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Abstract The annual production scheduling of open pit mines determines an optimal
sequence for annually extracting the mineralized material from the ground. The ob-
jective of the optimization process is usually to maximize the total Net Present Value
(NPV) of the operation. Production scheduling is typically a Mixed Integer Program-
ming (MIP) type problem containing uncertainty in the geologic input data and eco-
nomic parameters involved. Major uncertainty affecting optimization is uncertainty
in the mineralized materials (resource) available in the ground which constitutes an
uncertain supply for mine production scheduling.

A new optimization model is developed herein based on two-stage Stochastic Inte-
ger Programming (SIP) to integrate uncertain supply to optimization; past optimiza-
tion methods assume certainty in the supply from the mineral resource. As input,
the SIP model utilizes a set of multiple, stochastically simulated scenarios of the
mineralized materials in the ground. This set of multiple, equally probable scenarios
describes the uncertainty in the mineral resource available in the ground, and allows
the proposed model to generate a single optimum production schedule.

The method is applied for optimizing the annual production scheduling at a gold
mine in Australia and benchmarked against a traditional scheduling method using the
traditional single “average type” assessment of the mineral resource in the ground.
In the case study presented herein, the schedule generated using the proposed SIP
model resulted in approximately 10% higher NPV than the schedule derived from the
traditional approach.
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1 Introduction

The problem of production scheduling in open pit mining is determining the parts of
a mineralized deposit to be mined annually in an optimum order of sequence so as to
maximize the total discounted profit. Solving the annual production scheduling prob-
lem in mining optimally is critical, because it determines the annual cash flows that
can add several hundred million up to several billion dollars in magnitude, and at the
same time it is based on an uncertain supply of mineralized materials for the resource
available in the ground. This uncertainty is acknowledged in the related technical lit-
erature to be the major reason for not meeting production expectations (Baker and
Giacomo 1998) or being the by far most dominant factor in failing mining projects
(Vallee 2000). Given its substantial impact on the financial outcome of mining oper-
ations, this paper focuses on dealing with the uncertainty in metal content within a
mineral deposit being mined.

Mining is an excavation activity in the earth made for the purpose of removal
and sale of economically valuable minerals or materials. An orebody model contain-
ing the deposit attributes such as grades, tonnage, density, mining cost, processing
cost, expected economic value etc. are used to determine the final pit limits. The fi-
nal pit limits in mining can be defined as the limits of the deposit up to which it
is economically feasible to mine. Lerchs and Grossmann’s algorithm (LG) based on
graph theory (Lerchs and Grossmann 1965) and Maxflow algorithm based on net-
work flow concept (Johnson 1968) are the most commonly used methods in practice.
Hochbaum and Chen (2000) provided a critical review and discussion of various
methods in finding optimum ultimate pit limits. Gershon (1983) presented a Mixed
Integer Linear Programming (MILP) model formulation that an actual mining op-
eration is represented as a mathematical model to maximize overall NPV from the
operation. The paper stated that the models for optimising production scheduling
of open pit mines require too many binary variables and cannot be solved. There
have been some publications of methods which aim to reduce the required num-
ber of binary variables in MIP formulations for production scheduling in mining.
In underground mines, Topal (2003) developed a methodology that substantially re-
duced the number of required binary variables by defining earliest start and latest
start periods of the blocks through an intelligent process for Kiruna iron ore mine
located in Sweden. To reduce the variables in optimizing production scheduling in
open pit mining, Ramazan (2007) developed the Fundamental Tree Algorithm (FTA)
that efficiently aggregates the blocks in an optimal way based on purely linear pro-
gramming without using any integer variable. There are also heuristic approaches
to aggregate the mining blocks that are discussed in Ramazan (1996) and Whittle
(1988).

