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long term production schedules of open pit
mines: methods, application and value of
stochastic solutions
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The production scheduling of open pit mines is an intricate, complex and difficult problem to

address due to its large scale and the unavailability of a truly optimal net present value (NPV)

solution, as well as the uncertainty in key parameters involved. These key factors are geological

and mining, financial and environmental. Geological uncertainty is a major contributor in failing to

meet production targets and the financial expectations of a project especially in the early stages

of a project. Stochastic integer programming (SIP) models provide a framework for optimising

mine production scheduling considering uncertainty. A specific SIP formulation is shown herein

that generates the optimal production schedule using equally probable simulated orebody

models as input, without averaging the related grades. The optimal production schedule is then

the schedule that can produce the maximum achievable discounted total value from the project,

given the available orebody uncertainty described through a set of stochastically simulated

orebody models. The proposed SIP model allows the management of geological risk in terms of

not meeting planned targets during actual operation, unlike the traditional scheduling methods

that use a single orebody model and where risk is randomly distributed between production

periods while there is no control over the magnitude of the risks on the schedule. Notably, the

testing of the SIP formulation in two cases, a gold and a copper deposit, shows that the expected

total NPV of the schedule using the SIP approach is significantly higher (10 and 25% respectively)

than the traditional schedule developed using a single estimated orebody model.
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Introduction
A main objective in mining is to maximise the total
discounted economic value to be generated from an
operation. Traditionally, an orebody model is generated
to represent the mineral deposit using drillhole data at
certain locations and estimates of the values of mining
blocks between the data locations. However, a single
estimated model is only a smoothed image of the actual
deposit and cannot represent the natural local grade
variability within deposits. The traditional methods of
open pit mine planning and production scheduling using
single orebody models are unable to deal with geo-
logical uncertainty caused by in situ grade variability.
This poses substantial risks of not meeting planned

production targets in terms of ore tonnes, grades and
expected cash flows through actual operations.

The effect of geologic uncertainty in mine planning
has been recognised in the literature. Ramazan and
Dimitrakopoulos1,2 show that conventional mixed
integer programming (MIP) type optimisation methods
may generate significantly different scheduling patterns
from each other when geostatistically simulated and
estimated orebody models are used as input. These
significant differences in the scheduling results clearly
indicate the need for new stochastic optimisation
methods that can consider orebody uncertainty in the
optimisation process. Dimitrakopoulos et al.3 also
show that there are substantial conceptual and economic
differences between risk based frameworks and tradi-
tional approaches. Some effort is made to use stochastic
orebody models sequentially in traditional optimisa-
tion methods by Ravenscroft4 and Dowd.5 However,
sequential processes are shown to be inefficient
and cannot produce an optimal schedule considering
uncertainty.
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The MIP formulations for optimising production
scheduling for both open pit and underground mines
are usually too large to be solved without applying
specific methodology to reduce the number of required
binary variables and the model size. To reduce the
required solution time of the mathematical optimisation
methods for open pit mines, Ramazan6 developed the
fundamental tree algorithm. This algorithm reduces the
number of binary variables required in formulating
production scheduling optimisation as an MIP model
and makes the MIP models applicable to large open pit
mine optimisation processes. For underground mines,
Topal7 developed a methodology that reduced the
number of required binary variables substantially by
defining earliest start and latest start periods for mining
blocks of the Kiruna iron ore mine, Sweden.

Dimitrakopoulos and Ramazan8 present a new long
term probabilistic type production scheduling method
and introduce the concept of geological risk discounting.
The method is based on MIP which solves the schedul-
ing problem efficiently. The model is further improved
and developed in Ramazan and Dimitrakopoulos1 to
consider orebody uncertainty, efficiently integrating the
issue of equipment access and reduced mobility of large
equipment. Although this method produces a schedule
with a preferable risk profile as compared to other
conventional optimisation methods, setting scheduling
priorities to blocks based on the probabilities assigned to
individual blocks does not always produce an optimal
solution for production scheduling of large and complex
deposits. This is because the blending of the blocks
which have lower and higher grades than the target
values (low probability blocks) is not considered
effectively. Grieco and Dimitrakopoulos9 demonstrate
a new probabilistic type MIP formulation for stope
designs in underground mines. Dimitrakopoulos et al.10

