
Winter 2008 CS567 Stochastic Linear/Integer Programming
Guest Lecturer: Xu, Huan

Class 3: Algorithms for Two-Stage Linear Recourse Problem

Computation in stochastic programs with recourse has focus on two-stage problems with finite numbers
of realizations, for example, the farmer’s problem introduced in class 1. As we saw in the capacity
expansion model, this problem can also represent multiple stage of decisions with block separable
recourse and it provides a foundation for multistage methods. Hence, the two-stage problem is our
primary model for computation.

The general model is to choose some initial decision that minimizes current costs plus the expected
value of future recourse actions. Notice that, with a finite number of second -stage realizations and all
linear functions, we can always form the full deterministic equivalent linear program (i.e., the extensive
form). However, with many realizations, this form of the problems becomes quite large. Methods that
ignore the special structure of the stochastic linear program become inefficient.

1 The L-Shaped Algorithm

The main idea of the L-Shaped algorithm is to approximate the non-linear term in the objective
(i.e., the recourse function). Since the nonlinear objective term involves a solution of all second-stage
recourse linear programs, we want to avoid numerous function evaluations for it. We therefore use
that term to build a master problem in x, but we only evaluate the recourse function exactly as a
subproblem.

Consider the following Extensive Form of a stochastic program with K realizations, and pk be the
probability that the kth realization happens:

minimize: c>x +
K∑

k=1

pkq
>
k yk

such that: Ax = b;
Tkx + Wyk = hk, k = 1, · · · ,K;
x ≥ 0, yk ≥ 0, k = 1, · · · ,K.

The block structure of this extensive form has a L-Shape, which gives the name L-Shaped method for the
following algorithm. Basically, this structure easily leads to a Benders decomposition or equivalently a
Dantzig-Wolfe decomposition of its dual. This method has been extended in stochastic programming
to take care of feasibility questions and is known as L-shaped method. It proceeds as follows:

L-Shaped Algorithm

Step 0: Set r = s = ν = 0.

1



Step 1: Set ν = ν + 1. Solve the following LP:

minimize: c>x + θ (1)
such that: Ax = b;

Dlx ≥ dl, l = 1, · · · , r; (2)
Elx + θ ≥ el, l = 1, · · · , s; (3)

x ≥ 0, θ ∈ R.

Let (xν , θν) be an optimal solution. If no constraint (3) is present, θν is set equal to −∞ and is
not considered in the computation of xν .

Step 2: For k = 1, · · · ,K solve the following LP:

Minimize: w′ ,> v+ + e>v−

Subject to: Wy + Iv+ − Iv− = jk − Tkx
v,

y ≥ 0, v+ ≥ 0, v− ≥ 0,

where e> = (1, · · · , 1) and I is the identity matrix, until for some k the optimal value w′ > 0.
In this case, let σν be the associated simplex multipliers and define

Dr+1 := (σν)>Tk

and
dr+1 := (σν)>hk

to generate a constraint (called a feasibility cut) of type (2). Set r := r+1, add to the constraint
set (2), and return to Step 1. If for all k, w′ = 0, go to Step 3.

Step 3: For k = 1, · · · ,K solve the linear program:

Minimize: w = q>k y

Subject to: Wy = hk − Tkx
ν , (4)

y ≥ 0.

Let πν
k be the simplex multipliers associated with the optimal solution of Problem k of type (4).

Define

Es+1 :=
K∑

k=1

pk(πν
k)>Tk

and

es+1 :=
K∑

k=1

pk(πν
k)>hk.

Let wν = es+1 − Es+1x
ν . If θν ≥ wν , stop; xν is an optimal solution. Otherwise, set s := s + 1,

add to the constraint set (3) and return to Step 1.

This method approximated Q using an outer linearization. Two types of constraints are sequentially
added :(i) feasibility cuts (2) determining {x|Q(x) < +∞} and (ii) optimality cuts (3), which are
linear approximations to Q on its domain of finiteness. We use the following example to illustrate the
optimality cuts: Let

Q(x, ξ) =
{

ξ − x if x ≤ ξ,
x− ξ otherwise,

and let ξ take on the values 1, 2 and 4 each with probability 1/3. Assume c = 0 and 0 ≤ x ≤ 10.
Assume the starting point is x1 = 0. The sequence of iterations for the L-shaped method is as follows:

2



Iteration 1: x1 is not optimal; send the cut

θ ≥ 7/3− x.

Iteration 2: x2 = 10, θ2 = −23/4 is not optimal; send the cut

θ ≥ x− 7/3.

Iteration 3: x3 = 7/3, θ3 = 0 is not optimal; send the cut

θ ≥ x/3 + 1/3.

Iteration 4: x4 = 1.5, θ4 = 5/6 is not optimal; send the cut

θ ≥ 5/3− x/3.

Iteration 5: x5 = 2, θ5 = 1 is the optimal solution.

2 Proof of Convergence: Optimality Cut

We next prove that the constraint of type (3) defined in Step 3 are supporting hyperplanes of Q(x),
and the algorithm will converge to an optimal solution, provided the constraint (2) adequately define
feasible set.

First notice the original problem

minimize: c>x +Q(x)
subject to: x ∈ K

is equivalent to

minimize: c>x + θ

subject to: x ∈ K
Q(x) ≤ θ.

