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Abstract

The Open Pit Mine Production Scheduling Problem (OPMPSP) studied in recent years is
usually based on a single geological estimate of material to be excavated and processed over a
number of decades. However techniques have now been developed to generate multiple stochastic
geological estimates that more accurately describe the uncertain geology. While some attempts
have been made to use such multiple estimates in mine production scheduling, none of these
allow mining and processing decisions to flexibly adapt over time, in response to observation
of the geological properties of the material mined. In this paper, we use multiple geological
estimates in a mixed integer multistage stochastic programming approach, in which decisions
made in later time periods can depend on observations of the geological properties of the material
mined in earlier periods. Since the material mined in earlier periods is determined by our
decisions, the information received about uncertain properties, and when that information is
available, is decision-dependent. Thus we tackle the difficult case of stochastic programming
with endogeneous uncertainty. We extend a successful mixed integer programming formulation
of the OPMPSP to this stochastic case, and show that non-anticipativity can be modelled with
linear constraints involving variables already present in the model. We extend this observation
to the general class of endogenous stochastic programs, and exploit the special structure of our
model to show that in some cases we can omit a significant proportion of these constraints.
Using data supplied by our industry partner, (a multinational mining company), we show that
this approach is reasonably tractable, and demonstrate the improvements that can be made to
mine schedules through the explicit use of multiple geological estimates.

Keywords: stochastic programming, integer programming, open pit mining, endogeneous uncer-
tainty.

1 Introduction

We consider an orebody exploited using open pit mining methods. The orebody is represented as
a block model: a discretisation of a volume of earth into blocks subject to mining and processing
capacities, as well as precedence constraints with respect to the order in which the blocks can be
excavated. The Open Pit Mine Production Scheduling Problem (OPMPSP) consists of finding the
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sequence in which the blocks should be removed from the pit, over the lifetime of the mine, so that
the net present value (NPV) of the operation is maximized. The OPMPSP is of great interest to
mining companies as the solution of this problem provides a basis for the strategic future development
of a new or existing mine. The solution of the OPMPSP and similar problems have been the focus
of research for many decades, with the first integer programming approach appearing in the 1980s.
Since then, there have been huge improvements in both commercial MIP solvers and models for
the OPMPSP so that today, the solution of very large problems are within reach (see Boland et al.
(2008), Caccetta and Hill (2003), and Stone et al. (2004)). A shortcoming of these models is that
they are based upon a single estimate of the geology and mineralogy. In practice, this estimate
arises via a smooth interpolation (for example by kriging, see eg. Goovaerts (1997)) of drillhole
information. Despite the best efforts of geologists and geostatisticians, this single estimate will
contain inaccuracies, as it is based on incomplete geological sampling data. In this paper we take
into account this uncertainty via a multistage stochastic programming approach.

We take as our starting point the mixed integer programming model for the OPMPSP given
in Boland et al. (2008) and Fricke (2006), which generalizes an earlier model of Caccetta and Hill
(2003) that is widely accepted as the basis for the state of the art; this model will be the starting
point of our extension to the stochastic case. We begin by defining some notation. The set of all
blocks into which the orebody is discretised is denoted by K = {1,..., K}. For each block, a set of
possible attributes in the block is quantified. For example, an attribute might be the total material
(rock) in the block, some mineral of interest, or some impurity. In this paper, we consider only two
attributes: for each block k € K we denote by af and a}, the total amount of rock and the total metal
contained in the block. The use of only two attributes is for simplicity of exposition only; the key
ideas in this paper extend easily to multiple attributes. We assume a{ > 0 for each k € K (there is no
point considering an empty block). For each block k € I, the set P(k) C K defines the set of blocks
that must be mined before extraction of block k can begin, in order for the mining operation to be
structurally safe. The set of blocks is partitioned into N subsets, called aggregates. We will use the
notation A; C K to denote the ith aggregate; however, for simplicity, we will refer to A; as “aggregate
i”. The total amount of rock (attribute 0) in aggregate 7 will be denoted by a? = D ke a?, and the
total amount of base metal (attribute 1) as a; = ZkeAi a;, for each i =1,..., N. For any aggregate
i=1,...,N, we denote by P(7) the set of indices of the aggregates that must be extracted before
aggregate ¢, which are defined from the block precedence sets via the requirement that one aggregate
is in the precedence set of another if any block in the former is in the precedence set of any block in
the latter. Note that the grade of a block k (aggregate i) is given by the proportion of metal to rock,
i.e. by ai/ag (by a}/a? in the case of an aggregate).

The lifetime of the mine is divided into 7" time periods. The mining capacity for period ¢, in units
of tonnes of rock excavated, is denoted M; and the processing capacity for period ¢, in units of tonnes
of rock processed, is denoted P;, for each t € {1,...,T}. Estimates of the cost per tonne of rock
extracted and processed in each period ¢t € {1,...,T} are denoted by ¢;""? and /", respectively.
The forecast of the revenue per tonne of metal sold in period ¢ is denoted by ¢} for each t =1,...,T.
It is assumed that the revenue is realised in the period in which the material is processed. All costs
and revenues are given in present value terms, and are assumed to be nonnegative.

Binary variables x;; € {0,1} are defined to indicate whether extraction of aggregate i has begun
by or in period ¢, i.e. z;; = 1, if excavation of aggregate ¢ begins in periods 1,...,t, and z;; = 0,
otherwise. Continuous variables y;; € [0, 1] are defined to represent the fraction of aggregate i to be
excavated in time period ¢, and continuous variables z;; € [0, 1] are defined to represent the fraction
of aggregate i to be processed in time period ¢, forany t =1,...,T,7=1,..., N. It is assumed that
an aggregate is excavated uniformly, in the sense that every block in the aggregate is excavated in



the same proportion. In other words, it is assumed that the fraction of any block k excavated in any
time period ¢ is y;(),¢, where i(k) is the (unique) aggregate to which block k belongs, i.e k € A;x.
Another assumption is that any unprocessed material in an excavated aggregate is sent to waste,
(there is no stockpiling), so for each aggregate i and time period ¢, the value y;; — z;+ represents
the fraction of aggregate i that goes to waste. We can now give the (deterministic) mixed integer
program for OPMPSP that is the starting point for this paper, which we will refer to as D-MIP:

N
max Z ((ciaj — & af)ziy — aoc;””"yl-7t)

7
t=1 i=1

st it < Yy, Vie{l,...,N}, te{l,...,T}, (1)
N
> alz, < P, vie{1,...,T}, (2)
=1
N
S alyie < M, vie{l,..., T}, (3)
=1
t
T <y Vie{l,.. N}, jeP(), tef{l,. .. T} (4)
t=1
t
> i < @i, Vie{l,...,N}, te{l,...,T}, (5)
t=1
xi,tgxi,t+17 V’iE{l,...,N},te{l,...,T—l}, <6>
xip € {0,1}, Vie{l,...,N}, te{l,..., T}, (7)
yir > 0, Vie{l,...,N}, te{l,....,T} and (8)
2y > 0, vte{l,...,T}, ie{l,...,N}. (9)

To better capture geological uncertainty, mining companies can produce multiple stochastically
generated geological estimates that we call scenarios; see for example Dimitrakopoulos (1998),
Goovaerts (1997), or Journel (1996). Each scenario so produced provides (possibly different) at-
tribute values for each block; typically the block model would be held constant. One might also
expect rock values to be identical across all scenarios, i.e. uncertainty in metal attribute values is of
primary interest. The process used for estimate generation is usually described as conditional sim-
ulation, and each scenario so generated is compatible with the measured drillhole information with
a probability of occurring derived in the course of the simulation. The model of the material to be
excavated is now represented as a finite number of possible scenarios, each with a known probability
of occurrence.

While the technology to produce scenarios has existed for some time, there has been relatively
little research on augmenting OPMPSP formulations to explicitly incorporate them. The importance
of this was noted by Smith and Dimitrakopoulos (1999) who discussed the following experiment.
Suppose an NPV-maximal production schedule is created based upon a single kriged geological
estimate, and this schedule is applied to several conditionally simulated geological estimates. While
the schedule applied to the kriged estimate performed very well with regular production each year,
the variations of annual production were significant when the schedule was applied to the the various
conditionally simulated estimates. Smith and Dimitrakopoulos conclude their study by strongly



advocating the inclusion of stochastic geological estimates in the optimization process to avoid this
effect.

In the intervening years, several research groups have addressed the issue. Ramazan and Dimi-
trakopoulos in a series of papers (see Ramazan and Dimitrakopoulos (2007) and references therein)
control ore grade and total production for each individual scenario and impose a penalty in the
objective for grade and production deviations from targets, using a predefined cutoff grade policy.
Menabde et al. (2004) describe a variable cutoff grade model to maximize expected NPV over several
scenarios, however, the production rates are only controlled in an average sense, leading to possible
fluctuations in practice. In a more recent paper by Golamnejad et al. (2006), uncertain mineral grades
are taken into account via chance constraints on the average blended product grade and also in the
objective function with grade affecting revenue. However, the delineation of blocks into waste and
ore is done a priori and without regard to grade uncertainty, effectively enforcing a fixed cutoff grade
policy based upon some grade average. For a recent review of existing models and algorithms for the
OPMPSP with stochastic elements we refer the reader to Osanloo et al. (2007). A major drawback
with the existing approaches is that the mining and processing decision variables are completely
independent of scenarios; that is, the same decision is applied to each scenario.

In practice, however, decisions should adapt over time according to material that is excavated.
Clearly as mining occurs, and assays of the material extracted are obtained, the mineral properties
of the ore body could be better estimated than at the outset. Such new information gained through
mining could, and clearly should, influence future mine scheduling decisions. This motivates a
multistage stochastic programming approach to mine scheduling, in which decisions made at one
period can depend on information revealed through mining in earlier periods. The advantages of such
stochastic programming approaches are well known in general (see for example Birge and Louveaux
(1997)), and as already noted, are well motivated in the mining context of Smith and Dimitrakopoulos
(1999).

However the information that is revealed through mining depends on the mining decisions made
in earlier periods; what we learned through mining depends on what blocks or aggregrates we chose
to mine. This puts us in the case of stochastic programming with endogenous uncertainty, defined
to occur when the underlying stochastic process depends on the optimization decisions, whether
via direct alteration of the probability distributions, or by reduction of the uncertainty through
the discovery of new information (referred to as type 1 and type 2 forms respectively in Goel and
Grossmann (2006)). In such cases, one might see a further influence of stochasticity on decision-
making: as noted, for example, in Artstein and Wets (1993), one could, and perhaps should, invest
some resources in estimation of parameters defining the uncertainty. In mining terms, one may
thus see some mining decisions made primarily to reduce uncertainty in the geological estimates,
i.e. the process of mining should, perhaps, be viewed as a process that is part “exploration” and
part “extraction”. Multistage stochastic programming with endogenous uncertainty allows all this
to be considered as an integrated planning problem, with the single aim of maximizing expected
NPV. As noted, for example by Jonsbraten et al. (1998), endogenous uncertainty makes the problem
substantially more difficult to solve, and even very recent papers (e.g. Tarhan and Grossmann (2008))
comment on the sparsity of literature addressing such cases.

Interestingly, the key work addressing multistage stochastic programs with endogenous uncer-
tainty has, at least in part, been motivated by another application in the exploitation of geological
resources: the development of gas fields. Goel et al. (2006) build on the general approach of Goel
and Grossmann (2006) to multistage stochastic programs with endogenous uncertainty to develop
a method of optimizing the design of infrastructure and operational planning over time for a gas
production asset. Their work clearly demonstrates the benefits of stochastic programming in this



context, which has strong analogies with open-pit mining. Their results on five examples show im-
provements in expected NPV due to stochastic programming ranging from 2.3% to 8.9%, with an
average of 5.4%. This paper, together with that of Tarhan and Grossmann (2008), (also based on
the general approach of Goel and Grossmann (2006)), represents the state of the art in methods for
multistage stochastic programming with endogenous uncertainty, particularly of type 2; other than
references in Goel et al. (2006), Goel and Grossmann (2006), Tarhan and Grossmann (2008), we are
aware of no other work that tackles such problems.