present a new method of designing cutbacks using
simulated orebody models, which considers the upside
potential and downside risk of a project. Godoy and
Dimitrakopoulos11 developed a new approach for risk
inclusive long term production scheduling based on
simulated annealing, which yields substantial net present
value (NPV) increase (28%) as compared to traditional
optimisation methods. The same order of NPV increase
(26%) is also shown in recent case studies12 using a
variant of the same method. Although the above studies
constitute substantial developments in the field, they do
not directly integrate the uncertainty related to ore grade
and quality parameters in the optimisation process, and
in addition, the method requires several steps in
developing a final risk based schedule.

Stochastic integer programming (SIP) models are
presented herein, as an alternative framework to the
above developments, for generating optimum produc-
tion schedules which consider ore grade and quality
uncertainty. SIP is a type of mathematical programming
based modelling approach that considers multiple,
equally probable scenarios and generates the best result
for a set of defined objectives, within the feasible
solution space bounded by a set of constraints. Three
alternative SIP modelling approaches are first presented,
so as to discuss their applicability to mine production
scheduling problems, and are followed by a method that
quantifies the value of stochastic solutions. Then, one of
the SIP approaches presented is revisited through a

specific to mine production scheduling formulation. The
formulation uses a set of simulated orebody models
without averaging the grades of the simulated orebody
realisations and provides a schedule having maximum
total discounted economic value (NPV) with a managed
risk profile. A key aspect of this formulation is that the
risk of not meeting planned production targets is con-
trolled while generating the optimum production sche-
dule and maximising the expected NPV of the project.
The new SIP formulation is applied on a part of a gold
deposit and a copper deposit; results are compared with
the conventional scheduling approach and finally, the
value of the stochastic solution for the given two
examples is assessed. Conclusions follow.

Stochastic integer programming
Stochastic integer programming (SIP) may be defined as
a type of mathematical programming based modelling
that can consider multiple, equally probable scenarios
and generates the best result for a set of defined
objectives, within the feasible solution space bounded
by a set of constraints. In a SIP model, there is a set of
decisions to be taken, such as when to mine a block,
without full information about an event which is thus
described probabilistically. Examples of an event are the
unknown grades and tonnages of the orebody to be
mined. The grades and tonnages are represented by
multiple simulated realisations of the orebody. In the
context of mathematical programming, SIP is defined in
Escudero13 as an extension of MIP with uncertainty in
one or more of the related coefficients. Different
approaches in SIP formulations are discussed by Birge
and Louveaux.14 The existing developments in the
technical literature are not, however, directly applicable
to mining problems. In stochastic programming, there
are mainly three main models: anticipative models,
adaptive models, and anticipation and adaptation
(recourse) models.15 A fourth approach, the so called
chance constraints, is unsuitable for the scheduling
problem due to severely unrealistic assumptions, such as
normality of grade distributions in mining blocks.

Anticipative models
Assuming that wi(x,m) is a function where x is the
decision of which blocks to mine in what production
period and m is the annual metal production, which is a
function of grade (g). Since the grades are uncertain
within the mining blocks, there may be r representations,
or simulated realisations, of the actual grades with equal
probability of each one occurring. Then, i is the ith
realisation of the grades, i.e. i51, 2, …, r. In stochastic
programming for mining, i is termed the ‘here and now
situation’ when a decision must be made on the mining
periods of the blocks without a priori knowledge of the
grades. The problem consists of finding x[X5Rn (X is a
given subset of Rn , i.e. real numbers) in the expression

Maximise wi(x, m) (1)

Subject to:

wi(x,m)¡0 (2)

+x¡0 (3)

Equation (2) is a generic representation of all the
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operational constraints such as annual ore tonnes, grade
and quality requirements. Equation (3) represents the
physical restrictions such as slope constraints in
production scheduling of open pit mines. Some x[X
may satisfy the constraints wi(x,m)(0, with a certain
level of reliability

Prob m wi(x,m)j :
ƒ0, i~1, 2, . . . , mf g¢a (4)

where a[(0,1) or the average E{wi(x,m)}(0. Equa-
tion (4) signifies that the probability that the simulated
realisations satisfy the model constraints must be greater
than a certain reliability level a.