An estimated grade or mineral content of a block within an orebody model, rep-
resenting a mineral deposit, is generated as a weighted average of the surround-
ing samples while the actual grade is unknown; uncertainty is caused by the sin-
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gle estimated value of a block that, in addition, cannot represent the possible in-
situ grade variations between sampled points. Alternatively, stochastic spatial simu-
lation (Boucher and Dimitrakopoulos 2009; Scheidt and Caers 2009; Mustapha and
Dimitrakopoulos 2010) is a geostatistical approach used to generate multiple ore-
body models that are equi-probable representations of the actual mineral deposit
in the ground. However, there is not one production scheduling method that can
use multiple orebody models as input to generate an optimum production sched-
ule in the presence of supply uncertainty. Grieco and Dimitrakopoulos (2007) pro-
posed a probabilistic MIP method to optimize annual production scheduling in un-
derground mining. Some past efforts in open pit mining included the sequential
use of stochastic orebody models in traditional optimization methods by Raven-
scroft (1992) and Dowd (1997). Dimitrakopoulos and Ramazan (2004) developed
a long-term probabilistic type production scheduling method and introduced the con-
cept of Geologic Risk Discounting (GRD). However, sequential processes and the
probabilistic approach are shown to be inefficient and cannot produce an optimal
schedule in the presence of uncertainty. Similar are the limitations of recent ex-
perimental approaches (Dimitrakopoulos et al. 2007; Godoy and Dimitrakopoulos
2004). Golamnejad et al. (2006) propose a chance-constrained formulation to ac-
count for grade uncertainty; however, chance-constrained formulations make severe
and unrealistic assumptions, such as a Gaussian distribution and independence of
the metal content (grade values) of mining blocks. Boland et al. (2008) consider
a multistage stochastic programming approach, which however also makes unreal-
istic mining assumptions to be applicable. Dimitrakopoulos (2011) provides a re-
view of stochastic approaches used in mine scheduling. Ramazan and Dimitrakopou-
los (2004b) introduced a stochastic programming optimization model in a confer-
ence which was an initial start-up of this fully developed model proposed in this
paper. The model produced promising results, but it did not include the formu-
lation for leaching, the objective function did not have the stockpiling parts and
model constraints were not presented and discussed in detail except the generic
grade blending constraint. The major drawback of the publication was the case
study, which considered a small scale two-dimensional hypothetical data set, which
doesn’t guarantee the applicability of the model to a real mining operation with larger
data.

In addition to the uncertainty of mineralized materials a mineral deposit can supply
over time, there are other uncertainties in open pit mining that also play a significant
role in defining the overall net profit expected from operations. These uncertainties
include largely the fluctuating market demand for raw materials and metals affecting
commodity prices, and production costs such as mining, processing, administration
and so on. Technical and operational uncertainties, such as the uncertainties on the
geotechnical parameters, introduce additional risk sources. The focus herein is on the
uncertainty in metal content and supply as a starting point and due to its substan-
tial impact on mining operations, as discussed above. Integrating additional sources
of uncertainty in the present formulation or others remains a longer term research
objective.

This paper proposes a new Stochastic Integer Programming model (SIP) that can
optimize the annual production scheduling problem for open pit mines, considering
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uncertainty in the supply of mineralized materials extracted from the deposit. The
proposed model is a novel approach in the sense that it can use multiple simulated
orebody models without averaging the grade and contains parametric tools to manage
the risk distribution effectively. The case study in a gold deposit in Australia shows
that the SIP method has potential to improve the total NPV of mining projects sub-
stantially and it can be applied to large size open pit mines efficiently in terms of
solution time of the large SIP model. In the following sections, the calculation of
economic values is first discussed. The stochastic integer programming description
and model formulation is presented after that. Subsequently, managing risk profile
with the proposed method is discussed. Performance of the SIP model is analyzed
and compared with a commonly used production scheduling method.

2 Economic values of mining blocks

After an orebody model with geological and economic attributes is generated, the
expected economic value of a block i E{Vi} is calculated based on the expected Net
Revenue (NRi ) to be gained from selling the contained metal within block i. If PCi

is the processing cost (for all processes if multiple processing methods are used), the
value of the block is:

E{Vi} =
{

NRi − MCi − PCi if NRi > PCi (block i is an “ore block”)

−MCi if NRi ≤ PCi (block i is a “waste block”)

NRi = Ti · Gi · Rec · (Price − Selling Cost)

where MCi is the cost of mining, Ti is the weight of the block; Gi is the grade within
block i; Rec is the processing recovery percentage. Note that in mining, a block is
classified as “waste block” if processing cost is greater than the expected revenue
from selling the contained metal within the block. It is classified as “ore block” if it
is profitable to process and sell the contained metal.

3 Stochastic integer programming for optimizing annual production
scheduling in open pit mines

The proposed model offers a solution for the problem of which blocks should be
mined in what time periods (years) without violating operational constraints (mining
slope requirement, mining capacity, processing capacity, product qualities) so that the
overall discounted profit from the sales of the products (metals) is maximized.