In this paper we address the need to take into account geological uncertainty in open-pit mine
production scheduling, to produce schedules that adapt over time in response to the information
acquired through mining. We develop a multistage stochastic programming approach, which has
endogenous uncertainty (of type 2), and which is designed to capitalize on the types of multiple
geological estimates that can be produced by methods such as described in Dimitrakopoulos (1998).
This introduces an additional difficulty, as such estimates are sampled from a continuous space,
without an underlying scenario tree structure. We are not aware of any previous work that deals
with such a case. In Section 2 we develop a stochastic model which includes practical measures to
deal with this difficulty, and which also reflects some of the decision-making practices that could
be expected of mine planning engineers in response to new mineralogical information. We call the
OPMPSP that incorporates geological uncertainty in this way the Stochastic OPMPSP (SOPMPSP).
In Section 3 we show how the Stochastic OPMPSP can be modelled as a mixed integer linear program.
As noted by Goel et al. (2006) in the gas field context, standard approaches in stochastic programming
cannot be used, and instead the interdependence between the scenarios (scenario tree in their case)
and the decisions must be captured by conditional non-anticipativity constraints. Where Goel et al.
(2006), (and also Goel and Grossmann (2006)), introduce binary variables for every pair of scenarios
and each time period to capture the non-anticipativity condition, within a disjunctive model, we
show that the binary variables arising naturally in the formulation can give rise to a linear non-
anticipativity constraint. This approach can readily be generalized to provide an alternative to that
of Goel and Grossmann (2006). Where Goel and Grossmann use Lagrangian relaxation to deal with
the large number of binary variables needed for their non-anticipativity condition, and specialized
branch-and-bound to deal with their disjunctions, we use standard branch-and-bound techniques. In
cases where the number of non-anticipativity constraints grows large, we suggest implementing them
as “lazy” constraints, that are only added as needed. This helps keep the size of the formulation
manageable, and may also be viable in the general context. (In our experiments in Section 4,
we in fact found performance was better without making the non-anticipativity constraints lazy.)
In this section, we also exploit the special structure of our model to show that in some cases we
may omit non-anticipativity constraints related to processing decisions. We also provide a direct
proof that in general a significant proportion of non-anticipativity constraints can be omitted. (The
latter result can be viewed as a special case of one given by Goel and Grossmann (2006), which
requires a long, technical proof; in our special case the proof is natural and short.) Using data
supplied by our industry partner, (a multinational mining company), we give in Section 4 numerical
results demonstrating the improvements in mine schedules that are possible with this approach, and
confirming that it is reasonably tractable.

2 The Stochastic Model

Methods for producing multiple geological estimates, such as those given in Dimitrakopoulos (1998),
typically produce a set of scenarios, indexed by & = {1,...,S}, defined over a single block model



with block set K, where each scenario s € S specifies attribute values for each block k£ € . We
denote by aj , the total rock, and by aj , the total metal, contained in block k under scenario s
for each k € K and each s € §. The total amount of rock in aggregate ¢ under scenario s will be
denoted by af, = 37,4 @i, and the total amount of metal as a;, = >, 4 a;. We expect that
precedence relationships do not vary from scenario to scenario. It is also likely that the rock attribute
will remain constant over all scenarios, in most cases; the primary focus in considering geological
uncertainty is the uncertainty in grade. Each scenario s has a given probability p(s) of occurring,
with 325 p(s) = 1.

Whilst the set of such scenarios is finite, the scenario-dependent attribute values are drawn from
a continuous space, and are not generated via a scenario tree structure. Typically, the attribute
values for a given block are different under every scenario; no two scenarios are likely to have the
same attribute values for a single block, or for a single aggregate. This introduces something of a
challenge: if one takes these attributes at face value, then simply by learning the attribute values of
a single aggregate, we can correctly identify the entire scenario. A more realistic interpretation is
to take each scenario as representing a range of “nearby” realizations of aggregate attribute values;
this is more consistent with the positive value the estimate generator has dictated for the probability
that the scenario will occur. An alternative view is based on the likelihood of experimental error
in assay values: when an aggregate is assayed, the assay attribute values observed are unlikely to
be exactly those of the aggregate itself; any “nearby” value may be those of the aggregate. Thus
scenarios taking “similar” values on a particular aggregate may not be reliably distinguished when
the aggregate is assayed. In both cases the outcome is the same: we should not distinguish between
two scenarios just because their attribute values on a single aggregate are different; instead we should
ask that the values are “sufficiently different”. Although the context is somewhat different, this is
not unlike the practical learning model used in Jonsbraten et al. (1998), in which the uncertainty in
cost of production of a family of products can only be resolved if at least a certain threshold fraction
of such products are produced.

Formally, we distinguish between two scenarios in the following way, predicated on the primary
measure of interest: grade. For any aggregate i € {1,..., N} and scenario s € S, we denote by
Gis = ail,S / ags the grade of aggregate i under scenario s. Given two scenarios r, s € § with r # s, the
differentiator of r and s is the set of aggregates i € {1,..., N} for which g;, is “sufficiently different”
from g; s, i.e. for which |g;, — gis| is “sufficiently large”. Since attribute values could be drawn from
somewhat different scales, depending on the type of metal, (or impurity, if one is considering multiple
attribues), we suggest a relative measure of difference, taken to be a fraction of the largest range
of grades observed under all scenarios, taken over all aggregates. Mathematically, this is stated as
below.

Definition 2.1 For any two (distinct) scenarios r,s € S, we call the set

?r,s} = {Z € {1, . ,N} : ’giﬂ’ — gi,s‘ > 045}

the a-{r, s}-differentiator, where o > 0 and § = ieg?{N}(r’g{I}?}.{,S} Gig — r/el{rll}.l}vs} Gir)-
We discuss practical choices of « in Section 4, but assume throughout that o > 0.

We now consider how learning occurs in the mining context, and how and when decisions can be
made in response to information learned.

We take an aggregate i € {1,..., N} to be “open for mining” in the earliest period t € {1,...,T'}
for which all preceding aggregates have been fully excavated; without loss of generality we can assume
x;; = 1 in this case. When an aggregate is open for mining, it is fully exposed, and can be assayed
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to estimate its attribute values. So as soon as z;; = 1, we assume that we can distinguish any pair
of scenarios r,s € S, r # s, with 7 € A?m}.

How quickly can decision-makers react to information acquired in the course of mining? We
believe that in practice, decisions about how much of an aggregate to send to the processing plant
are made quite dynamically, and can be changed rapidly in response to new information. In contrast,
mining decisions are likely to experience a considerable lag. For example, to change the mining
sequence may require a dragline to be moved to another area of the mine. Since draglines are very
large, unwieldy pieces of equipment, this decision will entail a disruption in mine production, and
is not a decision to be made lightly. In contrast, changing the fraction of an aggregate to send for
processing may be simply a matter of re-directing trucks to dump their load in a different area of
the mine. Mining decisions are thus typically major strategic decisions, requiring significant time to
implement, whereas processing decisions are more tactical, and can be made over a shorter timeframe.

To model these practical differences, we define two different forms of decisions dependent on
information learned. If a lag is required between the acquisition of new information and reacting
to that information in decision-making, we call the decision-making conservative. For simplicity, we
assume here that the lag in conservative decision-making is one period, so that conservative decisions
must wait until period ¢ + 1 to differentiate based on information gained in period ¢. Our industry
partners in this research suggest that it may well be appropriate in some mining contexts to allow a
longer lag; fortunately it is not difficult to extend the models we present here to allow an arbitrary
lag. In this work, we take mining decisions, namely the decisions on mining sequence and rates
dictated by the x and y variables in D-MIP, to be conservative, with a lag of one period.

If, on the other hand, decision-making can respond rapidly to new information, we call that form
of decision non-conservative. We allow non-conservative decisions to differentiate within the same
period in which the information is gained. Here we take processing decisions, namely the z variables in
the D-MIP model, to be non-conservative. Of course this may be a somewhat optimistic assumption.
As we will see in the analysis in Section 3, aggregates open for mining in the same period compete for
processing capacity in that period, and whether an aggregate is newly opened for mining early or late
within the period may well make a difference to the decision-makers ability to respond. However the
OPMPS model does not sequence mining activities within each period, and so provides no basis to
distinguish. Indeed the time discretization inherent in the OPMPSP model already introduces some
approximation of this type; we believe taking the processing decisions to be non-conservative is a
reasonable assumption along the same lines. If a particular practical mining context does not warrant
this assumption, our models are easily modified to make processing decisions, too, conservative, by
imitating the approach taken for mining decisions.

In what follows, we develop a stochastic programming model in which processing and mining
decisions can depend on the observed properties of material already mined (or open for mining).
In particular, we will allow all of the x, y and z variables to depend on the scenario, subject to
appropriate non-anticipativity constraints. We find, as do Goel and Grossmann (2006), (also Goel
et al. (2006) and Tarhan and Grossmann (2008)), that the endogeneous uncertainty necessitates
conditional non-anticipativity constraints. Unlike Goel and Grossmann, we do not introduce new
binary variables for each pair of scenarios and each time period to model the condition; instead we
show this may be naturally modelled by the x variables, with linear constraints, and so keep the
number of variables at O(NT'S). Although O(NTS?) such constraints are required, implementing
them as “lazy” constraints may help keep the model size modest. (We shall see in Section 4 that in
fact computational performance is better for the data we tested without making these constraints
lazy.)

We develop our model in two steps. First, we consider the case that only processing decisions



depend on scenario. As well as facilitating exposition, this case is of interest for practical reasons.
Highly conservative mine planners may prefer not to change mining sequence at all. By treating and
testing stochastic processing decisions as a separate case, we can clearly demonstrate to such planners
the gains in expected NPV due solely to stochastic mining decisions. Furthermore, the special
structure of the OPMPSP leads to a very nice property for the model with only processing decisions
dependent on scenario: provided the scenarios preserve the ordering of aggregates induced by grade,
over aggregates with “similar” grade, (not in the differentiator), non-anticipativity constraints are
unnecessary. (Identical rock attribute values across scenarios are also required, but as mentioned
earlier, we believe this is the rule rather than the exception.)

In our second step, we extend the model to allow all decisions to depend on scenario. At first
sight, it would appear as if 4N (T — 1)S(S — 1) non-anticipativity constraints are needed for mining
decisions, but it is not difficult to prove that in fact only half of these are necessary. (We provide
a short, direct proof, but this observation also follows from Theorem 1 of Goel and Grossmann
(2006).) Unlike Goel and Grossmann, we are unable to eliminate many more of these constraints.
Their Theorem 2 (in Goel and Grossmann (2006)) allows a dramatic reduction in the number of
necessary non-anticipativity constraints, however this theorem depends on scenarios derived from
the cross product of random variables taking on discrete values. In our mining case, this would be
equivalent to scenarios generated via cross products of attribute values over all aggregates. Such
a cross product construction is not supported by geological considerations: attribute properties of
aggregates are not independent, but are spatially linked, and furthermore are sampled from an
underlying continuous space.

We note that the necessary conditions to eliminate non-anticipativity constraints can be general-
ized from Theorem 2 of Goel and Grossmann (2006), to apply to arbitrary sets of scenarios. We give
a brief discussion in Section 3.3 of how this is possible, where we also explain how, in general, one
may avoid the additional binary variables Goel and Grossman use to model the non-anticipativity
condition, by using variables already present in their model.

3 Integer Programming Models for Stochastic OPMPSP

In this section we show how to extend D-MIP to the stochastic case, first with stochastic processing
decisions only, and then with stochastic mining decisions as well. We give a final section discussing
how some of our ideas can be used in the general case of multistage stochastic programming with
endogeneous uncertainty.

3.1 Scenario-Dependent Processing Decisions

In this section we extend D-MIP to the case where information is used to influence processing
decisions, but not mining decisions. In other words, we replace the z variables with variables 27, €
[0, 1] that represent the fraction of aggregate i to be processed in time period ¢, under scenario s,
forany t = 1,...,7,i=1,...,N and s € {1,...,S}. The binary variables x;;, € {0,1} and the
continuous variables y;; € [0, 1] are defined as in the deterministic case. As in the deterministic
case, we assume that an aggregate is excavated uniformly and that any unprocessed material in an
aggregate is sent to waste, so for each aggregate i and time period ¢, the value y;; — 27, represents
the fraction of aggregate ¢ that goes to waste in period t, if scenario s occurs.

Our mixed integer programming model for the SOPMPSP with scenario-dependent processing

decisions, the SP-MIP, is given below. Of course we will also require appropriate non-anticipativity



constraints. Subsequently we explain how to model these via linear constraints; for now, we simply
ask that (z,y,z) € NP Thus we obtain the SP-MIP as follows:

T N S
max Z Z Zp(s) ((Cz%a’l{s - Ci)roca’?,s)zf,t - a’?,sczfnngyi,t)
t=1 i=1 s=1
st 27 < Yis, Vie{l,...,N}, te{l,....,T}, s€{1,...,S} (10)
N
> alz, <P, vie{l,...,T}, se{l,...,S} (11)
=1
N
> af i < My, vte{l,...,T}, s€{l,...,S} (12)
=1
(x,y,2) € NPT (13)
4)—(8)
2, >0, vie{l,....,T}, ie{l,...,N}, se{l,...,S}. (14)

The main differences between this formulation and the deterministic one are the scenario-wise
definition of the processing variables z7, and the addition of constraints (13). Inequalities (10)
ensure that the amount of rock of any aggregate that is processed in any given time period, under
any scenario, is less than or equal to the amount of rock extracted from that aggregate in the time
period considered. Processing and mining capacities must be respected under each scenario. The
precedence and other logical constraints are the same as for D-MIP.