Suppose that the objective function is of type
E{w0(x,m)}, in the simple case, then violating the
constraint wi(x,m)(0 generates a cost, ciwi(x,m) where
ci>0, proportional to the amount by which the
constraint is violated. This leads to an objective function

f0(x,m)~w0(x,m)z
Xr

i~1

qi(max 0,ciwi(x,m)½ �) (5)

Adaptive models
Adaptive models cannot directly represent mine produc-
tion scheduling problems due to their nature, especially
considering the presence of grade uncertainty which is
the main focus of the new SIP model proposed in this
paper. It is difficult to interpret the adaptive models in
terms of the mine production scheduling problem,
because block grades will not be known in time, or by
waiting, as required for the purpose of optimisation.
Therefore, a brief description of the model is provided
here as in the general operations research literature such
as Birge and Louveaux,14 Ermoliev and Wets,15 and
Heyman and Sobel.16

Adaptive models consider the situation where an
observation is allowed before making a decision on x.
This corresponds to the idea of optimisation in a
learning environment. Typically, observations will only
give partial information on the environment g. Suppose
that B is a collection of sets that contain all the relevant
information that could become available after making
an observation. The decision x must be determined on
the basis of the information available in B, i.e. it must be
a function of g whose values are B dependant or ‘B
measurable’. Now the problem is to find a B measurable
function

g?x(g)

which satisfies x(g)[X for all g, and
E{fi(x(?),?)\B}(g)(0, i51, 2, …, m, such that

z~E f0(x(g),g)f g (6)

is minimised, where E{?\B} denotes the conditional
expectation given B.

For the case where g becomes completely known, then
the optimal gRx(g) is obtained by solving for all w, the
optimisation problem

Find x[X5Rnsuch that fi(x,g)(0, i51, 2, …, m and
zw5f0(x,g) is minimised.

Anticipation and adaptation: recourse models
The two stage recourse model is a type of mathematical
model where the fundamental mechanisms of anticipa-
tive and adaptive models are integrated within a single

model. This model represents a trade-off between long
term anticipatory strategies and the associated adaptive
strategies. In mining terms, the trade-off could be
between total expected NPV and associated risks in
meeting production targets. Conceptually, a mathema-
tical model is expected to result in higher NPV values if
higher geological risks are tolerated within the model; a
conservative risk approach is expected to result in a
lower NPV value. The recourse problem can be
expressed as follows:

Find x[Rn
z, such that

Fi(x)¡0, i~1, 2, . . . , m (7)

and

F0(x)~cx{E Q(x,g)f g (8)

is maximised, where

Q(x,g)~inf q(g)y W (x,g)~h(x,g){Tj :f g (9)

where y[Rn’
z and x is the matrix of decision variables (xt

i )

for deciding when to mine a block (if xt
i~1, mine block i

in period t). If all x variables are set to 0 or 1,
representing the percentage of blocks to be mined at
each period t, and if this set of x values are feasible for
the model constraints under equation (7), the values
define a production schedule. Equation (7) is a repre-
sentation of all the constraints required for the mining
operations.17–19 In equation (8), cx is the total NPV
value to be generated from the project given a decision
on when the blocks should be mined, or given a
production schedule defined by x values. E{Q(x,g)} is
the expected risk, or associated costs, of not meeting
production targets under the chosen schedule. The risk
in the model is defined as the deviations from the desired
production targets and the unit cost multiplier matrix y
as a function of the infeasibility. For a given schedule x
and a set of grades g, h(x,g) represents the tonne, grade
and quality values to be produced periodically and T is
the target matrix. Therefore, W(x,g) defines the risk and
q(g)y defines the cost of the risk for the schedule, as a
function of the uncertain grade values.

After the true environment is observed through a
simulated orebody model, the discrepancies that may
exist between h(x,g) and T (for fixed x and observed
h(x,g) and T) are calculated using equation (9) as

W (x,g)~h(x,g){T

The cost of risk is defined in the objective function. The
model takes the corrective or recursive form to redefine
the x variables and the schedule so that NPV and cx are
maximised, while the loss q(g)y is minimised. Therefore,
an optimal decision x should modify the total expected
profit to be generated by carrying out the plan, i.e. the
direct NPV (cx) as well as the costs generated by the risk
defined using simulated orebody models on the schedule
E{Q(x,w)}.