The following descriptions are adopted from Dimitrakopoulos and Ramazan
(2009) where the generic two-stage recourse stochastic programming concept is ex-
plained specifically in mining terms. The two stage recourse model is a type of math-
ematical programming model where the fundamental mechanisms of anticipative and
adaptive models are integrated within a single model. This model represents a trade-
off between long term anticipatory strategies and the associated adaptive strategies. In
mining terms, the trade-off could be between total expected NPV and associated risks
in meeting production targets. Conceptually, a mathematical model is expected to re-
sult in higher NPV values if higher geological risks are tolerated within the model;
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a conservative risk approach is expected to result in a lower NPV value. The recourse
problem can be expressed as follows:

Find x ∈ Rn+, such that

Fi(x) ≤ 0, i = 1, . . . ,m, and (a1)

F0(x) = cx − E{Q(x,g)} is maximized (a2)

where

Q(x,g) = inf{q(g)y|W(x,g) = h(x,g) − T }; (a3)

y ∈ Rn′
+ ; x is the matrix of decision variables (xt

i ) for deciding when to mine a block
(if xt

i = 1, mine block i in period t). If all x variables are set to 0 or 1 values that
represent percentage of blocks to be mined at each period t and if this set of x val-
ues are feasible for the model constraints under (a1), the values define a production
schedule. Equation (a1) is a representation of all the constraints required for mining
operations ((8), (9) and (10) in the subsequent section).

In (a2), cx is the total NPV value to be generated from the project given a deci-
sion on when the blocks should be mined, or given a production schedule defined by
x-values. E{Q(x,g)} is the expected risk, or associated costs, of not meeting pro-
duction targets under the chosen schedule. The risk in the model is defined as the
deviations from the desired production targets and the unit cost multiplier matrix y

as a function of the infeasibility. For a given schedule, x, and a set of grades, g,
h(x,g) represents the tonne, grade and quality values to be produced periodically
and T is the target matrix. Therefore, W(x,g) defines the risk and q(g)y defines the
cost of the risk for the schedule, as a function of the uncertain grade values. After the
true environment is observed through a simulated orebody model, the discrepancies
that may exist between h(x,g) and T (for fixed x and observed h(x,g) and T ) are
calculated using (a3) as:

W(x,g) = h(x,g) − T

The cost of risk is defined in the objective function. The model takes the corrective
or recursive form to re-define the x variables and the schedule so that NPV and cx

are maximized, while the loss, q(g)y, is minimized. Therefore, an optimal decision
x should modify the total expected profit to be generated by carrying out the plan, i.e.
the direct NPV (cx) as well as the costs generated by the risk defined using simulated
orebody models on the schedule, (E{Q(x,w)}).

The SIP model developed herein accounts for uncertain inputs for mineral supply
in a deposit. This is achieved by simultaneously considering multiple, stochastically-
simulated realizations of a deposit in the optimization process, which minimizes the
risk of not meeting production targets caused by uncertain supply and, in addition,
allows for the management of risk by controlling the risk profile of pertinent indica-
tors. The model considers operational requirements, a main processor plant and also
leaching as a possible alternative process. The stockpiling is also considered within
the stochastic concept since the amount of material to be stockpiled will be affected
by the block grades in the orebody model.
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3.1 Definition of symbols and terms

Subscripts and superscripts

t is a scheduling time period;
g,o and q are target parameters, or type of production target; g is for the grade tar-

gets; o is for the ore production target; q is for the metal production target;
s is a simulated orebody model;
l is for the minimum target (lower bound);
u is for the maximum target (upper bound);
i is the block identifier.

Variables to be determined

a
tg
sl , a

to
sl , a

tq
sl , a

tg
su, a

to
su, a

tq
su are the dummy variables (a-parameters) used to balance the

equality constraints;
bt
i is a variable representing the fraction of block i mined in period t ; if a bt

i variable
is defined as binary (0, or 1), it is 1 if block i is mined in period t and 0 otherwise;

d
tg
sl , d

to
sl and d

tq
sl are the deficient amounts (d-parameters) for the target parameters

produced below a desired minimum limit;
d

tg
su, d

to
su and d

tq
su are the excess amounts (d-parameters) for the target parameters pro-

duced above a desired maximum limit;
ht

s is the amount of material left in the stockpile at the end of period t with respect
to orebody model s;

kt
s is the amount of material (ore) in tonnes processed from the stockpile with respect

to orebody model s in period t ;
wt

i is a variable representing the fraction of block i sent to the stockpile in period t .

Known constants

C
tg
l ,Cto

l ,C
tq
l ,C

tg
u ,Cto

u and C
tq
u are unit costs (C-parameters) for d

tg
sl , d to

sl , d
tq
sl , d

tg
su, d

to
su

and d
tq
su, respectively, in the objective function;

Ct−
l = C0−

l /(1 + fl)
t ; and Ct−

u = C0−
u /(1 + fu)

t , where “−” after superscript t

represents the type of targets g,o or q; fl and fu are the orebody risk discounting
rates (uncertain mineral supply) used to calculate C-parameters;

E{(NPV)ti} is the expected (average) net present value (NPV) to be generated if
block i is mined in period t . If the discount rate is r and E{(EV)0

i } is the undis-
counted expected economic value, it can be expressed as:

E{(NPV)ti} = E{(EV)0
i }/(1 + r)t .