Non-anticipativity constraints for the z variables are needed to ensure that if we have not been
able to distinguish between two scenarios r, s € S, r # s, in time period t € {1,..., T} or any earlier
period, (recall processing decisions are taken to be non-conservative), then we must make the same
decisions under both scenarios. The only way we can distinguish between r and s in period ¢ is if
some aggregate ¢ which allows us to differentiate between r and s, i.e. some i € A‘f‘m}, has been
opened for mining in or before period t. In other words, if z;; = 0 for all 7 € A‘{)‘m}, then it must
be that 25, = 27, for all j € {1,..., N}. Formally the non-anticipativity constraints in SP-MIP can
thus be expressed as

NProc — {(x,y,2) : zit = z;t, Vie{l,...,N},Vr,se{l,...,S},r#s, and (15)
vt € {1,...,T} such that z;, =0, Vj € Af ,}.

In the terminology of Goel and Grossmann (2006), this is a conditional non-anticipativity constraint,
predicated, for each r,s € {1,...,S5}, r # s, and each t € {1,..., T}, on the condition that z;, =0
for all j € A‘f‘r s

Fortunately, there is a convenient linear expression to capture this condition: Z xj; = 0if

JEAT 5

the condition holds (and, for binary =, Z xj; > 1 otherwise). Now since 27, € [0,1] for all
jEA?r’s}
ie{l,...,N},te{l,...,T}and s € {1,...,S}, it is obvious that (for binary z)

|2y — 25| < Z Lyt

JEAT &)



provides a valid model of the non-anticipativity constraint. Linearized in the usual way, we deduce
that together

Ziy— 2 < Z zi, Vie{l,...,Nhte{l,....,T}, r,se{l,...,S},r#s, (16)

TEAT 5

and
g2 < Y w, Vie{l,  Nhte{l,... . T} rse{l,....S}hr#s (17)
JEAT )
provide valid constraints with which to replace (13). We may thus take SP-MIP to be the mixed

integer linear program defined as follows:

T N 8§
max{y > > p(s) ((cjaf, — "l )z, — ™ ie) + (4)=(8), (10)=(12), (16), (17), and (14)}.

t=1 i=1 s=1
Of course, as the number of scenarios grows, the above formulation will suffer from the non-
anticipativity constraints, of which there are O(NT'S?). However, the OPMPSP has special structure
associated with the processing decisions. This can be used to show, under relatively mild assumptions,
that these non-anticipativity constraints can be omitted altogether! Define SP-MIP-red, which we
refer to as the “reduced” model, to be SP-MIP without the non-anticipativity constraints for z,
i.e. we take SP-MIP-red to be SP-MIP with (16) and (17) omitted. We will show that given any
optimal solution to SP-MIP-red, we can construct a feasible solution to SP-MIP that has identical
objective function value. Since SP-MIP-red is a relaxation of SP-MIP, the solution so constructed
must be optimal for SP-MIP. The assumptions under which we may do this are based on the following
definition, which, for convenience in what follows, makes use of the complement of the differentiator,

defined by
E?T»s} — {1, ey N} \ A?ns}
forall m,s € S, r # s.

Definition 3.1 We say that scenario set S and differentiator parameter o are grade-order-preserving
ifallr,s €S, r#s, and alli,j € E?T7S} we have that

Gi,s > Gj,s Zf and Only Zf Gir > 9j,r-

In other words, S and « are grade-order-preserving if the scenarios in S preserve the ordering of
aggregates induced by grade over aggregates with “similar” grade (not in the differentiator defined
by «). We believe this is a relatively mild assumption: since the aggregates of interest have similar
grades across the scenarios, there would seem to be little harm in asking that the grade relationships
between such aggregates are maintained by the scenarios. To get our result, we also ask that all rock
attribute values are identical over aggregates with similar grades across scenarios; as we discussed
earlier, we believe this, too, is a mild assumption, even if asked of all aggregates and scenarios.
Before beginning our proof proper, we require the following technical lemma.

Lemma 3.2 Let V C S and £ C {{r,s} CV : r # s} be such that the graph (V,E) is connected.
Let Q) C E?ns} for all {r,s} € £. Suppose S and a are grade-order-preserving. Then there exists an

ordering o : Q — {1,...,|Q|}, (one-to-one), of the elements of Q that preserves grade order for all
scenarios in V, i.e. such that

Gis > s implies o(i) < o(j)
foralli,j €@, forall se V.
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Proof. We first construct a directed graph G = (@, R), and then show that ¢ can be taken to be a
topological ordering of its nodes. Define the arcs

R:{(Z,j)EQXQ Y Gis > Gjs HSGV}

Our first claim is that if (¢, j) € R then g; s > g; 5 for all s € V. To prove this claim, we consider
some (4,j) € R. By the definition of R there must also exist s € V such that g;s > g¢;s. Let
r eV, r#s. Now (V,€) is connected, so there exists a path in (V,€) from s to r, say the path
is (s =q4¢% ..., d™ =7r). Now {¢",¢q""'} e Eforalm=1,....M —1,s0 Q C B a1y for
allm =1,...,M — 1, and of course 7,j € ). But § and a are grade order-preserving, so since
Gis = Gigt > Gjs = iz, We also have that g; 2 > g2, and hence that g; ;s > g;43, and so on by
induction, to deduce that g; ;v = g;, > g; ,m = gj, proving our claim.

Our second claim is that G is acyclic. Suppose otherwise. Then there exists a cycle (iy,...,iy)
with (i, 0me1) € R forall m = 1,..., M — 1 and (ips,41) € R. Now by the definition of R, there
must exist s € V with g¢;, s > i, 5. From our first claim, g, s > Gizs > -+ > gm.s > Giy s, Which is a
contradiction.

Finally, let o be any topological ordering on the nodes of G, i.e. 0 : Q — {1,...,|Q|} is one-to-
one and (i,7) € R implies that (i) < o(j). Now for any i,7 € (Q and any s € V 1f Gis > Gj.s We
have that (i,j) € R by the definition of R, and so o(i) < o(j), as required. u

Proposition 3.3 Assume that ag = a sforallr,s e S, r#s, and all i € B oy and that S and
a are grade-order-preserving. Then gwen any optimal solution to SP-MIP-red, we can construct an
optimal solution for SP-MIP.

Proof. Let (#,7, (2°)ses) be an optimal solution of SP-MIP-red. Any (z°)es that solves SP-MIP-
red with x = 2 and y = gy fixed will of course be optimal for SP-MIP-red. We will show that we
can choose such a (z%)4cs that satisfies non-anticipativity constraints (16) and (17), and so must be
optimal for SP-MIP. Now SP-MIP-red with + = & and y = ¢ fixed is a problem in z only, that is
obviously separable by time period and scenario, i.e. for each t € {1,...,T} and scenario s € S we
only need to ask that z(, , = (2,)iL, solves

N
max Z (crai, — &"a ?8) 2
i=1

st 27y < Ui Vie{l,...,N}, (18)
N
azs Zt<Pt7 (19)
=1
ZﬁtZO, iE{l,...,N}. (20)

We call this the “t, s-processing-only problem”. Observe that it is a continuous knapsack problem.
So any sorting of the aggregates that orders the aggregates by non-increasing value of the ratio of the
objective and knapsack constraint coefficients corresponds to an optimal solution, found by “packing”
the knapsack greedily in sorted order. For a given ¢t we will argue that we can choose optimal solutions
z(), for each s € S that are identical on all pairs of scenarios for which non-anticipativity constraints
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should apply, i.e. so that if & = {{r,s} CS: r#s, ZjeA?rs} Zjr = 0} then we have that vector
2(ys = 2y, for all {r,s} € &. |
To begln note that if ¢ = 0 then of course 20y, =0 solves the t, s-processing-only problem for all
s € §: clearly this glves an identical solution for each scenario, as required. So suppose otherwise,
i.e. suppose that ¢! > 0. Then grade order and objective-to-knapsack-coefficient ratio order are the
same:
Gis = g] s

<;\> Ct gz s CfT’OC > Ct g] s C)p?"OC

<;\> C,} 'Lz CpT’OC Z 1 J: CpT’OC

o doldral e e,

az,s - a’],s

foralli,j € {1,..., N}.

Now observe that fori € {1,..., N}, ifi € ), 24 {je{l,...,N} : y;: > 0}, then by (18) it must
be that zj, = 0 for all s € S. Further, note that if i € Q;, then g;; > 0, so by (5), and since & binary,
it must be that Z;; = 1, and so ¢ ¢ A}, , for any {r,s} € &. Thus Q; C{1,..., N}\Af , = Ef ,
for all {r,s} € &. Consider the graph (S,&;), with node set S, induced by St. This graph can be
partitioned into a (possibly empty) set of M > 0 connected components, {(V™, &™) :m =1,..., M},
and a (possibly empty) set V° of singleton nodes. Note {V™ :m = 0,1,..., M} is a partition of S
and {&€" :m =1,..., M} is a partition of &,.

For each s € V° we may choose Z0y . to be an arbitrary optimal solution of the ¢, s-processing-
only problem. For each m = 1,..., M, apply Lemma 3.2 with V = V" &£ = &, and Q) = Qy, to
yield an ordering ¢™ of ();. Now by Lemma 3.2, for every s € V™, ¢™ sorts the aggregates of @)y
in non-increasing order of g.),, and thus also sorts the objective-to-knapsack-coefficient ratios for
variables not bounded above by zero in the t, s-processing-only problem, in non-increasing order. For
each such scenario s € V™, choose z(s_)i to be the optimal solution of the t, s-processing-only problem
defined by this ordering ¢™. Now since upper bounds on the z variables, in (18), are independent
of scenario, and since for all {r, s} € &" and all i € Q; C EY, ,, the knapsack coefficients a;, = ag,
are also independent of scenario by assumption, it must be that zj, = z7, for all i € @, and all
{r,s} € & Recall 2], = 27, = 0 for all i ¢ @Q;, so in fact we have 2], = 27, for all i € {1,..., N},
and all {r, s} € &". Since {V™ :m =0,1,..., M} is a partition of S we have constructed a solution
() for every s € S, and since {&;" : m = 1,..., M} is a partition of &, we have that zj, = z7, for
all i € {1,..., N}, and all {r,s} € &. Thus (,7, z) so constructed satisfies the non-anticipativity
constraints, and so is feasible for SP-MIP. Since each 24 also optimizes the ¢, s-processing-only
problem, (&, 7, z) is also optimal for SP-MIP-red, a relaxation of SP-MIP. The result follows. [ |

The above proof also demonstrates that even if S and « are not grade-order-preserving, ignoring
non-anticipativity constraints is unlikely to greatly affect the outcome: the differences in objective
function coefficients in the t, s-processing-only problems for variables not already forced to zero
reflect the differences in grade over scenarios for which such differences are “small”. Thus one could
expect to obtain a near-optimal solution by ignoring non-anticipativity constraints, then fixing the
x and y values, and finally re-solving the problem in z variables only, but this time applying the
non-anticipativity constraints, now conditioned on z, (so expressed simply as equality constraints
between pairs of z variables). We call this heuristic SP-MIP-h. Numerical results for SP-MIP-h and
a comparison with SP-MIP are provided in Table 2, in Section 4.

In the case that the grade-order-preserving property does not hold, we can still eliminate some
non-anticipativity constraints. In particular, constraints for an aggregate and pair of scenarios are
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redundant if their differentiator set intersects the precedence set for the aggregate. This is intuitively
obvious: all processing variables are zero until an aggregate is open for mining, and at this point all
preceding aggregates have been mined, and so the scenario pair must have been differentiated.

Proposition 3.4 The non-anticipativity constraints for the z wvariables are redundant for any i €
{1,....Nhte{l,....,T}, rse{l,...,S}hr#s, for which P(i) N A, , # 0.

We omit formal proof here, as a similar result holds for the more general case in the next section:
see Proposition 3.8. For now, note that we will refer to the model from which these redundant
constraints have been removed as SP-MIP-elim.

