SIP – 2, Fall 2013

An SIP Formulation for Production Scheduling and Application at a Gold Mine:

An Industry Example of the Value of Stochastic Solutions

Contents

- Introduction
- Stochastic integer programming (SIP) model
- Risk management using the SIP model
- Case studies
- Value of the stochastic solution
- Conclusions

Introduction

- The traditional "optimum scheduling methods" are based on mathematical models with inputs of 100% certainty.
- Uncertainty may exist from technical, environmental and market sources. Grade variability is examined in this presentation.
- A recently developed Stochastic Integer Programming (SIP) model uses multiple simulated orebody models in optimising long-term production schedules in open pit mines.
- BUT, let's provide some background

Production Scheduling - Open Pit Mine

Production Scheduling - Open Pit Mine

An Open Pit Gold Deposit

Lode 1502 Simulation #1

A Formula for a Block Value (Blocks Representing the Deposit) when Optimizing

BLOCK ECONOMIC VALUE =

(METAL*RECOVERY*PRICE - ORE*COSTP)

- ROCK*COSTM

• The objective function: The main objective of the long term production scheduling is to maximize net present value (NPV) of the mine.

Maximize

$$\sum_{t=1}^p \quad \sum_{i=1}^n C_i^t \, \stackrel{\star}{\star} \, X_i^t$$

where

p is the maximum number of scheduling periods
n is the total number of blocks to be scheduled
C_i^t is the NPV to be generated by mining block i in period t
X_i^t is a binary variable, equal to 1 if the block i is to be mined in period t
t, 0 otherwise.

Subject to the following constraints

• Grade blending constraints

Upper bound constraints: The average grade of the material sent to the mill has to be less than or equal to a certain grade value, G_{max} , for each period, t

$$\sum_{i=1}^{n} (g_i - G_{max}) * O_i * X_i^t \le 0$$

where

 g_i is the average grade of block i O_i is the ore tonnage in block i

• Reserve constraints

$$\sum\limits_{t=1}^{p} X_{i}^{t} \leq 1$$

• Processing capacity constraints

Upper bound: The total tonnage of ore processed cannot be more than the processing capacity (PCmax) in any period, t

$$\sum_{i=1}^{n} (O_i * X_i^t) \leq PC_{max}$$

Lower bound: The total tonnage of ore processed cannot be less than a certain amount (PCmin) in any period, t

$$\sum_{i=1}^{n} (O_i * X_i^t) \geq PC_{min}$$

Note: ALL DETAILS ARE IN THE PAPERS

provided for this lecture

Particularly:

Ramazan and Dimitrakopoulos, Optimization in Engineering, 2013

Models for Optimisation

Integer Programming

An objective function

Maximize
$$(c_1x_1^1+c_2x_2^1+...)$$
...

c = constant $X_1^1 = binary variable$

Subject to

$$c_{1}x_{1}^{1}+c_{2}x_{2}^{1}+\ldots = b_{1} \longrightarrow \text{Period } 1$$

$$c_{1}x_{1}^{p}+c_{2}x_{2}^{p}+\ldots = b_{p} \longrightarrow \text{Period } p$$

Stochastic Integer Programming (SIP)

The objective function now is

Maximise $(s_{11}x_1^1 + s_{21}x_2^1 + ...)$ $s_{12}x_1^1 + s_{22}x_2^1 + ...)$

Subject to

- $s_{11}x_1^1 + s_{21}x_2^1 + \dots = b_1$

 $s_{11}x_1^{p}+s_{21}x_2^{p}+....=b_1$ $s_{12}x_1^{p}+s_{22}x_2^{p}+....=b_1$ $s_{1r}x_1^{p}+s_{2r}x_2^{p}+....=b_1$ Period 1
 Simulated model 1
 Simulated model 2

 S_1

S₂

So

 $S_1^n S_2^n S_3^n$

 S_4^1

Simulated model r

Period p

Stochastic Integer Programming (SIP)

- Account for uncertain inputs
- Consider simulated grade realizations in the optimization process
- Minimize the risk of not meeting production targets caused by geological variability

SIP - Production Scheduling Model

Note: ALL DETAILS ARE IN THE PAPERS

provided for this lecture

Particularly:

Ramazan and Dimitrakopoulos, Optimization in Engineering, 2013

Deviation from production targets c^{ty}_{u} and c^{ty}_{l} penalized by d^{ty}_{ru} and d^{ty}_{rl} for each simulation r

SIP – Geological 'Discount Rate'

Deviations from production targets by d^{ty}_{su} and $\overline{d^{ty}}_{sl}$ are penalized by $c^{ty}_{\ u}$ and $c^{ty}_{\ l}$ respectively for each simulation s

SIP – Penalties

$$\sum_{t=1}^{P} \left[\sum_{i=1}^{N} E\left\{ \left(NPV \right)_{i}^{t} \right\} * b_{i}^{t} \right]$$

$$\sum_{t=1}^{P} \left[-\sum_{s=1}^{M} \left(c_{u}^{ty} d_{su}^{ty} + c_{l}^{ty} d_{sl}^{ty} \right) \right]$$