Gtar is the targeted grade of the ore material to be processed;
Gsi is the grade of block i in orebody model s;
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GST is the average grade of the stockpiled material;
GSTmin,GSTmax are minimum and maximum grades that a block is considered for

stockpiling, respectively; the probability of a block to have a grade between
GSTmin and GSTmax is the probability of that block to be considered for stockpil-
ing;

h0 is the amount of material already available in the stockpile;
M is the number of simulated orebody models;
MCt

i is mining cost of block i occurred in period t and discounted to time 0;
MCAPmax is the total available mining capacity of the equipment;
MCAPmin is the minimum amount of the material (waste and ore) required to be

mined in each of the periods;
N is the number of blocks within final pit limits;
Otar is the targeted amounts of the ore material to be processed periodically;
Osi is the ore tonnage within block i in orebody model s;
P is the total number of production periods, or mine life;
Qtar is the targeted amounts of the metal to be processed in a period;
Qsi is the quantity of the metal in block i with respect to orebody model s;
(QST)t is the percentage of the metal content at the stockpile in period;
SV t is profit to be generated by processing a tonne of material from the stockpile in

period t and discounted to time 0;
U is the number of blocks considered for stockpiling;
Yi number of blocks overlying ore block i considered for setting the slope con-

straints.

3.2 Objective function

The objective function of the SIP model is constructed as the maximization of a
profit function, defined as the difference between the total expected net present value
and the cost of deviations from planned production targets. The objective function
formulation is:

Max
P∑

t=1

[
N∑

i=1

E{(NPV)ti}bt
i︸ ︷︷ ︸

Part 1

−
U∑

i=1

E{(NPV)tj + MCt
j }wt

j︸ ︷︷ ︸
Part 2

+
M∑

s=1

(SV t /M)kt
s︸ ︷︷ ︸

Part 3

−
M∑

s=1

(Cto
u d to

su + Cto
l d to

sl + C
tg
u d tg

su + C
tg
l d

tg
sl + C

tq
u d tq

su + C
tq
l d

tq
sl )

]
︸ ︷︷ ︸

Part 4

(1)

The objective function in (1) has four parts: Part 1 refers to the expected total
NPV to be generated if all the mined ore blocks were processed. Part 2 adjusts the
economics of Part 1 for the percentage of the blocks that are sent to stockpile in a way
that only mining costs are incurred in that time period. Part 3 adds the discounted
profit to be generated by processing kt

s amount of material from the stockpile. Part 4
consists of geological risk management parameters.
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It is fairly straightforward to calculate the economic values for a set of market
parameters and set up the model in Part 1 and Part 2. In Part 3, the amount of ma-
terial processed from the stockpile depends on the simulated orebody models. At
first, the model makes the decision of when to mine a block without full informa-
tion being known; i.e. the information about which simulated representation (model)
of the orebody is the actual deposit. However, it assumes that the decision of how
much material should be taken from the stockpile for processing can be made later in
time when the mining occurs. At this time of mining complete information about the
blocks is known: whether there is enough ore from the mine supplied to the process-
ing plant or not and how much more material is needed for the plant. The unit value
to be gained from processing material from stockpile is divided by M to account for
the probability of a simulated orebody model to represent the actual deposit.

In cases where multiple independent processes such as concentrator and leaching
are used, the proposed model should be implemented according to the situation of
the operation. For example, if the leaching process is relatively small portion of the
material processed, Part 4 of the equations should not be implemented for that pro-
cess to minimize the dilution of the NPV with the parameters that their deviations
are not expected to have significant impact on the overall NPV . For these secondary
processes, we suggest implementing the grade and capacity constraints as a hard con-
straint as in (7a) and (7b) and using average orebody model. If each of the processes
have significant impact on the revenue stream, then the full objective function and the
related constraints (2), (3) and (4) should be implemented for each processing types.

The objective function of the proposed model contains multiple parameters with
various coefficients. Gershon (1984) has noted that one must give extra care when
assigning weights to multiple parameters in quantifying relative importance of them.
Therefore, in the proposed SIP model, Part 4 is used to manage the uncertainty in
the supply of ore from the deposit in the optimization process. The coefficients in
front of these parameters define a risk profile for the production and NPV produced
is the optimum for the defined risk profile. It is considered that if the expected devi-
ations from the planned amount of ore tonnage having planned grade and quality in
a schedule are high in actual mining operations, it is unlikely to achieve the resultant
NPV of the planned schedule. Therefore, the SIP model contains the minimization of
the deviations together with the NPV maximization to generate practical and feasible
schedules and achievable cash flows. Section 4 provides further discussions on how
these parameters can be used to control the distribution of risks over the time periods.