3.2 Scenario Dependent Mining and Processing Decisions

We now look at the case when both the processing and the mining decisions are allowed to depend
on scenarios. In order to model scenario dependence of the mining decisions, we modify the variables
r and y from SP-MIP. We define binary variables z;, € {0,1} to indicate whether extraction of
aggregate ¢ has begun by or in period ¢ under scenario s, 27, = 1, if excavation of aggregate i begins
in periods 1,...,t under scenario s and zf, = 0 otherwise, and continuous variables y;, € [0,1]
to represent the fraction of aggregate i to be excavated in time period ¢ under scenario s for any
aggregate ¢ = 1,..., N, time period ¢ = 1,...,T and scenario s € {1,...,5}. We also need to
consider non-anticipativity conditions for z° and y°, and reconsider those for z°. Our mixed integer
programming model, the SPM-MIP, is given below. Of course we will also require appropriate non-
anticipativity constraints. Subsequently we explain how to model these via linear constraints; for
now, we simply ask that (z,y, z) € NPr™" Thus we obtain the SPM-MIP as follows:

T N
max Y Y p(s) ((craf, — " af,) =, — af o™y,
t=1 i=1 s=1

st 2 <Yy Vie{l,...,N}, te{l,....,T}, s€{l,...,5} (21)

N
> alz, <P, Vie{l,...,T}, se{l,....S}  (22)

i=1

N
Zaasyit < M,, vie{l,...,T}, (23)

i=1

t
<Y Y Vie{l,...,N}, jeP@), tef{l,....,T}, se{l,....S},  (24)
t=1

t
>y <al,, Vie{l,...,N}, te{l,...,T}, se{l,....S},  (25)

t=1
x5y <5, Vie{l,...,N}, te{l,...., T -1}, se{l,...,S}, (26)
(ZL‘,y,Z) e N\/Proc-min (27)
x;, €40,1}, Vie{l,...,.N}, te{l,....,T}, s€{l,...,5}, (28)
Yie >0, Vie{l,...,N}, te{l,....,T}, se{l,...,S} and (29)
ziy >0, Vie{l,...,T}, ie{l,...,N}, se{l,...,S}. (30)
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As for the SP-MIP, inequalities (21) ensure that the amount of rock of any block which is processed
in any given time period, under any scenario, is less than or equal to the amount of rock extracted
from that block in the time period considered. Inequalities (22)and (23) represent the processing,
respectively the mining constraints. Inequalities (24), (25) and (26) ensure that the precedence
relationships between aggregates are satisfied.

Non-anticipativity constraints for all variables are needed to ensure that if we have not been able
to distinguish between two scenarios by some time, then we make the same decisions under both
scenarios. Recall that we take the x and y decisions to be conservative, and the z decisions to be
non-conservative. In the conservative case, if we have not been able to distinguish between r,; s € S,
r # s, before some time period t € {1,...,T}, then we must make the same decisions under both
scenarios, i.e., if zj, ; = 0 for all i € A{TS}, orif 7, ; = 0 for all © € Af_,, (or if ¢ = 1), then
it must be that xi, = xj, and y]t = yj, forall j € {1,...,N}. We note that it seems somehow
ambiguous to predlcate on either 7, | =0 foralli € A, , oraj, , = 0foralli e A, ,;in fact we
will show shortly that one side of this disjunction cannot hold without the other. For now, we go on
to define non-anticipativity for the non-conservative z variables. These are nearly the same as given
in Section 3.1: since now the z variables also depend on s we ask that if 7, = 0 for all i € A7, ;,
or zj, = 0 for all i € A{, ,, then it must be that 2}, = 2], for all j € {1,..., N}. Formally the
non-anticipativity constraints in SPM-MIP can thus be expressed as

Nproemin — {(goy,z) «oafy =afy, Vie{l,...,N}Vr,se{l,...,S},r#s,
v, =7, Vie{l,... N} Vrose{l,...,S},r#s, and
vt € {2,...,T} such that 2}, | =0, Vj € Af ,
or xﬁ L =0, VJGA{H},
Yy =y, Vie{l,...,N}hVrse{l,...,S},r#s,
v, =y, Vie{l,...,N}Vr,se{l,...,S},r#s, and
7 7 vVt € {2,...,T} such that xjt 1 =0, Vje Ay,
oraf, | =0, Vj €A 4,
Zy =20, Vie{l,... N} Vr,se{l,...,S},r#s, and
vVt € {1,...,T} such that z? t—O Vi€ A
or z, =0, VJGA{”}}

Since all variables lie in the range [0, 1], and the z* variables are all binary, it is easy to see how
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to model these as linear constraints using the same approach as in Section 3.1:

S _ '
Ti1 = L1

S r E S N
SL’Lt - .TJN S $j7t_1,VZ E {1, c e

JEAT,

T
Tip — Ty <
TEATr sy
jEA?r’s}
'S S
Liy — Ly <
jeae

{r,s}
S __ T
Yia = Yins
s r z : s .
yi,t_yi,t S !Ejﬂg,l,VZ € {1,
jGA?r’s}

V—un <Y L Viedl

JEAT, &

vh—uh <Yl Viedl

JEAT

Yie = Yir < Z ah, o, Viedl, ...

jEA?r’s}

S 'S S
Zip— % < § Tt

jGA‘{"r’s}

s S S
Zip = %y < E Ljts

JEAT &

S T ‘s
Zip— Zig S § Tt

JEAT &

‘s S T
Zip— Zig S § Tt

jEA?r’s}

o oa,vie{l,. .
> oal,vie{l,. .

> oah,vie{l,. .

Vie{l,...
Vie{l,...
Vie{l,...

Vie{l,...

Vie{l,...

SN}, rse{l,...
N} rose{l,...
S Nprose{l,...

N}, rse{l,...

Vie{l,...

NP rose{l,...
N}, rsed{l,...
SN}, rsed{l,...
N}rose{l,...
SN} rose{l,...
N}, rse{l,...
S N}rose{l,...

NP rose{l,...

7N}7T7S€ {]‘7"'75}77’.#87
Shr#sted{2,...,T}

Shr#sted{2,...,T}

Shr#sted{2,...,T}

Shr#sted{2,...,T}

N} rose{l,...,S},r#s,
Shr#sted{2,...,T}

Shr#sted{2,...,T}

Shr#sted{2,...,T}

Shr#sted{2,...,T}

Shr#sted{l,....,T}

Shr#sted{l,....T}

Shr#sted{l,....,T}

Shr#sted{l,....,T}

We may thus take SPM-MIP to be the mixed integer linear program defined as follows:

T N

max{y Y > pls) ((chaj, — " a) )28, — al ™ yiy)

t=1 =1 s=1

: (21)—(26), (28) — (30), and (31)— (44)}.

Clearly, the non-anticipativity constraints constitute a rather large class of constraints. Fortu-

nately, as mentioned earlier, one side of the disjunction xj, = 0 for all i € A

rs)

or zj, = 0 for

all © € A?T s} cannot hold without the other. This allows us to eliminate about half of the non-
anticipativity constraints, as we only need to use one of x” or x® on the right-hand side, we do not

need constraints for both.
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Lemma 3.5 If x satisfies (26), (28), (31), (32) and (33), then for any pair of distinct scenarios
r,sesS,

Ind E ziy | = Ind E iy |\ Ve=1,...,T,
jEA?r’s} jEA?r’s}

where Ind denotes the indicator function, i.e., for € > 0, Ind(§) = 0 if &€ = 0 and Ind(§) = 1
otherwise.

Proof. The case t = 1 follows from (31). Let t € {1,...,T — 1} be the earliest period for which

>, >0, (45)

JEATr s
or if no such period exists, take ¢ = T. Then for all ¢ = 1,...,¢ — 1, and since zx is binary, it must
be that
Z x;,t/ =0
JEAY

Then by (32) and (33), and (31), we have that xj, = z7, for all ' =1,...,¢. Thus

roo_ s
D o= D T

JEAT JEAT o

for all ¢ = 1,...,t. We conclude that since zf, 2} are increasing vectors over time by (26), and by
(45), the result must follow. n

This lemma easily proves that constraints (34), (35), (39), (40), (43) and (44) may all be removed.
In other words, when enforcing non-anticipativity based on a pair of scenarios r,s, we can choose
arbitrarily whether to use 2" or x® on the right-hand side, and do not need to include constraints for
both cases. The proof is as follows.

Proposition 3.6 SPM-MIP is equivalent to:

S

max{) Z > p(s) ((clal, — " al )z, — af ™ys,) + (21) — (26), (28) — (30),
e (31) — (33), (36) — (38), (41) and (42)}.

Proof. Suppose (z,y,z2) is a feasible point for the above formulation. Since |z, —27,| <1 (as x
binary), x satisfies (34) and (35) if |z, — 27, < Ind(zjeA?m} af, ) forallt =2,...,T. But the

right-hand side of this constraint is equal to Ind( jeas, x5, 1), by Lemma 3.5, and the constraint

is satisfied since x satisfies (32) and (33). The same argument shows that y satisfies (39) and (40),
and that z satisfies (43) and (44), since all elements in both variables lie between zero and one, and
since 0 < ¢ < 1 implies |7, — &/;| < 1, where we may take { =y or § = 2. (]

This result could also be observed from Theorem 1 of Goel and Grossmann (2006), and by

understanding the relationship between their disjunctive formulation and our linear one. We provide
the above direct proof for the convenience of the reader.
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As for the case where only processing decisions are scenario-dependent, we are able to show
in this case that if S and « are grade-order-preserving, (and rock attribute values are scenario-
independent), then all of the non-anticipativity constraints associated with the processing constraints
can be omitted, i.e. from any optimal solution for SPM-MIPwithout constraints (41) and (42), which
we refer to as SPM-MIP-red, we can construct an optimal solution for SPM-MIP.

Proposition 3.7 Assume that a O forallr,se S, r#s,andalli € Ef{)‘ 5 and that S and o
are grade-order-preserving. Then gwen cmy optimal solution to SPM-MIP-red, we can construct an
optimal solution for SPM-MIP.

We omit the proof here, as it is very similar to that of Proposition 3.3. Here we simply note that
the key difference between the two proofs revolves around the upper bounds on the 20y variables in
the t, s-processing-only problem. In the earlier case, these bounds were clearly scenario-independent
(being given by 7). Here they will be given by (. where (Z,9,2) is an optimal solution to
SPM-MIP-red. If ¢ = 1 then by (36) they will still be scenario-independent. For ¢ > 2, for each
{r,s} € &, (defined in the proof of Proposition 3.3 to indicate the pairs of scenarios on which
the z variables must satisfy non-anticipativity, here taken similarly to be & = {{r, s} CS:r+#
2%, = 0}, which is well defined by Lemma 3.5), we know that | = 0, so by

JEAT. & J t
(26) it must be that EjeA? }f}itﬂ =0, and hence g7, = ¢j, for all i € {1,..., N} by (37) and (38)

(and Proposition 3.6). Arguments in the proof of Proposition 3.3 show that we can find common
sortings of the aggregates so that for every pair {r, s} € &, the same sorting applies and sorts both
objective-to-knapsack-coefficient ratios in non-decreasing order. We have just argued that variable
upper bounds in both the ¢, r-processing-only and ¢, s-processing-only problems will be identical. As
in the proof of Proposition 3.3, the knapsack coefficients are also scenario- independent except on
variables forced to zero, so the common sorting must induce identical solutions 20 = e thus
satisfying non-anticipativity. Even if the grade-order preserving property is not satlsﬁed the above
reasoning suggest that initially ignoring non-anticipativity for the processing variables, and then later
re-solving with the other variables fixed, could be a good heuristic, similar to SP-MIP-h. We will
refer to this heuristic as SPM-MIP-h.

In the case that the grade-ordering-preserving property does not apply, we can still omit some
of the non-anticipativity constraints for the z variables: they can be omitted if the differentiator set
for an aggregate and pair of scenarios has any intersection with the precedence set of the aggregate.
In the following proposition, we show that we can do this in addition to halving the number of
non-anticipativity constraints via Proposition 3.6.

Proposition 3.8 Let (x,y,z) satisfy (21), (24), (25), (26), (28)-(30), (31)-(33), and (36)-(38).
If x and z also satisfy (41) and (42) for all i € {1,...,N}, r,s € {1,...,S},r # s, for which
P)NAG =0, forallt € {1,...,T}, then (z,y,2) € NPros=mn,

Proof. Let (z,y, z) satisfy the constraints indicated. Then by Lemma 3.5, and the proof of Propo-
sition 3.6, = and y must also satisfy (34)-(35) and (39)-(40).  Furthermore the same arguments
show that z and z must satisfy (43) and (44) for i € {1,...,N}, r,s € {1,...,S},r # s, with
P(i)NAY,, =0, forallt e {1,....T}.

Now consider the situation when for some i € {1,...,N}, r,s € {1,...,5},7 # s, we have
P(i)NAY, o # 0. If |2, — 27| =0, for any t € {1,..., T}, then (41)-(44) are naturally satisfied. If
for some ¢ € {1,..., T}, we have that |2], — 27| # 0, then there are two cases.

17



Case 1: 2], > 27,. In this case (41) and (43) are naturally satisfied. Also 27, > 0, and so y;, >
z{; > 0 by (21). Hence z7, = 1 by (25) and (28). Thus by (24) it must be that for all j € P(i),
we have Y ¢, y;; = 1, and hence via (25) and (28) again we have z}, = 1 for all j € P(i). Since
P(i) N AY trs) y 7 (), this means there must exist k € Af, o with 2, = 1, and so « and z must satisfy
(44). If 23, = 1, then (42) is also satisfied. Otherwise, zj, = 0, and by (33) it must be that
deA‘{" }:L’jt ;1 = 1. So for some j € A{, i\, zj,; = 1, and by (26), it must be 27, = 1, and so (42)
is still satisfied.

Case 2: zj; < zj,. This case is similar, but appeals to (34) instead of (33). u

Note that non-anticipativity constraints for the x and y variables cannot be eliminated in a similar
way, due to the learning associated with the mining decisions being conservative.