Proposed SIP model for long term
production scheduling of open pit mines
A SIP model for optimising long term production
scheduling in open pit mines is developed with an
objective function that maximises the total NPV of the
project under a managed risk profile. The general form

Dimitrakopoulos and Ramazan SIP for optimising production schedules of open pit mines

Mining Technology 2008 VOL 117 NO 4 157



of the objective function is expressed as

Max
Xp

t~1

Xn

i~1

E (NPV)t
i

� �
b

t
i {

"

Xm

s~1

( cto
u d

to
su z cto

l d
to
sl z ctg

u d
tg
su z ctg

l d
tg
sl )

#
(10)

where p is the total production period, n is number of
blocks, and bi

t is the decision variable for when to mine
block i (if mined in period t, bi

t is 1 and otherwise bi
t is

0). The c variables are the unit costs of deviation
(represented by the d variables) from production targets
for grades and ore tonnes. The subscripts u and l
correspond to the deviations and costs from excess
production (upper bound) and shortage in production
(lower bound) respectively, while s is the simulated
orebody model number, and g and o are grade and ore
production targets.

The NPV of a block is calculated for all the simulated
orebody models and averaged. The cost parameters are
discounted by time using the geological risk discount
factor developed by Dimitrakopoulos and Ramazan.8

The geological risk discount rate (GRD) allows the
management of risk to be distributed between periods. If
a very high GRD is used, the lowest risk areas in terms
of meeting production targets will be mined earlier and
the most risky parts will be left for later periods. If a very
small GRD or a GRD of zero is used, the risk will be
distributed at a more balanced rate among production
periods depending on the distribution of uncertainty
within the mineralised deposit.

The ‘c’ variables in the objective function (equa-
tion (10)) are used to define a risk profile for the
production, and NPV produced is the optimum for the
defined risk profile. It is considered that if the expected
deviations from the planned amount of ore tonnage
having planned grade and quality in a schedule are high
in actual mining operations, it is unlikely to achieve the
resultant NPV of the planned schedule. Therefore, the
SIP model contains the minimisation of the deviations
together with the NPV maximisation to generate
practical and feasible schedules and achievable cash
flows. Note that the developed SIP model for mine
production scheduling is very similar to the anticipation
and adaptation/recourse model given in equation (8). In
addition, note that the same operational constraints for
production scheduling of open pit mines given in
Ramazan17 and Ramazan and Dimitrakopoulos2 can
be used in the SIP model. Stochastic constraints used to
calculate the deviations from production targets are
given in Ramazan and Dimitrakopoulos.19

Value of stochastic programming
In mining, the production scheduling problem is a
stochastic problem because uncertainty exists on the
grades used as input. The random variables, grades, are
replaced by their expected values to simplify the
stochastic production scheduling problem to a determi-
nistic one. Recently, there have been some approaches
presented in the literature for solving several determi-
nistic scheduling problems each corresponding to one
particular scenario, and then either to combine these
different solutions, or choose the best solution among
the solutions obtained, by heuristic methods such as

presented in Dimitrakopoulos et al.8 It is not known
how different the solutions from these heuristic methods
are from the true optimal stochastic solution. The
answer to this theoretical question is provided by two
concepts: the expected value of perfect information and
the value of the stochastic solution.10

Simulated orebody models are equally probable
representations of the actual deposit. Each simulated
orebody model corresponds to one particular scenario
for variables such as grade and quality. Assume that
there are 10 simulated orebody models and each ore-
body model has exactly 10% chance of being the same as
the actual deposit. For the sake of discussion in this
section, the probability indicates that the deposit is fully
represented by the 10 orebody models. Assume that
there is a true optimisation method for annual produc-
tion scheduling of mines given an orebody model. Then,
each of the simulated orebody realisations could be used
to generate 10 optimised production schedules. If the
authors knew which simulated orebody model was the
true representation of the deposit, the schedule gener-
ated using that orebody model would be used to calcu-
late the total discounted economic value of the project
(NPV). This NPV value obtained from the schedule
using the perfect information, the simulated realisation
that is known to be the exact representation of the
deposit, would be the highest NPV that can be generated
for the project. For example, assume that the actual ore-
body model grades were known to be exactly the same as
simulation no. 3. The NPV value calculated using the
schedule based on simulation 3 would be higher than the
NPV calculated using the schedule based on simulation
no. 1, because the grades used in calculating the NPV is
still based on the actual deposit grades (simulation 3)
although schedule is based on simulation 1.