3.3 Constraints

The deviation parameters in the objective function are calculated within the SIP
model by the grade blending and processing plant constraints that consider each of
the simulated orebody models.

Grade blending constraints for each time period t

N∑
i=1

(gsi − Gtar)Osib
t
i −

U∑
j=1

(gsj − Gtar)Osjw
t
j + (GST − Gtarn)k

t
s + d

tg
sl − d tg

su = 0

s = 1,2, . . . ,M; t = 1,2, . . . ,P (2)



Production scheduling with uncertain supply 369

Processing constraints

N∑
i=1

Osib
t
i −

U∑
j=1

Osjw
t
j + kt

s + d to
sl − d to

su = Otar

s = 1,2, . . . ,M; t = 1,2, . . . , (3)

Metal production constraints for each time period t

N∑
i=1

Qsib
t
i −

U∑
j=1

Qsjw
t
i + (QST)kt

s + d
tq
sl − d tq

su = Qtar

s = 1,2, . . . ,M; t = 1,2, . . . ,P (4)

Stochastic stockpile constraints Determine the quantity of material at the stockpile
at the end of first period:

U∑
j=1

Osjw
1
j + h0 − k1

s − h1
s = 0 s = 1,2, . . . ,M (5a)

Determine the quantity of material at the stockpile at the end of period t (t > 1):

U∑
j=1

Osjw
t
j + ht−1

s − kt
s − ht

s = 0 s = 1,2, . . . ,M; t = 2,3, . . . ,P (5b)

Capacity of the stockpile may be limited for each time period t :

ht
s ≤ SC s = 1,2, . . . ,M; t = 1,2, . . . ,P (5c)

The amount of material that can be taken from the stockpile cannot be more than the
available amount at the stockpile at the end of previous period:

kt
s − ht−1

s ≤ 0 s = 1,2, . . . ,M; t = 1,2, . . . ,P (5d)

Linkage constraints A block must be mined before stockpiling.

wt
i − bt

i ≤ 0 i = 1,2, . . . ,N; t = 1,2, . . . ,P (6)

To increase the efficiency of the SIP model, the optimization is applied in two steps
for large size problems. Initially, the model is formulated without including the main
stochastic constraints (2), (3) and (4) that are feasible for any value of the binary
(bt

i ) variables. Instead of these main stochastic constraints, the following mill input
capacity and metal production constraints are first applied:

Processing capacity step 1 constraints

N∑
i=1

Osib
t
i −

U∑
j=1

Osjw
t
j + kt

s ≥ OmaxFo s = 1,2, . . . ,M; t = 1,2, . . . ,P (7a)
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Metal production step 1 constraints

N∑
i=1

Qsib
t
i −

U∑
j=1

Qsjw
t
i + (QST)t kt

s ≥ QmaxFm

s = 1,2, . . . ,M; t = 1,2, . . . ,P (7b)

where, Fo and Fm are fractions for ore and metal production to limit the initial results;
min and max are some values around the targeted value. Presumably (7a) and (7b)
hold for all s and t . For example, an initial schedule can be generated in such a way
that Fo, assumed as 70% of the processing capacity, must be reached with respect
to each of the simulated orebody models. Initially, a high probability such as 90%
is applied. This means the capacity constraints must hold for at least 90% of the
simulated orebody models. If the result is infeasible, the probability can be decreased
5 or 10% at a time. The SIP model with these hard constraints is solved faster than
the SIP model with the stochastic constraints. Then, the model is formulated again
without (7a), (7b), but including (2), (3) and (4). The solution generated from the
initial model is used as a starting solution for the SIP model. This procedure often
significantly reduces the solution time for the large SIP model.

3.3.1 Operational constraints

Slope constraints Slope constraints ensures that to mine a specific block, all the
blocks overlying that specific block must be mined.