3.3 Further Elimination of Non-Anticipativity Constraints and Links
to General Multistage Stochastic Programming with Endogeneous
Uncertainty

As discussed in our introduction, the work of Goel and Grossmann (2006) represents the state of the
art in general multistage stochastic programming with endogeneous uncertainty. Later papers, such
as Goel et al. (2006), Tarhan and Grossmann (2008), are applications based on the same underlying
theory given in Goel and Grossmann (2006).

Here we mention a couple of ways in which we believe our approach offers an alternative to
that of Goel and Grossmann (2006). Since their work is very general, and so requires a lot of
complex notation, we try as far as possible to work within our own notation, while still conveying
the implications for the general setting. We also simplify where possible, for ease of presentation.
For example, we discuss their work without reference to exogeneous uncertainty, which they also
include. We first note key notation and concepts in their general formulation, and link them to ours.

Goel and Grossmann (2006) have binary variables b , for each scenario s, each period or stage t,
and for each p € 7 indexing the sources of endogeneous uncertainty represented by (discrete-valued)
random variables 6,. The vector b’ 5.y is an indicator vector, indicating the period in which 0, is
realized, under scenario s. The set of possible realizations for 60, is given by ©,. They also have
other variables, which could be real or integer; here we simply use a general Varlable vector x§ € R*
for each scenario s and period t to represent other decisions that are affected by the endogenous
uncertainty. (Here we use x in place of Goel and Grossman’s x and y variables, which we avoid to
prevent confusion with our own variables of the same name. Note that their y variables correspond
to conservative decisions, and their x variables to non-conservative; here for simplicity we take all
X decisions to be non-conservative.) Goel and Grossman also use a differentiator, which they call
D(r,s) C Z, indicating the sources of endogenous uncertainty which allow distinction between the
two scenarios. (A scenario s is characterized by a vector of realizations (6;),cz.) So our aggregates
i € {1,..., N} play the role of their sources of uncertainty, p € Z, and our uncertain mineral attribute
az{s takes the role of their unertain parameters ;. Our source of uncertainty in aggregate ¢ is resolved
under scenario s when our z§, — z7, ; = 1; our vector (zf, —xj, )/, (taking 25, = 0) takes the
role of their indicator vector by

The way Goel and Grossmann (2006) handle non-anticipativity in their general case is to introduce
a boolean Z,"* for each pair of scenarios, which is interpreted as True if and only if r and s have
not been distinguished by period t and formulate the non-anticipativity logic using disjunctions
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(equivalent to) the following;:

—Z:’s\/ (011 =00101), VpEL r,s€8S,r#ste{l,....T—1} (46)
-2\ (¢ = X7), Vrs €S r#ste{l,... T} (47)

t
zZ* e N\ (/\ﬁb;77> Vr,seS,r#ste{l,....T} (48)

peD(s,r) \7=1

In their initial formulation they also include

T=1

t
AR /\ (/\—'b;ﬁ>, Vr,se S,r#s,te{l,..., T},

pED(s,r)

but, in an analagous conclusion to that we reach in our Proposition 3.6, deduce that this can be
omitted.

Goel and Grossmann (2006) mention modelling these constraints linearly, which they do via the
introduction of variables &, (£ is z in their notation, see page 370), taking the role of the boolean
Z;°. But of course this leads to O(T'S?) variables. Furthermore, to model (48), they ask that

P <=0, Vie{l,..., T} 7€ {l,...,t},p € D(r,s), (49)
which leads to O(T?5?) constraints. This is of course very unwieldy, so they do not consider solving
such a formulation with standard mixed integer programming techniques. Instead they develop a
Lagrangean relaxation-based branch-and-bound method. Their Lagrangean relaxation relaxes the
disjunctions (48) entirely, and penalizes the non-anticipativity constraints (46) and (47) via La-
grangean dual variables in the objective. The resulting Lagrangean subproblem decomposes nicely,
but the Lagrangean dual still has O(T'S?) dual variables. This makes the dual quite difficult to solve;
in Goel et al. (2006), for example, subgradient optimization is used.

Our approach suggests an alternative. First, we note that, like our x variables, it would be helpful
to use cumulative variables, rather than the indicator vector b, i.e. we suggest using

t
b5, = Ind <Zb;7t> . VseSpelIte{l,... T},
T=1

instead of b, ;. (We also note that allowing the by, () vector to indicate more than one period seems
unhelpful — periods after the first add no new information — and the cumulative variables capture
only the first period, as needed.) This approach has been effective in the mining context, (see, for
example, Caccetta and Hill (2003)), where branching on these cumulative variables leads to more
balanced trees in branch-and-bound. Furthermore, it allows, for example, (49) to be re-modelled via

&5 <1-b

;b

Vte{l,...,T},p € D(rs),

reducing the number of such constraints by order a factor of S. (The correct logic is assured as we
of course also require that by , <b; ., foralls€ S, peZ,andt € {1,...,T —1}.)
Furthermore, we observe that the booleans Z and additional variables ¢ are actually unnecessary:

the non-anticipativity constraints (46) and (47) can be modelled directly in a manner analagous to
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our SPM-MIP via

i = O < > b, Vpel,rseSr£ste{l,. ..., T—1},  (50)
J€D(r,s)

bpipr — b < > b3, Vpel,rseSr£ste{l,. ..., T—1}, (51
JED(r,8)

Xf,t—xg’,thlff Z lA)jyt, Vie{l,...,L},r,seS,r#s,te{l,...,T}, and (52)
Jj€D(r,s)

Xie = X0 S ME Y b Vie{l,....,LY,r,seS,r#ste{l,...,T}. (53
J€D(r,s)

Here (52) and (53) are “big-M” constraints, and M;}’ can be taken to be any upper bound known
on the value of [xj, — x7,[. In our mining models, all our “big-M”s could be taken to be one, as all
our variables lay between zero and one.

We suggest that the above approach, solved with standard branch-and-bound techniques, could
offer a viable alternative to the approach of Goel and Grossmann (2006). In cases with a very large
number of the non-anticipativity constraints (50)—(53), these could be handled as “lazy” constraints.
Our results in Section 4, in our mining context, show that lazy constraints were not helpful; the
model with all constraints included a priori solved quite effectively. In general, the need for “big-M”
constraints may weaken the formulation, however modern solvers are adept at handling such issues.
The O(T'S?) can, as mentioned, be addressed by treating them as “lazy” constraints. However in
special cases they may be able to be further reduced. Indeed, in the special case that the scenario set
is the entire set of all cross products of realizations of the uncertain parameters, i.e. {6°:s € S} =
X pe1©p, Goel and Grossmann (2006) are able to prove (in their Theorem 2) that only constraints
corresponding to pairs r,s € S with |D(r,s)| = 1 are needed. This very substantially reduces the
number of such constraints, and may well make our approach quite attractive.

Though Theorem 2 of Goel and Grossmann (2006) is very powerful in reducing the number of non-
anticipativity constraints that are needed, it does require a quite special condition on the scenario set,
which will in general not be satisfied. It is certainly not satisfied in our mining case, where scenarios
are not constructed via a scenario tree, and are sampled from a continuous, not discrete, distribution.
Even if not, for mining problems the number of sources of uncertainty (the number of aggregates) is
typically very large, so if all cross products were constructed, the number of scenarios would become
enormous. In the remainder of this section, we go to the heart of Goel and Grossmann’s result, to
show how the same ideas can be used to reduce the number of non-anticipativity constraints needed,
but without the strong requirement on the scenario set. Our result is summarized as follows, where
first we require a key definition. In all that follows we use 7 = {{r,s} C S : r # s} to denote the
set of all scenario pairs.

Definition 3.9 We say G C T is a generator of T if for all {r,s} € T, there exist ¢*,¢>,...,q* € S
withr = ¢, s =q¥, {¢™, ¢} €G forallm=1,...,U — 1, and

D(rs)2  |J Dl (54)

m=1,...,.U-1

We show that it suffices to consider non-anticipativity constraints for scenario pairs in G. To do
so, we may take t to be fixed, and consider a single generic variable ¢* to take the role of variables
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by 141 Or xj, on the left-hand side of the constraints, and use binary 3* on the right-hand side. In

other words, we view our prototypical non-anticipativity constraint as (in logical form):

Yo B=0 = ¢=¢, VrsteT. (55)

peD(r;s)

Clearly all non-anticipativity constraints (50)—(53) can be obtained from this form via the natural
linearization.

Theorem 3.10 For G a generator of T, we have that if (8,),ez > 0 and (¢°)ses satisfy
s€S

o B=0 = ¢'=¢, Vrsteg, (56)

peD(r;s)

then they also satisfy (55).

Proof. Assume (3;),ez > 0 and (¢°)scs satisfy (56) and consider {r,s} € 7 \ G. Suppose that
s€S
Zpep(r s B = 0. Then since (B5)vez > 0 it must be that 35 = 0 for all p € D(r, 5). Now by the defini-
’ s€S

tion of a generator, there must exist ¢*, ¢, ...,q¢" € S with ¢' = r, ¢V = s, such that {¢™, ¢™"'} € G
and D(¢™,¢™™") C D(r,s), for all m = 1,...,U — 1. Thus 35 = 0 for all p € D(¢™,¢™"") and all
m=1,...,U—1, and hence > pm gur1y B, =0 forallm=1,....,U —1. By (56) we deduce that
¢ =" forallm=1,...,U — 1. Hence ¢" = ¢?" = ... = ¢7° = ¢*, and the non-anticipativity
constraint for {r, s} is satisfied as required. n

It is not hard to see that Goel and Grossmann’s Theorem 2 in Goel and Grossmann (2006) follows
from this result as a corollary. When {6* : s € S8} = X,e70,, the set L' = {{r,s} CS:|D(r,s)| = 1}

is clearly a generator for 7. To see why, consider {r,s} € T with U’ = |D(r,s)| > 2 (note that

for simplicity we have ignored exogeneous uncertainty and can assume that all scenario pairs must
have a non-empty differentiator set). We can without loss of generality assume D(r,s) = {1,...,U'},
so 0° = 0" + 25;1(0; — 07)eP, where e, is the pth standard basis vector in RY. Take for each
m = 1,...,U, take ¢"*' € S to be the scenario index such that #9""" = ¢" + > g (05 — O)er.
Such an index must exist since {#° : s € S} = X,¢70,, and each element ngﬂ € {0,,0;} € 6,
for each p € Z. Set ¢* = r. Taking U = U’ + 1 we have 91" = 6%, so qV = s. Furthermore
09" = 09" + (65, — 07 )e™, so D(¢™, ¢"tY) = {m} for all m = 1,...,U’". Thus {¢",¢"*'} is in
o D™, ¢™). Thus £ is a
generator of 7.

So how can we find generators in general? Naturally we would seek a minimal generator; ideally
it would be one of minimum cardinality. For any set F C 7 define Graph -({r, s}) to be the graph
with node set S and arcs {{r',s'} € F : D(r',s') C D(r,s)}. Then it is not hard to see that F
is a generator for 7 if and only if for every {r,s} € 7 there exists a path between r and s in
Graph ({r, s}). This suggests the following naive algorithm for finding a minimal generator.

Algorithm 3.1 Minimal Generator Algorithm

Initialize F =7
for each scenario pair {r,s} € 7 do
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/* consider removing {r, s} */
Set can := True
for each scenario pair {r’,s'} € T \ (F \ {{r,s}}) do
if there is no path between r’ and s’ in Graphz\ ((, 1, ({r", s'}) then
Set can := False
Break
endif
endfor
if can = True then set F := F\ {{r,s}}
enddo

Return minimal generator F

Of course, this algorithm could be quite computationally expensive, and even with a good search
order for considering scenario pairs in 7 to remove from F, is unlikely, in general, to give a generator
with minimum cardinality. We give it here primarily to show that it is possible, and to show that
even for general scenario sets, it may be possible to reduce the set of scenario pairs for which non-
anticipativity constraints must be enforced. We reserve further study of minimal generators for
further work.

For the ten scenario sets we consider in the next section, all have |7| = 10. We determined their
minimal generators by inspection. In nine cases, there was a unique minimal generator. Of these, one
had cardinality 10, (no reduction was possible at all), three had cardinality 9, four had cardinality
8, and one had cardinality 7. In the remaining case there were two, one of cardinality 8, the other of
9. Since the reductions in number of scenario pairs was modest for this data, we did not attempt to
automate the process; the numerical results in the next section are taken from models that enforce
non-anticipativity over all 10 pairs.

However we believe that in general, for problems with larger numbers of scenarios, the minimal
generator concept may be useful.

4 Numerical Results

In this section we describe a series of numerical experiments to demonstrate the benefit of explicitly
incorporating scenario dependent decisions in the optimization process.