Total NPV

r = economic discount rate

$$\mathbf{E}\left\{\!\left(\mathbf{NPV}\right)_{i}^{t}\right\} = \frac{\mathbf{E}\left\{\!\left(\mathbf{EV}_{i}^{0}\right)\!\right\}}{\left(1+r\right)^{t}}$$

d = geological 'discount rate'

$$c_u^{ty} = \frac{c_u^{0y}}{\left(1+d\right)^t}$$

SIP – A Stochastic Definition of Ore

$$E\{V_i\} = \begin{cases} NR_i - MC_i - PC_i, \text{ if } NR_i > PC_i; \text{ block i is ore} \\ -MC_i - PC_i, \text{ if } NR_i \le PC_i; \text{ block i is waste} \end{cases}$$

$$NR_i = T_i * G_i * rec * (Price - Selling cost)$$

A probability cut-off (p) is also utilized to classify a block as ore

if
$$\operatorname{Prob}\{G_i \ge g_{cut-off}\} \ge p$$
, block i is ore
else, block i is waste

Managing Risk within a Given Period

Ore Production

Managing Risk Between Periods

Deviations from metal production target

RDF – risk discounting factor

r – orebody risk discount rate

Case Study on a Large Gold Mine

General information

Total blocks	22,296
Block dimensions (m)	20 x 20 x 20
Processing input capacity (PC)	18 Mtpa
Metal production capacity (MC)	28,000 Kg pa
Total mining capacity (TC)	85 Mtpa
Stockpile capacity (SC)	5 Mt
Stockpile re-handling cost	0.6 \$/t
Discount rate	10 %
Mine Life	6 yrs

Case Study on a Large Gold Mine

The SIP specific information

Orebody risk discounting rate	20 %
Cost of shortage in ore production	10,000 /t
Cost of excess ore production	1,000 /t
Cost of shortage in metal production	20 /gr
Cost of excess metal production	20 /gr
Number of simulated orebody models	15

The SIP Model Information

Periods	1 - 4	4 - 6
Total blocks	11,301	10,995
Constraints	33,273	21,363
Total variables	53,301	37,286
Binary:	18,540	9,580
T Time (hr:min:sec)	<04:49:55	<37:15:33

Supercomputing system used with parallel processors \leq 8 in 2002

Cross-Sectional Views of the Schedules

Deviations from Production Targets

Ore Production

Tonnes (million)

Deviations from Production Targets

Metal Production

Stockpile's Profile

Uncertainty is Good: Traditional vs Risk-Based

Stochastic Integer Programming

Cumulative NPV values
SIP model WFX

Average NPV values

SIP model

WFX

Geological Risk Discounting= 20%

ESPI = Expected Solution of Perfect Information

15 Scenarios, 15 schedules = average NPV

(a 'theoretical NPV' value which one to use?)

EVS = Expected Value Solution

15 Scenarios, Expected value scenario, 1 Schedule tested with 10 Scenarios = NPV

ESS = Expected Stochastic Solution

14 Scenarios, 1 Schedule tested with 14 Scenarios = NPV

EVPI = Expected Value of Perfect InformationEVPI = ESPI - EVS

VSS = Value of Stochastic Programming or Solution (VSS)

 $VSS = ESS - EVS \ge 0$

COST of IGNORING Uncertainty

ESS = Expected Stochastic Solution = 723 million \$

EVS = Expected Value Solution = 659 million \$

VSS = Value of Stochastic Programming or Solution VSP = ESS – EVS = 64 million \$ 10% COST of IGNORING Uncertainty

Note: ALL DETAILS ARE IN THE PAPERS

provided for this lecture

Particularly: Dimitrakopoulos and Ramazan, Mining Technology, 2008

Some Key Comments

The new SIP production scheduling model:

- Uses individual realisations, thus explicitly accounts for geological risk
- Allows the risk management at three levels:
 - 1. manage the magnitude of risk within a period
 - 2. manage the variability of risk
 - 3. control the risk distribution between time periods
- Maximises NPV for a desired risk profile
- The SIP is efficient: Contains less binary variables than traditional MIP models

A Second Case Study

- Disseminated low-grade copper deposit
- Orebody dips mainly N180/60S
- 185 DH in a pseudo-regular grid of 50x50m²
- Mineralized envelop defined using the drill core logs

Direct block simulation

• 20 simulations, directly generated on a 20x20x10m³ mining block size

Stochastic Simulations

Generates equally probable scenarios of the deposit

...

n

Parameters for the SIP

Total blocks	15,391
Block dimensions (m)	20 x 20 x 10
Processing input capacity (PC)	7.5 Mtpa
Total mining capacity (TC)	28 Mtpa
Economic discount rate	10 %
Cost of shortage in ore production	10,000 /t
Cost of excess ore production	1,000 /t
Cut-off	0.3% Cu
Number of simulated orebody models	20

Ore Production Risk Profile

Waste Production Risk Profiles

Risk Analysis - Conventional Schedule

The Value the SIP Solution

The Role of Geological Discount Rate

Cross-sectional Views of Schedules

20% geological discount rate

30% geological discount rate

ESS = Expected Stochastic Solution = 298 million \$

EVS = Expected Value Solution = 238 million \$

VSS = Value of Stochastic Programming or Solution VSS = ESS – EVS = 60 million \$ or 25% COST of IGNORING Uncertainty

The End

(of this lecture only)