For each overlying block of the block i and each period t

bt
i −

t∑
k=1

bk
l ≤ 0 i = 1,2, . . . ,N; t = 1,2, . . . ,P (8)

Reserve constraints A block has to be mined fully (100%)

P∑
t=1

bt
i = 1 i = 1,2, . . . ,N (9)

Mining capacity constraints

MCapmin ≤
N∑

i=1

Tib
t
i ≤ MCapmax t = 1,2, . . . ,P (10)

3.4 Binary definition

In mining, a block is usually mined completely within a period of a year during the
scheduling process. To mine the entire block, the block variables are traditionally
defined as binary; 1 if the block is mined in a period and 0 if not mined. However,
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Fig. 1 Variability in the ore
production within a year for 3
schedules targeting 100%
production rate generated by the
initially developed SIP model;
square shape in the middle
represents the average deviation;
diamond shape represents the
production rate for a schedule
according to simulated orebody
models

this logic is difficult to implement in real mining cases due to large size of block
models that MIP formulations cannot solve. Therefore, only the variables represent-
ing ore blocks are defined as binary and the other variables are continuous (linear).
Since waste blocks are linked to ore block mining as discussed in Ramazan and Dimi-
trakopoulos (2004a), waste block variables would be forced to produce binary results.

4 Managing risk profiles using the SIP model

The risk management process in the presence of uncertain mineral supply when using
the proposed SIP model is demonstrated in this section using a relatively small push-
back, containing 1064 blocks, from a gold deposit that can be mined within 3 years.
To protect data confidentiality and without loss of generality, the production rates are
given as percentages and an explanation of using the SIP model to control the risk
profile is given. The probability and distribution of the geological risk can be man-
aged between scheduling periods. More specifically, Fig. 1 shows deviations from
metal production between scheduling periods for a given schedule. The aim was to
mine the least risky part of the deposit early in the mine life and delay the mining of
high uncertainty regions for later periods. This is done assuming that more informa-
tion would become available in time and future planning would be more confident. It
is very important in mining operations to meet the production targets at early years
of the mine life so that the capital spent can be recovered earlier. For this reason, the
geological risk discounting (GRD) is used in the SIP model. The first year production
is very likely to meet the production targets. During the second year, the chance of
shortage in metal production is higher than the first year, because the cost of deviating
from the target in the second year is less than the cost for the first year in the objec-
tive function. The deviations are very high in the last year because of depletion of
the deposit. However, if the deposit contained sufficient metal, the chance of higher
deviations would still be expected as compared to the previous periods, because the
cost of deviations in the last year was less than the previous years. Theoretically, the
rate of variations in the magnitude of the deviations and chances of the deviations
would increase as the GRD factor applied increases and would decrease as the GRD
rate decreased. If a balanced-risk profile is to be produced, GRD must be set to 0.

It should be noted that there is no control of the distribution of risk profile in tradi-
tional production scheduling methods since they can only use a single orebody model
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Table 1 General information on the deposit and scheduling parameters

Description Values

Total blocks 22,296

Block dimensions (m) 20 × 20 × 20

Metal prod. capacity (1000 Kg) 30

Processing capacity (million tonnes) 15

Total mining capacity (million tonnes) 80

Stockpile capacity (million tonnes) 10

Stockpile re-handling cost ($/t) 0.3

Discount rate (%) 10

Mine life (years) 6

Number of simulated orebody models 15

as input. The risk profile on a schedule by traditional methods is random. However,
one needs to be aware of the fact that the SIP model cannot control the risk distri-
bution 100%, although it can provide substantial control as illustrated in Fig. 1. The
risk distribution is also dependent on how the grade variability is spread throughout
the mineralized region. Some blocks may have to be mined due to slope constraints
or other operational reasons at earlier periods even if they contain high uncertainty
in the estimated grades. This type of grade uncertainty can only be reduced through
drilling and sampling process in the high risk areas that need to be mined during
earlier periods.

In this paper, it is suggested that a series of schedules be produced with different
C-parameters, which may include actual approximated cost numbers where possible
based on some reasonable assumptions, and GRD factors. The resultant NPV values
and risk profiles need to be analyzed using simulated orebody models and decisions
must be based on the analysis considering the company’s objectives.

5 Performance analysis of the sip formulation against a traditional schedule in
a gold deposit

Table 1 shows the general information about the block model used for performance
analysis and some of the scheduling parameters. There are 22,296 blocks within the
part of the deposit optimized using the SIP model. This size of deposit can be consid-
ered as very large in terms of application of Operations Research techniques. In the
schedules, total mining capacity of the shovel–truck fleet was 80 million tonnes (mt),
processing plant capacity was 15 mt of ore per annum and a maximum of 5 mt stock-
pile capacity was available. The gold price was assumed to be Australian $560/oz.
This part of the deposit would take about 6 years to mine considering the capacity
constraints for the operation. The schedules were produced using 15 simulated ore-
body models and an e-type (“average” or “expected value” type) orebody model that
was generated by averaging the grades in the simulated models.