We first mention that we used the preprocessing of Boland et al. (2007) in which some variables
are fixed before the model is solved. The preprocessing is based on the idea that any aggregate ¢ may
be extracted in a period ¢ only if all aggregates that need to be extracted before i, according to the
precedence relationships, are extracted in time period ¢ or earlier. If the mining capacity required
to achieve this exceeds the cumulative mining capacity available up to and including time period
t, aggregate ¢ cannot be extracted in time period ¢ or earlier. We apply this under each scenario

s=1,...,5, and calculate the mining capacity required according to the aas values, yielding 27, = 0,
for all  =1,...,¢, and for all t € {1,...,T} in which the cumulative available mining capacity is
exceeded.

We test our algorithms using realistic mining data. The block model we use was supplied by
our industry partner BHP Billiton Pty Ltd. It includes the aggregates and precedence relationships
between aggregates, the attributes for each block, and costs and revenues per tonnes mined, processed,
and sold. It has 1643 blocks and 115 aggregates. We take our planning problem to run over ten
time periods, each period being two years long. From this block model, we constructed 50 scenarios,
each with the same total metal tonnage as the original block model, but possibly different metal
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attribute values for each block. (All other data, in particular the block rock attribute values, are
identical across scenarios.) Our scenarios are generated so that blocks in the upper layers (higher in
the mine) have similar attribute values across scenarios, while the lower layers show much greater
variation between scenarios. We create 10 instances containing 5 scenarios each, by taking the first
5 scenarios that were generated, then the next 5 and so on, until every scenario belongs to exactly
one instance. Each such instance represents a Stochastic OPMPSP data instance, so we have a data
set consisting of 10 instances, each with 5 scenarios. We consider the probabilities associated with
the scenarios to be equal. In all cases differentiators are calculated using o = 0.1, and we do not use
the grade-order-preserving property.

We solve these instances using ILOG CPLEX 9.1 on an Intel(R) Core(TM)2 CPU 6600 at 2.4GHz,
with 3.5GB of RAM, with optimality gap set to 1%, and we use CPLEX default parameter settings.

In order to provide a full comparison for all algorithms considered in this paper, we first investigate
the case in which both the processing and the mining decisions are stochastic. We consider two main
models for the SOPMPSP. Firstly, we consider the model with the full set of non-anticipativity
constraints, i.e. (31)-(44), and we refer to it as SPM-MIP. We then solve the model obtained, using
CPLEX with default parameters, but we also solve it by declaring all non-anticipativity constraints as
CPLEX lazy constraints. We provide numerical results for both methods. Secondly, we consider the
model with the set of non-anticipativity constraints halved according to Proposition 3.6. As shown
in Proposition 3.6, for any pair of scenarios r and s, r,s € {1,...,5},7 # s, only half of the non-
anticipativity constraints need to be added to the model. In other words, it is enough to use either
(32)-(33) or (34)-(35) for the x variables, either (37)-(38) or (39)-(40) for the y variables, and either
(41)-(42) or (43)-(44) for the z variables. The question that arises is how do we choose which non-
anticipativity constraints to keep and which ones to eliminate as redundant? In our experiments,
we test two heuristics. In the first one, we keep the non-anticipativity constraints for which the
right-hand-side of the inequalities may have the best chance to be the smallest. For any given pair of
scenarios 7 and s, r # s, we calculate the total grade of the aggregates in A under each scenario.
If the total grade is smaller for scenario r than for scenario s, then the non-anticipativity constraints
that we use are (34)-(35), (39)-(40), and (43)-(44); otherwise we use (32)-(33), (37)-(38), and (41)-
(42). We refer to the model that uses this selection heuristic as SPM-MIP-half-min. The second
heuristic is the reverse of the first one: we use the non-anticipativity constraints (34)-(35), (39)-(40),
and (43)-(44) if the total grade of the blocks in the differentiator is greater for scenario r than for
scenario s, and we use (32)-(33), (37)-(38), and (41)-(42) otherwise. We refer to the model that
uses this selection heuristic as SPM-MIP-half-max. Thirdly, we investigate the effect of eliminating
redundant z-variable non-anticipativity constraints with differentiator/precedence set intersection.
We call the model with such constraints removed SPM-MIP-elim. We also test the removal of such
constraints from the model with halved non-anticipativity constraints, according to Proposition 3.8.
However, we only investigate the effect of elimination on the best algorithm for which the halving
was used. From Table 1 it can be seen that the best algorithm is SPM-MIP-half-max. We denote by
SPM-MIP-half-max-elim the model given by SPM-MIP-half-max with redundant non-anticipativity
constraints for the z variables eliminated via Proposition 3.8.

From the results in Table 1 it can be seen that the running time needed when the non-anticipativity
constraints were added to SPM-MIP as lazy constraints was much longer than when the full model was
solved with default parameters. While we may think that adding the non-anticipativity constraints
only when needed would help the solution of the problem, this is not the case in practice. Therefore
we did not further test this option.

From Table 1 it can be also be seen that, for most instances, the running time was greatly improved
by halving the number of non-anticipativity constraints. For Instance 2, however both SPM-MIP-

23



half-min and SPM-MIP-half-max were slower than SPM-MIP (by 7.73% and 2.23% respectively),
while SPM-MIP-half-min was also 22.5% slower than SPM-MIP in the case of Instance 7. On the
remaining instances the average speed-up was 27.48% for SPM-MIP-half-min (calculated over 8
instances) and 33.83% for SPM-MIP-half-max (calculated over 9 instances). We can therefore claim
that out of the four methods tested for solving OPMPSP with stochastic mining and processing
decisions, the best performance was recorded by SPM-MIP-half-max.

From Table 1 we see that the elimination of redundant non-anticipativity constraints produces
mixed results. When SPM-MIP and SPM-MIP-elim are compared, one can see that for four instances
the running time needed was longer (on average by 45.93%), while for the remaining six instances the
running time was reduced (on average by 19.20%). Also, in most cases, the results for SPM-MIP-elim
are worse than those obtained by simply halving the non-anticipativity constraints (SPM-MIP-half-
min and SPM-MIP-half-max). Even when the elimination of the redundant constraints is applied
to the best algorithm, SPM-MIP-half-max, no significant and consistent improvement is recorded.
The elimination reduced the number of non-anticipativity constraints in SPM-MIP-half-max by over
21% on average. In spite of that, it can be seen that the performance worsened in 60% of the cases
(by 24.01% on average), while the improvement recorded in the case of the four remaining instances
was only 14.19% on average. It therefore appears that the redundant constraints make the problem
easier to solve and we choose to keep them in the model.

Since we wish to provide a comparison between algorithms that use the same techniques as
far as the elimination of non-anticipativity constraints is concerned, we will not use elimination of
redundant constraints for SP-MIP either. In the rest of this section we use SPM-MIP-half-max for
our numerical comparisons and we also use the scenario selection of SPM-MIP-half-max to test the
heuristic SPM-MIP-h, which will also only use half of the non-anticipativity constraints.

Next, we investigate the results obtained by our heuristics SP-MIP-h and SPM-MIP-h. From
Table 2 we see that, as expected, the optimal values obtained by SP-MIP-h are very close to those
obtained after running SP-MIP (two exceptions are Instance 1 and Instance 3). For nine instances,
the running time needed by SP-MIP-h decreased on average by 35%, with instance time improvements
ranging from 12.68% (Instance 2) to 50.76% (Instance 8). The only instance for which the running
time of SP-MIP-h was slower was Instance 3, for which the time needed almost doubled compared to
the time needed by SP-MIP. In the case of running times of SPM-MIP-h and SPM-MIP-half-max the
situation is reversed: for eight instances the time needed by the heuristic was significantly longer (on
average by 49.43%), with only two instances for which a speed-up was recorded. We can therefore say
that the non-anticipativity constraints for z speed up the model when the mining and the processing
decisions are stochastic, (recall that SPM-MIP-h first drops those constraints), but not when only
processing decisions are stochastic.

In order to measure the effects of planning with knowledge of multiple geological scenarios, we
consider two benchmarks. The first reverts to the current standard approach using a single geological
estimate, which we take to be defined by the average (expected) attribute values over all scenarios. We
call this the Base Algorithm, which is simply Step (i) of the SP-MIP-heur heuristic, (Algorithm 4.1),
given below. Clearly this provides a feasible solution for both SP-MIP and SPM-MIP, (assuming
that the rock attribute values are scenario-independent, which is the case for our mining data), and
its objective value is a lower bound on that of both these problems. We then use the usual “perfect
information” solution to give an upper bound. We note that in general one hopes to do this simply
by solving the deterministic problem, in this case D-MIP, for each scenario independently, and then
taking the expected value of the resulting objective values, i.e. for each s € S, solve D-MIP with

a’ = a(()_)ﬁ and a' = a%_)ﬁ (call this problem D-MIP®) to obtain optimal value w*, and calculate the

objective value under the assumption of perfect information as w®’ = 3" _sp(s)w®. In theory, this
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should be equivalent to solving SPM-MIP with all non-anticipativity constraints relaxed, (call this
PI-MIP), and more computationally tractable. However, solving mixed integer programs such as
D-MIP for realistic mining data to a high degree of accuracy can be very time consuming, so we
usually impose a tolerance, namely the value of the gap between lower and upper bound at which
the branch-and-bound may terminate, and report the gap for the final solution found. Fortunately,
it is not hard to show that if we solve each D-MIP® to within a gap of §* > 0 and ¢°* < ¢ for all
s € S, then the expected value of {w?® : s € S8} is within a gap of § > 0 of optimal for PI-MIP. Each
D-MIP? terminates having produced a lower bound L® and an upper bound U?® on its value, with
0° > (U — L*)/L?, (as long as all lower bounds are positive, which is true for typical mining data).

Now L1 % > sesP(s)LF and U w Y ses P(s)U® must be upper and lower bounds on PI-MIP,
since PI-MIP decomposes precisely into the sum of the D-MIP® problems (weighted by p(s)) over
s €S. Now

— L = Zp —L%) < Zp(s)ésLS < Zp(s)cSLs = 6L,

seS SES SES

as required. Note that of course w’’ is unlikely to be achievable by the stochastic model SPM-MIP;
it indicates only what could be achieved with complete a priori knowledge of the scenarios.

The Base Algorithm gives the result of ignoring multiple scenarios altogether, while SP-MIP
allows processing decisions to make use of knowledge obtained during mining. Although SP-MIP
still constructs a single mining schedule, to be used irrespective of scenario, it nevertheless does
construct the schedule so that scenario knowledge may be exploited in processing. We ask how
important is that, and how much do we gain in expected NPV through the use of such a schedule?
To test this, we take the mining schedule produced by the base algorithm as a heuristic solution for
SP-MIP, and investigate how far from optimal for SP-MIP it is. More formally, the heuristic we
suggest is as follows.

Algorithm 4.1 SP-MIP-heur

Step (i): Calculate the expected value of the scenario attributes values to produce a° and a'.
Solve D-MIP with attribute coefficients a” = a° and a! = a'.
Store (7,7, Z), the optimal solution obtained, and w4"¢, the optimal value.

Step (ii): Fix r = Z,y = ¢ and optimize (2%)scs in SP-MIP to give optimal value we.

We now compare the Base Algorithm, the heuristic SP-MIP-heur, the solution of SP-MIP, SPM-
MIP-half-max, and PI-MIP. The results are reported in Table 3. Results reported in the “Gap”
column in Table 3 represent the optimality gap for SP-MIP and SPM-MIP, the optimality gap
obtained at the end of Step (i) of Algorithm 4.1 for the Base Algorithm and SP-MIP-heur, and the
largest optimality gap obtained in solving D-MIP* over all s € S when calculating w*”’

First, we note that improvement in the optimal value is recorded for SP-MIP-heur over the Base
Algorithm. The largest improvement is recorded for Instance 2 and 8 (1.98% and 1.03% respectively),
with an average improvement of 0.56%.

When we compare the optimal values from Table 3, we see that for some instances the improve-
ment of SP-MIP over the Base Algorithm is larger than for others, for example Instances 2, 3, and 8
show an improvement of over 2% (2.59 %, 2.43%, and 2.12% respectively), while Instances 5 and 7
show hardly any improvement (0.01% and 0.03% respectively). The average improvement, calculated
over all instances, is 1.07%.

From Table 3 we see that the improvement in the objective values obtained by SPM-MIP-half-
max over those obtained by the Base Algorithm increases when the mining decisions are also allowed
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Figure 1: The relative objective values obtained, with respect to the Base Algorithm. The algorithm
corresponding to value 1 on the Objective Value/Objective Value of Base axis is the Base Algorithm. The
first algorithm up is SP-MIP-heur (dashed line), followed by SP-MIP (dash-dot line), SPM-MIP-half-max
(solid line) and PI-MIP (dotted line). The “whiskers” indicate the range of relative values possible for each
model over the Base Algorithm, taking into account the gap values.

to depend on the scenario. The best such improvements are recorded for Instance 1 (3.24%), Instance
2 (3.86%), Instance 3 (3.97%), and Instance 8 (3.29%). The average improvement, over all instances,
is 2.13%. We note that this average improvement is bounded by the average improvement obtained
by the Perfect Information Algorithm, which is 5.09%. The relative improvement with respect to
the Base Algorithm is clearly illustrated in Figure 1 for all algorithms. We finally note that SP-
MIP was further improved by allowing the mining decisions to depend on scenarios (i.e. by solving
SPM-MIP-half-max) by 0.96% on average.