Since it is not known which simulated realisation is
the exact representation of the deposit under study, the
NPVs obtained from the 10 optimised schedules can be
averaged to determine the maximum expected value of
the project. This expected NPV is termed the ‘expected
solution of perfect information (ESPI)’.

The simulated orebody models may be averaged and
this average model may be used as input in the
optimisation method. After generating a schedule using
this average orebody model, 10 different NPVs would be
calculated for this schedule, since the deposit is one of
the 10 orebody models, resulting in 10 different metal
and ore production values for each production period.
The average of the 10 NPVs is called the ‘expected value
solution (EVS)’. A different and more efficient way of
scheduling is to use the stochastic programming method
given in equation (10). The stochastic programming
method uses the 10 simulated orebody models as input
and generates one schedule that is optimum, given the
orebody models available and the operational con-
straints considered. From the schedule obtained through
stochastic optimisation, 10 different NPVs can be
calculated for each of the 10 simulated realisations.
The average value of the 10 NPVs is called the ‘expected
stochastic solution (ESS)’.

The expected value of perfect information (EVPI) is
the difference between the ESPI and the EVS. The EVPI
can be expressed as follows

EVPI~ESPI{EVS (11)
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The EVPI is the maximum economic value that a
decision maker would be willing to pay for the perfect,
complete and accurate information about the deposit.
The EVPI concept is first developed in the context of
decision analysis. Further discussions can be found in
Raiffa and Schlaifer.20

The value of stochastic programming (VSP) is the
difference between the value of the stochastic solution
and the expected value solution. It can be expressed as

VSP~ESS{EVS (12)

The VSP represents the cost of ignoring uncertainty in
making a decision and is always positive if the optimal
solution to the problem depends on the uncertain
variable.21 It is well known and rigorously proven
property of SIP models in the field of operations
research13–16,20,21 that the VSP is always non-negative
(greater than, or equal to 0); this is also intuitive in mine
production scheduling, considering that the schedule
using the proposed SIP model takes into account all
possible outcomes (simulated orebody models) in meet-
ing production targets. If only a single orebody model is
used in optimisation, the NPV may appear to be the
highest for that specific orebody model. However,
during the actual operation when the estimated grades
of the blocks turns out to be different than the actual
block grades, the actual produced ore tonnes and grades
can vary from the planned tonnes and grades. Owing to
these variations, the actual produced NPV can be much
smaller than the NPV value calculated from the opti-
mised schedule using a single orebody model. The SIP
considers these possible variations through the available
simulated models, and as a result, quantifies and
manages the risk of not meeting production targets
properly. In the traditional optimisation approaches, the
process is at the mercy of some ‘unknown factor’ in
terms of distribution of grade variability and uncer-
tainty, while the SIP model provides an operation with a
powerful risk management tool.

Note that the VSP can only be 0 for some extreme
cases where the optimal solution is not sensitive to the
uncertain variables. This means that regardless of the
scenario used as input to the mathematical program-
ming model, the result would be exactly the same. It is a
highly unlikely case to occur in mine production
scheduling that the schedule does not depend on the
grades and quality parameters involved. Although there
is no general rule for the magnitude of the VSP, VSP is
expected to increase with increasing variance in the
variables related to the optimisation. Some examples of
large VSP and EVPI are illustrated in Louveaux and
Smeers22 and Birge.23

Case studies

Gold deposit
The proposed SIP model is applied to a part of a gold
deposit and contains 22 296 blocks. The optimisation of
production scheduling is performed in two stages: in the
first stage on a volume containing 11 301 blocks and in
the second stage for the remaining blocks. As can be
seen in Table 1, it took y5 h for the first stage model
to be solved with a dual processor (2 GHz) PC, while
the second stage took over 37 h. It should be noted
that traditional optimisation methods taking only one

orebody model as input would be expected to require
similar solution times if efficient MIP formulations
are applied, as in Ramazan and Dimitrakopoulos.18