To benchmark the proposed SIP model, two schedules were produced; one using
the proposed SIP model and another one, referred to as traditional schedule (TS) in
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Table 2 SIP specific information

Description Values

Orebody risk discounting rate (GRD) 20%

Cost of shortage in ore production 1,000/tonne

Cost of excess ore production 1,000/tonne

Cost of shortage in metal production 20/tonne

Cost of excess in metal production 20/tonne

Table 3 SIP scheduling information

Description Stage 1 Stage 2

Periods 1–4 4–6

Total blocks 11,301 10,995

Constraints 33,373 21,363

Total variables 53,301 37,286

Binary variables 18,540 9,580

Time (h:m:s) <04:49:55 <37:15:33

Gap 0.0% 0.0%

this paper, using the e-type orebody model as input to the Whittle software package
(Whittle, 1998), one of the most commonly used software packages in the mining
industry. Table 1 contains the common scheduling parameters and constraints for both
the SIP model and the traditional model. The SIP specific parameters for this model
are shown in Table 2. The SIP schedule was produced using 20% GRD to control
the risk distribution between periods. The cost of shortage and excess ore production
were assigned as 1,000 per tonne. Cost of shortage or excess metal production was
assigned as 20 per tonne. These numbers were used within the model to establish
a priority between parameters so that NPV could be maximized with a risk profile,
which aimed to minimize the risk during earlier years of mine production.

The deposit was scheduled by SIP model in two stages as shown in Table 3. Stage 1
contained 11,301 blocks and was scheduled over 4 periods. There were more than
33,300 constraints and 18,540 binary variables in the first stage SIP model formula-
tion. It took about 4 hours 50 minutes to solve the first stage problem formulation.
Stage 2 contained about 11,000 blocks and was scheduled over 3 periods. Note that
period 4, which is the last period of the previous stage is included in the second stage
to fill up the remaining capacities. The blocks used in the first stage was not enough
to fill it up fully. The SIP model formulation contained over 21,300 constraints and
9,580 binary variables. Using a dual core 2 GHz machine with 1 GB RAM on a
32 bit operating system, it took about 37 hours to reach the solution for Stage 2 using
CPLEX software’s solver engine (ILOG ltd).

In the second stage, we removed the capacity constraints (mining and processing
capacity) from the last period. The reason for the change is that (9) requires all the
blocks to be mined and we know that mining all blocks over the total scheduling
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Fig. 2 Three cross-sectional views of the traditional schedule (TS) and the schedule obtained by the SIP
model. Colored regions are the soil scheduled for mining; uncolored parts on top are the areas previously
mined (air)

periods will not violate these constraints; this is because profitable blocks will be
mined out in early periods with the processing plant running at full capacity. Although
the material mined and processed at the last period was uneconomic according to the
simulated models and SIP schedule, the traditional scheduler was not able to identify
that due to the single orebody model input data, which mixes high grade ore with low
grade material (smoothing effect of the estimation method used to construct them).
To be comparable with the traditional schedule, all the blocks are scheduled in the
SIP as well.

Another reason to schedule all the blocks is that there maybe more information un-
til the end of mine life is reached and the new information may change the economics
of this region. If it was found out that mining the end part would be uneconomic as
mine gets closer to that region, the operation would stop before mining uneconomic
blocks. The main purpose of SIP is still being served by delaying mining the risky
parts of the mine. While in using traditional scheduling, some part of the uneconomic
material would have been mined earlier and part of the higher grade ore (higher metal
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Fig. 3 Deviations from ore production target by the schedules generated by the SIP model (dark color)
and traditional method (light color) using one orebody model (Whittle Four-X Milawa scheduler)

content) would have been left behind to the end making all the material appear prof-
itable. The cost of this would not be known unless the proposed SIP model was used.

Cross-sectional views of the two schedules are shown in Fig. 2 at three locations.
The figure shows that there are differences between schedules in terms of where they
are physically mining each period. Both of the schedules need to be smoothed to be
practically feasible for providing equipment access to all blocks to be mined within
the time periods scheduled for mining.

5.1 Comparison of the traditional and SIP schedules

Annual ore and metal production for each of the schedules were calculated with re-
spect to each of the simulated orebody models. Figure 3 shows the deviations from
targeted ore production. During the first year of production, there is a deviation of
about 500,000 tonnes on average with the schedule using the SIP model while the
traditional model has a deviation of around 4 million tones. There is a chance that
the ore production can be more than 6 million tonnes less than the planned target if
TS is used as a schedule in operation. This possibility of extreme shortages in the
first year of production makes the operation extremely risky in terms of achieving the
company’s financial objective. The maximum amount of a possible ore production
shortage using the SIP model is only about 1 million tonnes in the first year. During
the second year of production, there is no shortage in ore production with the TS
model as shown in Fig. 3. There is a lot of excess production that is assumed to be
stockpiled. The schedule by the SIP model has slightly higher expected shortages in
ore production than the first year. The risk of not meeting production target increases
from the first year to the end of the mine life. This was an intended trend of the sched-
ule. In the TS model, the risk of ore production shortage is randomly distributed over
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Fig. 4 Deviations from metal production target by the schedules generated by the SIP model (dark colour)
and traditional method (light colour) using one orebody model (Whittle Four-X Milawa scheduler)