Instances 7 and 10 in which the improvement of SPM-MIP-half-max over the Base Algorithm is
very small (0.07%, resp. 0.32%), illustrate the effect of the non-anticipativity constraints. Without
non-anticipativity constraints, the Perfect Information Algorithm is able to use prior knowledge of
the scenarios to (unrealistically) improve the expected net present value for both Instance 7 and
10. Instances 7 and 10 represent the instances in which differentiation of scenario pairs occurred
the latest; no pair of scenarios could be distinguished before period 5 (see Table 4). In SPM-MIP-
half-max the non-anticipativity constraints correctly enforced all mining decisions made in periods
1 through 5 to be identical for all scenarios, and the processing decisions made in periods 1 through
4 to be identical. Thus each schedule (z°, y% 2°), s = 1,...,5 of SPM-MIP-half-max is committed
to the same excavation over the first 5 periods, and so once new information arises in period 5 that
allows us to distinguish between some scenarios, there is little chance for altering the remainder of
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the schedule in a highly NPV-beneficial way.

5 Conclusions

We have extended a state-of-the-art MIP formulation of the OPMPSP to incorporate multiple con-
ditional simulations of the resource geology, using a multistage stochastic programming approach.
Our extension took two forms: we first allowed processing decisions to depend on geological infor-
mation in a non-anticipative fashion (SP-MIP); then we additionally allowed mining decisions to
depend on geological information (SPM-MIP). The main advantages of our new formulations are: (i)
the additional flexibility of mining and processing decisions and the ability to alter these decisions
as new geological information is revealed; (ii) the ability to precisely control production rates for
each possible geological outcome; (iii) the maximization of net present value without the need for
additional penalties in the objective; and (iv) simultaneous optimization of cutoff grade decisions.

The new stochastic models SP-MIP and SPM-MIP were naturally more beneficial in cases where
the optimal mining schedules for each scenario, considered independently, show significant differences.
This is not necessarily related to having a large grade variability; the latter does not necessarily lead
to different excavation decisions being made under different scenarios. The stochastic models also
naturally yield better NPV when it is possible to learn distinctive geological information relatively
soon. As we see from Instances 7 and 10, and Table 4, when no scenarios can be distinguised
until many years from the present, decisions cannot be altered until far in the future: because of
discounting in the objective, this will make little difference to the expected net present value. As
can be seen from Figure 3, the optimal value of the Perfect Information Algorithm relative to the
Base Algorithm is quite a good predictor for when the stochastic models are likely to yield greatest
potential benefit.

In the numerical experiments reported here, we used five scenarios per instance in order to fully
report all objective values for all scenarios. In practice, we advise using many more scenarios per
instance to achieve a more accurate description of the uncertain geology. The runtimes of SP-MIP are
not appreciably greater than the Base Algorithm, which is already solvable in practical situations in
an acceptable timeframe. Indeed, employing the methodology of Boland et al. (2008), a very accurate
geological description can be maintained within reasonable runtimes. The runtimes of SPM-MIP are
presently larger than the Base Algorithm and more work is required to make the numerical solution
of SPM-MIP more efficient. This is a focus of future research, in which we will consider generalizing
approaches of Boland et al. (2008) to problems with the stochastic model structure, as well as
strengthening the stochastic models through the use of cutting planes.

This paper has also contributed to the general case of multistage stochastic programming with
endogenous uncertainty: we are able to streamline the approach of Goel and Grossmann (2006), and
generalize their ability to reduce the number of non-anticipativity constraints that must be added to
general scenarios spaces, not necessarily constructed from cross products.
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Table 1: Numerical comparison between SPM-MIP and the models that use only half of the non-
anticipativity constraints, elimination of redundant non-anticipativity constraints for the z variables, or
both halving and elimination. Column 3 indicates whether or not the non-anticipativity constraints (NAC)
are added as lazy constraints.

Inst. | Method Lazy | No. of Opt. val. Gap | Time NPV realised under each scenario, divided
No. NAC | nodes | divided by 10® | (%) (sec) by 102 (the first four significant figures)

1 SPM-MIP yes 10179 3.91516500 1.00 | 44802 || 3.9283 | 3.6905 | 4.4197 | 3.6525 | 3.8846
SPM-MIP no 6702 3.91195818 1.00 | 16640 || 3.9247 | 3.6902 | 4.4197 | 3.6513 | 3.8736
SPM-MIP-elim no 7859 3.91154351 1.00 | 18254 || 3.9283 | 3.6905 | 4.4015 | 3.6525 | 3.8846
SPM-MIP-half-min no 8279 3.91444371 1.00 | 15620 || 3.9247 | 3.6905 | 4.4197 | 3.6525 | 3.8846
SPM-MIP-half-max no 6312 3.91225202 1.00 9871 || 3.9247 | 3.6905 | 4.4197 | 3.6525 | 3.8736
SPM-MIP-half-max-elim no 7268 3.91297332 1.00 | 11167 || 3.9283 | 3.6905 | 4.4197 | 3.6525 | 3.8736

2 SPM-MIP yes 1225 3.97434460 0.97 | 10914 || 4.0533 | 3.9235 | 4.1408 | 4.1485 | 3.6054
SPM-MIP no 917 3.97643384 1.00 3625 || 4.0547 | 3.9235 | 4.1439 | 4.1544 | 3.6054
SPM-MIP-elim no 1438 3.97340148 0.99 6402 || 4.0533 | 3.9235 | 4.1408 | 4.1485 | 3.6007
SPM-MIP-half-min no 1469 3.97530900 0.98 3905 || 4.0508 | 3.9182 | 4.1480 | 4.1565 | 3.6029
SPM-MIP-half-max no 1028 3.97643384 0.99 3705 || 4.0547 | 3.9235 | 4.1439 | 4.1544 | 3.6054
SPM-MIP-half-max-elim no 796 3.97643384 0.99 3126 || 4.0547 | 3.9235 | 4.1439 | 4.1544 | 3.6054

3 SPM-MIP yes 1019 3.94818376 0.96 | 11715 || 3.8098 | 4.1156 | 4.0094 | 3.9275 | 3.8784
SPM-MIP no 654 3.95056258 0.95 3026 || 3.8195 | 4.0957 | 4.0195 | 3.9512 | 3.8666
SPM-MIP-elim no 454 3.94944415 0.92 2181 || 3.8087 | 4.1178 | 4.0110 | 3.9318 | 3.8777
SPM-MIP-half-min no 489 3.94836744 0.96 2401 || 3.8100 | 4.1121 | 4.0114 | 3.9318 | 3.8764
SPM-MIP-half-max no 559 3.94886834 0.99 2049 || 3.8093 | 4.1054 | 4.0113 | 3.9404 | 3.8777
SPM-MIP-half-max-elim no 622 3.94554872 1.00 2888 || 3.8098 | 4.1128 | 4.0059 | 3.9275 | 3.8715

4 SPM-MIP yes 4424 3.90627170 0.99 | 34795 || 3.9594 | 3.8163 | 3.5891 | 4.0078 | 4.1585
SPM-MIP no 2011 3.90595715 0.99 | 11321 || 3.9590 | 3.8163 | 3.5891 | 4.0078 | 4.1574
SPM-MIP-elim no 1902 3.90595715 1.00 7845 || 3.9590 | 3.8163 | 3.5891 | 4.0078 | 41574
SPM-MIP-half-min no 1636 3.90595909 0.98 5928 || 3.9594 | 3.8163 | 3.5891 | 4.0062 | 4.1585
SPM-MIP-half-max no 2082 3.90619353 1.00 6267 || 3.9590 | 3.8163 | 3.5891 | 4.0078 | 4.1585
SPM-MIP-half-max-elim no 1812 3.90619353 1.00 6353 || 3.9590 | 3.8163 | 3.5891 | 4.0078 | 4.1585

5 SPM-MIP yes 824 3.82248678 0.99 | 18421 || 3.6768 | 3.8366 | 3.9861 | 3.8307 | 3.7820
SPM-MIP no 683 3.82013976 0.93 4603 || 3.6702 | 3.8315 | 3.9861 | 3.8307 | 3.7820
SPM-MIP-elim no 894 3.82248678 0.99 4291 || 3.6768 | 3.8366 | 3.9861 | 3.8307 | 3.7820
SPM-MIP-half-min no 674 3.82248678 1.00 4271 || 3.6768 | 3.8366 | 3.9861 | 3.8307 | 3.7820
SPM-MIP-half-max no 645 3.82248678 0.91 2830 || 3.6768 | 3.8366 | 3.9861 | 3.8307 | 3.7820
SPM-MIP-half-max-elim no 562 3.82248678 0.98 3074 || 3.6768 | 3.8366 | 3.9861 | 3.8307 | 3.7820

6 SPM-MIP yes 5823 3.90121379 0.99 | 28429 || 4.0182 | 4.1815 | 3.8937 | 3.7978 | 3.6146
SPM-MIP no 2622 3.90037571 1.00 9428 || 4.0548 | 4.0353 | 3.8904 | 3.8554 | 3.6657
SPM-MIP-elim no 2259 3.90263115 0.99 7148 || 4.0192 | 4.1793 | 3.8930 | 3.7982 | 3.6232
SPM-MIP-half-min no 2633 3.90305409 1.00 7374 || 4.0192 | 4.1815 | 3.8930 | 3.7982 | 3.6232
SPM-MIP-half-max no 2741 3.90296153 0.99 7621 || 4.0182 | 4.1815 | 3.8937 | 3.7978 | 3.6233
SPM-MIP-half-max-elim no 3470 3.90231068 1.00 | 10016 || 4.0192 | 4.1815 | 3.8930 | 3.7982 | 3.6195

7 SPM-MIP yes 828 3.89112692 0.97 9687 || 3.9649 | 3.6514 | 4.0813 | 4.1080 | 3.6499
SPM-MIP no 410 3.89325698 0.97 3155 || 4.0526 | 3.6773 | 3.9928 | 4.0502 | 3.6931
SPM-MIP-elim no 705 3.89325698 0.96 5860 || 4.0526 | 3.6773 | 3.9928 | 4.0502 | 3.6931
SPM-MIP-half-min no 706 3.89316521 0.99 3865 || 4.0525 | 3.6719 | 3.9922 | 4.0510 | 3.6980
SPM-MIP-half-max no 540 3.89325698 0.98 2647 || 4.0526 | 3.6773 | 3.9928 | 4.0502 | 3.6931
SPM-MIP-half-max-elim no 700 3.88558596 0.96 3935 || 3.9647 | 3.6436 | 4.0692 | 4.1087 | 3.6414

8 SPM-MIP yes 5282 3.96581796 0.99 | 25681 || 3.7865 | 3.9557 | 3.8612 | 4.1572 | 4.0683
SPM-MIP no 3943 3.96569746 1.00 | 12700 || 3.7865 | 3.9557 | 3.8594 | 4.1578 | 4.0689
SPM-MIP-elim no 5089 3.96569746 1.00 | 14181 || 3.7865 | 3.9557 | 3.8594 | 4.1578 | 4.0689
SPM-MIP-half-min no 4256 3.96566440 1.00 9271 || 3.7865 | 3.9557 | 3.8594 | 4.1578 | 4.0687
SPM-MIP-half-max no 4525 3.96514360 1.00 8303 || 3.7820 | 3.9557 | 3.8612 | 4.1578 | 4.0689
SPM-MIP-half-max-elim no 3964 3.96470608 1.00 6760 || 3.7809 | 3.9557 | 3.8612 | 4.1578 | 4.0677

9 SPM-MIP yes 2020 3.97682287 0.98 | 12488 || 3.7477 | 4.0165 | 4.0733 | 3.9288 | 4.1076
SPM-MIP no 880 3.98132711 0.96 5550 || 3.7572 | 4.0165 | 4.0954 | 3.9294 | 4.1079
SPM-MIP-elim no 814 3.97707900 1.00 4944 || 3.7575 | 4.0165 | 4.0738 | 3.9294 | 4.1079
SPM-MIP-half-min no 680 3.98138991 0.99 2817 || 3.7575 | 4.0165 | 4.0954 | 3.9294 | 4.1079
SPM-MIP-half-max no 544 3.98132711 0.98 2793 || 3.7572 | 4.0165 | 4.0954 | 3.9294 | 4.1079
SPM-MIP-half-max-elim no 713 3.98128888 0.99 2585 || 3.7570 | 4.0165 | 4.0954 | 3.9294 | 4.1079

10 SPM-MIP yes 2735 3.75644050 0.99 | 17008 || 3.6285 | 3.8499 | 3.8443 | 3.7154 | 3.7439
SPM-MIP no 1233 3.75984015 0.99 6538 || 3.6499 | 3.8451 | 3.8307 | 3.7275 | 3.7458
SPM-MIP-elim no 1324 3.75984015 0.98 5576 || 3.6499 | 3.8451 | 3.8307 | 3.7275 | 3.7458
SPM-MIP-half-min no 1442 3.75954496 1.00 3909 || 3.6499 | 3.8451 | 3.8307 | 3.7267 | 3.7452
SPM-MIP-half-max no 1585 3.75737210 0.98 4652 || 3.6499 | 3.8451 | 3.8307 | 3.7151 | 3.7458
SPM-MIP-half-max-elim no 1467 3.75984015 0.97 3950 || 3.6499 | 3.8451 | 3.8307 | 3.7275 | 3.7458
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Table 2: Numerical results for SP-MIP-h and SPM-MIP-h compared with SP-MIP and SPM-MIP-half-max.
SPM-MIP-h also used only half of the non-anticipativity constraints, the halving process being identical to
that of SPM-MIP-half-max. The number of nodes reported for SPM-MIP-h is that used by the first step of
the heuristic, when no non-anticipativity constraints are considered for the z variables, but non-anticipativity
constraints are included in the model for the z and y variables (once the z and y variables are fixed, at the
second step, the model to solve is simply a linear programme).