Although multiple simulated orebody models are used in
the SIP formulations, the number of binary variables is
not higher than that in the traditional MIP formula-
tions. In this case study, 14 simulated orebody models
are used. The schedule using single average, or esti-
mated, orebody model is expected to result in approxi-
mately $659M NPV, which is the EVS value in this case
study. The schedule obtained using the stochastic pro-
gramming model is expected to generate about $723M
ESS value. Therefore, the VSP is $64M ($723M–$659M)
or a contribution of y9?7% additional NPV to the pro-
ject compared with the expected NPV from the tra-
ditional schedule. Figure 1 shows a cross-section of the
two schedules: one obtained using the SIP model and the
other generated by a traditional method (traditional
schedule or TS) using a single estimated orebody model.
Both schedules need to be smoothed further to be
practical in operation; the effects of smoothing the
schedules are discussed at the end of the second case
study.

Copper deposit
The second example of production scheduling with the
proposed SIP model is an application at a copper
deposit composed of 14 480 blocks. The scheduling
considers ore capacity of 7?5 Mt per year, maximum
mining capacity is 28 Mt, and the scheduler decides the
optimal waste removal strategy. The SIP run considers
20 simulated orebody models that are available and tests
show that, as in earlier studies,24,25 the results are not
sensitive to the use of more simulated orebody models.
The conventional schedule using a single estimated
orebody model forecasts an expected NPV at about
$238M, which is the EVS value in this second case study.
The SIP schedule is expected to generate about $298M
ESS value. Similarly to before, the VSP is $60M or a
contribution of y25% additional NPV to the project,
compared with the expected NPV from the convention-
ally generated schedule.

Table 1 Information of SIP run for gold deposit in case
study

Description Stage 1 Stage 2

Total number of blocks 11 301 10 995
Constraints 33 273 21 363
Total number of variables 53 301 37 286
Number of binary variables 18 540 9580
Solution time (hour:min) 04:50 37:15
Production periods (years) 1, 2, 3 and 4 4, 5 and 6

1 Cross-sectional views of SIP (bottom) and traditional

schedule (TS, top) at gold deposit
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Figure 2 shows a cross-section of the two schedules
from the copper deposit: one obtained using the SIP
model (bottom) and the other generated by a traditional
method (top) using a single estimated orebody model.
Both schedules shown are the raw outputs and need to
be smoothed to become practical. It is important to note
that:

(i) the results in the second case study are similar in
% improvement compared with other stochastic
approaches reviewed in the introduction11,12

(ii) although the schedules compared in the studies
herein are not smoothed out, other existing SIP
applications24,25,26 show that the effect of gen-
erating smooth and practical schedules has
marginal impact on the forecasted performance
of the related schedules, thus the order of improve-
ments in SIP schedules reported here remain.

Conclusions
Stochastic integer programming models offer a frame-
work to address uncertainty in key inputs of mine
production schedules, including geological (grade)
uncertainty. A new SIP formulation was shown to
generate the optimal production schedule using as input
a set of equally probable simulated orebody models and
without averaging the related grades of mining blocks.
This set of simulated scenarios descries geological
(metal) uncertainty and its use allows the management
of geological risk in terms of not meeting planned
production targets. This differs from the traditional
scheduling methods that use a single model of the
deposit, thus leading to not considering risk and
entailing the random risk distribution in different
production periods and without any control over the
magnitude of the risk. As it was shown in the case
studies above, the proposed scheduling approach con-
siders multiple simulated orebody models without
increasing the required number of binary variables and
thus computational complexity. The SIP approach can
be used to minimise the risk of not meeting production
targets as a function of ore, metal and grade blending.

The value of the stochastic solution presented in the
applications is significant: in the first case study of a gold
deposit, it is $64M or 10% higher NPV; in the second
example with the copper deposit, the value of the
stochastic solution is $60M or y25% higher NPV.

Again, this difference is largely based on the ability of
the stochastic optimiser to quantify and manage the risk
of not meeting production targets. The simulated
realisations of the orebody provide a range of possible
values of metal content in the blocks being considered
along with its neighbours, which then allows the
optimisation process to assess and utilise the ‘upside
potential’ separately from the ‘downside risk’. This can
only be carried out if simulated orebodies are jointly
considered.
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