Fig. 5 Material at the stockpile from the schedules generated by the SIP model and traditional method
using one orebody model (Whittle Milawa scheduler)

the production periods, as there is no provision allowing risk management in the tra-
ditional scheduling methods.

The deviations from metal production targets for the two schedules with respect to
the 15 simulated orebody models are illustrated in Fig. 4. The schedule generated by
the SIP model has the tendency to increase towards the later years of production. As
expected, shortage in metal production in TS is also randomly distributed between
periods for the same reasons as the shortage in ore production discussed above. The
amount of material at the stockpile at the end of each period is given in Fig. 5. The
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Fig. 6 Material processed from the stockpile from the schedules generated by the SIP model and tradi-
tional method using one orebody model (Whittle Milawa scheduler)

Fig. 7 Expected cumulative net present value according to the schedules generated by the SIP model (dark
colored) and traditional method using one orebody model by Whittle Milawa scheduler (light colored)

figure shows that the stockpile capacity limit of 5 million tonnes is obeyed with re-
spect to all of the simulated orebody models. The amount of material reclaimed from
the stockpile for processing is given in Fig. 6. Figures 5 and 6 show that at the end of
the mine life, all the stockpiling material is processed and show the capability of the
SIP model to consider stockpiling as an option in the optimization process. Figure 7
illustrates the cumulative cash flows generated from the schedules according to each
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of the simulated orebody models. Each dot in the figure corresponds to cash flow
in a year from a specific schedule for a simulated orebody model. The figure shows
that during the first year, the SIP model generates over $200 M while the traditional
schedule produced only about $100 M.

At the end of the mine life, the total NPV generated from the SIP schedule is
$64 M higher than the NPV from TS model, which is about 10%. This difference
is because of economic discounting of the money since both schedules eventually
produced the same amount of metal and mined out the same total volume.

6 Conclusions

In this paper, a new stochastic integer programming model is developed and applied
to a gold deposit in Australia. The proposed SIP model uses multiple conditionally
simulated orebody models that are equi-probable representations of the actual deposit
in the ground for optimizing annual production schedules in open pit mines. This
approach accounts for the uncertainty in the mineral supply from the deposit in the
ground, unlike the traditional scheduling methods that are based on a single orebody
model assumed to be the actual deposit in the ground being mined.

Incorporating multiple conditionally simulated orebody models without averaging
the grades in a mathematical optimization model delivers a risk robust production
schedule. The robustness of the schedule comes from the fact that the effect of the
geological uncertainty (variability of metal content in the ground) on the periodical
production targets can be managed using the model parameters.

The SIP model is found to be a powerful tool to manage the risk of not meeting
production targets by controlling the magnitude and the probability of the risk within
individual production periods and, in addition, controlling how the risk is distributed
between production periods. The model allows the user to define the risk profile and
generates the schedule with the optimum NPV for the resultant risk profile. The risk
profile in the schedules that are generated by traditional methods is random and can
lead to substantial losses, even premature closure of a mining operation, by failing to
meet the planned production targets

The proposed SIP model is very efficient in that it needs no more binary variables
than the traditional MIP formulations using single orebody model as input. The total
number of binary variables representing the blocks for scheduling periods in the SIP
formulation using many simulated orebody models is the same as in the MIP formu-
lations using single orebody models. The only additional variables are the deviation
variables and some variables to control the stockpile, which are defined as continu-
ous. The number of constraints is larger in the SIP scheduling formulation than the
traditional MIP formulations. However, possible inefficiency issues caused by this
increased number of constraints can be managed as discussed in this paper.

In this study, by defining only ore block variables as binary and leaving the waste
block variables as continuous, the SIP model could be applied efficiently to an Aus-
tralian gold deposit and is shown to increase the overall NPV for about 10%. As well
established in general terms (e.g. Birge and Louveaux 1997), the value generated
using stochastic solutions is always greater than, or equal to, the value that can be



Production scheduling with uncertain supply 379

obtained using a deterministic approach. In open pit mining applications, tests have
shown that stochastic approaches produce a 10 to 25% of additional value for mining
operations than the traditional scheduling methods.
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