Inst. | Method No. of Opt. val. Time
No. nodes | divided by 108 (sec)
1 SP-MIP 200 3.85719671 200
SP-MIP-h 386 3.82478302 160
SPM-MIP-half-max | 6312 3.91225202 9871
SPM-MIP-h 8864 3.90774027 17470

2 SP-MIP 114 3.92782149 153
SP-MIP-h 240 3.92729956 133
SPM-MIP-half-max | 1028 3.97643384 3705
SPM-MIP-h 2132 3.97593213 4868

3 SP-MIP 232 3.89034536 116
SP-MIP-h 486 3.82574769 227
SPM-MIP-half-max 559 3.94886834 2049
SPM-MIP-h 1464 3.88686308 4845

4 SP-MIP 350 3.86873294 229
SP-MIP-h 310 3.86826895 122
SPM-MIP-half-max | 2082 3.90619353 6267
SPM-MIP-h 2677 3.90580771 8637

5 SP-MIP 411 3.77991867 226
SP-MIP-h 240 3.77859649 118
SPM-MIP-half-max 645 3.82248678 2830
SPM-MIP-h 559 3.82081281 2237

6 SP-MIP 449 3.84565550 259
SP-MIP-h 784 3.84594777 203
SPM-MIP-half-max | 2741 3.90296153 7621
SPM-MIP-h 4452 3.90300971 9772

7 SP-MIP 163 3.89196654 151
SP-MIP-h 190 3.88898816 88
SPM-MIP-half-max 540 3.89325698 2647
SPM-MIP-h 499 3.89064751 2735

8 SP-MIP 420 3.92021316 322
SP-MIP-h 373 3.91866870 158
SPM-MIP-half-max | 4525 3.96514360 8303
SPM-MIP-h 4045 3.96426079 9678

9 SP-MIP 192 3.95403529 167
SP-MIP-h 290 3.93567840 108
SPM-MIP-half 544 3.98132711 2793
SPM-MIP-h 1192 3.98004085 4604

10 SP-MIP 421 3.75835091 158
SP-MIP-h 295 3.75831813 96
SPM-MIP-half 1585 3.75737210 4652
SPM-MIP-h 1112 3.75839130 2256
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Table 3:  Numerical results for the Base Algorithm, SP-MIP-heur, SP-MIP, SPM-MIP-half-max, and
PI-MIP.

Inst. | Method Opt. val. Gap Time NPV realised under each scenario, divided by 108
No. divided by 108 | (%) (sec)

1 Base Alg. 3.78942783 0.00 68 || 3.98924852 | 3.70509133 | 4.23610316 | 3.29513410 | 3.72156191
SP-MIP-heur 3.82463950 0.00 68 (| 3.99024336 | 3.70310109 | 4.38619264 | 3.29933234 | 3.74432807
SP-MIP 3.85719671 0.99 200 || 3.98253850 | 3.66301025 | 4.37115149 | 3.49519977 | 3.77408354
SPM-MIP-half-max 3.91225202 1.00 9871 3.92477078 | 3.69057897 | 4.41970684 | 3.65253240 | 3.87367112
PI-MIP 4.05021755 0.99 386 || 4.07998030 | 3.86707723 | 4.42275812 | 3.95406058 | 3.92721152

2 Base Alg. 3.82875926 0.00 68 || 3.46907170 | 4.03802202 | 4.03389099 | 3.99431987 | 3.60849169
SP-MIP-heur 3.90466509 0.00 68 || 3.83830889 | 4.00742029 | 4.05938158 | 4.01817208 | 3.60004262
SP-MIP 3.92782149 0.73 153 || 3.85478297 | 3.90951249 | 4.13295744 | 4.14893668 | 3.59291788
SPM-MIP-half-max 3.97643384 0.99 3705 || 4.05470308 | 3.92358685 | 4.14396101 | 4.15446756 | 3.60545068
PI-MIP 4.05642527 0.98 380 || 4.18460300 | 4.05420818 | 4.14889205 | 4.15979259 | 3.73463053

3 Base Alg. 3.79810769 0.00 65 || 3.76737171 | 3.88061503 | 3.89707460 | 3.53734963 | 3.90812748
SP-MIP-heur 3.79968284 0.00 65 || 3.76763502 | 3.88256371 | 3.89707460 | 3.54301339 | 3.90812748
SP-MIP 3.89034536 0.99 116 || 3.78567426 | 4.07096571 | 4.00760660 | 3.72353636 | 3.86394386
SPM-MIP-half-max 3.94886834 0.99 2049 || 3.80934093 | 4.10544602 | 4.01139688 | 3.94040822 | 3.87774966
PI-MIP 4.13191321 0.94 193 || 4.16587952 | 4.36493762 | 4.03382302 | 4.10923639 | 3.98568949

4 Base Alg. 3.83726980 0.00 82 || 3.83857815 | 3.78961945 | 3.52416162 | 3.94285479 | 4.09113504
SP-MIP-heur 3.86873294 0.00 82 || 3.95291123 | 3.79434475 | 3.49660795 | 3.94338158 | 4.15641920
SP-MIP 3.86873294 0.84 229 || 3.95291123 | 3.79434475 | 3.49660795 | 3.94338158 | 4.15641920
SPM-MIP-half-max 3.90619353 1.00 6267 || 3.95903142 | 3.81638484 | 3.58914084 | 4.00781154 | 4.15859900
PI-MIP 3.97048368 0.99 332 || 4.01797047 | 3.89854546 | 3.73599435 | 4.02282651 | 4.17708159

5 Base Alg. 3.77971841 0.00 142 || 3.70673516 | 3.84020373 | 3.93441321 | 3.63412810 | 3.78311201
SP-MIP-heur 3.77991867 0.00 142 || 3.70673516 | 3.84020373 | 3.93541435 | 3.63412810 | 3.78311201
SP-MIP 3.77991867 0.99 226 || 3.70673516 | 3.84020373 | 3.93541435 | 3.63412810 | 3.78311201
SPM-MIP-half-max 3.82248678 0.91 2830 || 3.67688606 | 3.83662531 | 3.98616441 | 3.83070894 | 3.78204917
PI-MIP 3.90869876 0.99 366 || 3.81120046 | 3.87151741 | 4.08643766 | 3.97113305 | 3.80320520

6 Base Alg. 3.82456135 0.00 50 || 3.99097372 | 3.99097372 | 3.90031785 | 3.83655643 | 3.58922382
SP-MIP-heur 3.84506840 0.00 50 || 3.99558623 | 3.90111612 | 3.90445418 | 3.83723438 | 3.58695111
SP-MIP 3.84565550 0.99 259 || 3.99557691 | 3.90284709 | 3.90970300 | 3.83438807 | 3.58576243
SPM-MIP-half-max 3.90296153 0.99 7621 4.01828835 | 4.18150137 | 3.89379797 | 3.79786645 | 3.62335349
PI-MIP 4.03443542 0.91 450 || 4.08377619 | 4.18708260 | 4.05598637 | 3.89768580 | 3.94764612

7 Base Alg. 3.89059855 0.00 48 || 4.05477990 | 3.66867724 | 3.98716204 | 4.04343593 | 3.69893768
SP-MIP-heur 3.89129920 0.00 48 || 4.05555101 | 3.66867724 | 3.98858629 | 4.04474376 | 3.69893768
SP-MIP 3.89196654 0.86 | 151.86 || 4.05620154 | 3.68306105 | 3.98854662 | 4.04250982 | 3.68951370
SPM-MIP-half-max 3.89325698 0.98 2647 || 4.05269121 | 3.67735087 | 3.99283279 | 4.05029015 | 3.69311988
PI-MIP 4.02162974 0.97 425 || 4.11501095 | 3.82253462 | 4.19145593 | 4.15553499 | 3.82361221

8 Base Alg. 3.83875903 0.00 63 || 3.63455435 | 3.83636990 | 3.78846683 | 3.98647565 | 3.94792836
SP-MIP-heur 3.87832435 0.00 63 || 3.64503223 | 3.97277836 | 3.80077430 | 4.02672160 | 3.94631524
SP-MIP 3.92021316 0.78 322 || 3.76146995 | 3.85880821 | 3.82808406 | 4.14756592 | 4.00513768
SPM-MIP-half-max 3.96514360 1.00 8303 || 3.78203532 | 3.95574066 | 3.86120231 | 4.15782313 | 4.06891657
PI-MIP 4.08337774 0.89 366 || 3.83794400 | 4.16446719 | 3.93432036 | 4.37151143 | 4.10864570

9 Base Alg. 3.92086733 0.00 51 3.55760283 | 3.75494300 | 4.18179151 | 3.98510886 | 4.12489034
SP-MIP-heur 3.92961564 0.00 51 3.57270910 | 3.75638430 | 4.18777114 | 3.98789961 | 4.14331406
SP-MIP 3.95403529 0.90 167 || 3.73236255 | 3.95049626 | 4.06739165 | 3.92522211 | 4.09470387
SPM-MIP-half-max 3.98132711 0.98 2793 || 3.75725225 | 4.01651975 | 4.09542979 | 3.92948367 | 4.10795006
PI-MIP 4.09878742 0.99 407 || 3.91160354 | 4.10589843 | 4.28744817 | 4.01942120 | 4.16956576

10 Base Alg. 3.74555077 0.00 89 || 3.66643260 | 3.86306443 | 3.80963431 | 3.64179710 | 3.74682541
SP-MIP-heur 3.74555077 0.00 90 || 3.66643260 | 3.86306443 | 3.80963431 | 3.64179710 | 3.74682541
SP-MIP 3.75835091 1.00 158 || 3.64974311 | 3.84514164 | 3.83011089 | 3.72216300 | 3.74459593
SPM-MIP-half-max 3.75737210 0.98 4652 || 3.64997828 | 3.84511314 | 3.83070398 | 3.71518655 | 3.74587855
PI-MIP 3.84578129 0.99 470 || 3.80789581 | 3.90518356 | 3.86517066 | 3.88769297 | 3.76296346
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Table 4: The number of scenario pairs separated at any time, for each instance.

Instance Method The number of scenario pairs separated in time period ¢
No. =1 |t=2|t=3|t=4|t=5|t=6|t=7|t=8|t=9 |t=10
1 SPM-MIP-half 0 4 4 4 10 10 10 10 10 10
SP-MIP-heur 0 4 4 4 9 10 10 10 10 10
2 SPM-MIP-half 0 0 0 7 9 9 9 10 10 10
SP-MIP-heur 0 0 0 7 9 9 9 10 10 10
3 SPM-MIP-half 0 0 3 4 8 8 10 10 10 10
SP-MIP-heur 0 0 3 4 6 8 10 10 10 10
4 SPM-MIP-half 0 0 0 4 7 10 10 10 10 10
SP-MIP-heur 0 0 0 4 7 10 10 10 10 10
5 SPM-MIP-half 0 0 0 2 6 9 9 9 10 10
SP-MIP-heur 0 0 0 2 6 6 9 10 10 10
6 SPM-MIP-half 0 4 4 6 9 9 10 10 10 10
SP-MIP-heur 0 0 0 6 6 9 10 10 10 10
7 SPM-MIP-half 0 0 0 0 6 8 8 10 10 10
SP-MIP-heur 0 0 0 0 6 8 8 10 10 10
8 SPM-MIP-half 0 0 0 10 10 10 10 10 10 10
SP-MIP-heur 0 0 0 9 10 10 10 10 10 10
9 SPM-MIP-half 0 0 0 2 10 10 10 10 10 10
SP-MIP-heur 0 0 2 2 7 10 10 10 10 10
10 SPM-MIP-half 0 0 0 0 6 10 10 10 10 10
SP-MIP-heur 0 0 0 0 2 6 10 10 10 10
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