.

In [34] this result is proved for both directed and non-directed graphs. Here
we give a sketch of this proof for the directed case. Graph G (“double sausage”) is
constructed as follows.

Let us merge vertex t of graph G(C ′) and vertex s of graph G(C ′0) and denote
the obtained vertex by u0. The obtained graph G1 is still series-parallel, so let us
orient all its edges from s in G(C ′) towards t in G(C ′0).

Let us recall that graphs G(C ′) and G(C ′0) had the common edge-set E which
is in one-to-one correspondence with the literals of the CNF C. Hence, the edges
of the obtained directed graph G2 are labeled by E and each label e ∈ E appears
exactly twice.

Furthermore, it is NP-hard to check if G2 contains an s, t-path in which each
label e ∈ E appears at most once. Indeed, such a path exists in G2 if and only if
there exist two edge-disjoint s, t-paths in G(C ′) and G(C ′0), which is NP-hard to
verify by Proposition A.5.

Now let us subdivide each directed edge (v′, v′′) in G2 by 3 vertices v1, v2, v3

such that v′, v1, v2, v3, v
′′ go successively. In the obtained directed graph G3 let

us define weight function w as follows: w(v′, v1) = w(v3, v
′′) = +1, w(v1, v2) =

w(v2, v3) = −1.
Furthermore, for each index e ∈ E let us consider two corresponding di-

rected edges (v′, v′′) and (u′, u′′) in G2 and their subdivisions v′, v1, v2, v3, v
′′ and

u′, u1, u2, u3, u
′′ in G3; then let us merge v1 and u3 and also v3 and u1, and denote

the two obtained vertices by v and u, respectively; see Figure 2. Finally, let us add
one more directed edge (t, s) and assign to it weight −1.

By construction, vertices v, v2, u, u2 form a simple directed cycle of weight −4
in the obtained directed graph G4. There are |E| such cycles. Does G4 contain
more negative cycles? We will show that this question is NP-hard.

Figure 2. Two pairs of vertices are merges.
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Let us note that there is a directed cycle of weight −1 in G4 whenever there
exist two edge-disjoint s, t-paths in graphs G(C ′) and G(C ′0) (and this is NP-hard
to decide, by Proposition A.5). Indeed, the union of these two paths is an s, t-path
in G4 whose total weight is 0. Hence, these two paths and the edge (t, s) form a
simple directed cycle in G4 of weight −1.

It is not difficult to verify that there can be no other negative cycles in G4. In
other words, G4 contains |E| (−4)-cycles and the projection of any other negative
cycle Y to G(C ′) and G(C ′0) must form an s, t-path in each graph. The complete
proof is given in [34]. However, its main point is simple. If Y contains successive
vertices u2, v, v2 or v2, u, u2 then Y is a (−4)-cycle. If Y contains successive
vertices v′, v, u′′ or u′, u, v′′ then Y cannot be negative, moreover, w(Y ) ≥ 1.
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