In step 3, problem (4) is solved repeatedly for each k = 1, · · ·K, yielding optimal simplex multipliers
πν

k , k = 1, · · · ,K. It followed from duality of LP that for each K

Q(xν , ξk) = (πν
k)>(hk − Tkx

ν).

Moreover, by convexity of Q(x, ξk), it follows from the subgradient inequality that

Q(x, ξk) = (πν
k)>hk − (πν

k)>Tkx.

Taking the expectation of these two realization we obtain

Q(xν) = E(πν)>(h−Txν) =
K∑

k=1

pk(πν
k)>(hk − Tkx

ν)

and

Q(x) ≥ E(πν)>(h−Tx) =
K∑

k=1

pk(πν
k)>hk −

(
K∑

k=1

pk(πν
k)>Tk

)
x.

3



By θ ≥ Q(x) it follows that a pair (x, θ) is feasible only if θ ≥ E(πν)>(h − Tx) which corresponds
to (3).

Hence all constraints (3) are supporting linear function of Q(x). Hence if (xν , θν) is optimal. then
Q(xν = θν) because θ is unrestricted except for θ ≥ Q(x). This happens when θν = E(πν)>(h−Txν),
which justifies the termination criterion in Step 3.

This means that at each iteration, either θν ≥ Q(xν) implying termination or θν < Q(xν). In the
latter case, none of the already defined optimality cuts adequately impose θ ≥ Q(x), so a new set of
multipliers πν

k will be defined at xν to generate an appropriate constraint. The finite convergence of
the algorithm follows from the fact that there is only a finite number of different combinations of the
K multipliers πk, because each corresponds to one of the finitely many different bases.

3 Proof of Convergence: Feasibility Cut

We now prove that Step 2 generate at most a finite number of constraints to guarantee x being feasible.
x being feasible is to say

x ∈ {x|for k = 1, · · · ,K,∃y ≥ 0 s.t Wy = hk − Tkx}.

This is equivalent to
hk − Tkx ∈ range(W ), 1 k = 1, · · · ,K.

Here range(W ) , {t|∃y ≥ 0, s.t. t = Wy}. In Step 2, a subproblem is solved that tests whether
hk−Tkx

ν belongs to range(W ) or not. If not, it means that for some k, hk−Tkx
ν 6∈ range(W ). Then,

there must be a hyperplance separating hk − Tkx
ν and range(W ).

We claim that the simplex multipliers σν gives the hyperplane. By duality, w′ being strictly positive
is the same as (σν)>(hk − Tkx

ν) > 0. Also we have (σν)>W ≤ 0 because σν is an optimal simplex
multiplier, and, at the optimum the reduced costs associated with y must be non-negative.

Therefore, σν gives the separating hyperplane, i.e., a necessary condition for x being feasible is that
(σν)>(hk − Tkx) ≤ 0. There is at most a finite number of such constraints, because there are only a
finite number of optimal based to the problem solved in Step 2.

In conclusion, we have the following theorem:

Theorem 1. When ξ is a finite random variable, the L-shaped algorithm finitely converges to an
optimal solution when it exists, or prove its infeasibility.

We illustrate the feasibility cuts using the following example:

Minimize: 3x1 + 2x2 = Eξ(15y1 + 12y2)
Subject to: 3y1 + 2y2 ≤ x1,

2y1 + 5y2 ≤ x2,

0.8ξ1 ≤ y1 ≤ ξ1,

0.8ξ2 ≤ y2 ≤ ξ2,

x, y ≥ 0,

with ξ1 = 4 or 6 and ξ2 = 4 or 8 independently, with probability 1/2 each and ξ = (ξ1, ξ2)>.
1That why we need fixed recourse

4



Assume the first considered realization of ξ is (6, 8)>. Starting from an initial solution x0 = (0, 0)>,
a first feasibility cut 3x1 + x2 ≥ 123.2 is generated. The first-stage solution is then x1 = (41.067, 0)>.
A second feasibility cut is x2 ≥ 22.4. The first-stage solution becomes x2 = (33.6, 22.4)>. A third
feasibility cut x2 ≥ 41.6 is generated. The first stage solution is

x3 = (27.2, 41.6)>,

which yields feasible second-stage decisions.

4 Enhancement: Feasibility

Consider the previous example. A simple look at the problem reveals that for feasibility when ξ1 = 6
and ξ2 = 8, it is at least necessary to have y1 ≥ 4.8 and y2 ≥ 6.4, which in turn implies x1 ≥ 27.2 and
x2 ≥ 41.6. Adding them in the original problem, we can consider the following program as an initial
problem:

Minimize: 3x1 + 2x2 +Q(x)
Subject to: x1 ≥ 27.2,

x2 ≥ 41.6,

which immediately appears to be feasible. Such situations frequently occur in practice. And in this
section we discuss how to enhance the computational performance of the L-shaped algorithm by
exploiting such properties.

For the following cases, the feasibility check process (i.e., Step 2) can be simplified.

A first case is when the second stage is always feasible, e.g. the farmer’s problem. The stochastic
program is then said to have complete recourse. To be more specific, if range(W )inRm2 , it is said
to have complete recourse. If Ax = b, x ≥ 0 implies h − Tx ∈ range(W ), it is said to have relatively
complete recourse.

The second case is when it is possible to derive some constraints (often called induced constraints)
that have to be satisfied to guarantee second-stage feasibility. For example, the previous problem.

A third case is when step 2 is not required for all k = 1, · · · ,K, but for one single hk. Assume T is
deterministic. Also assume that W is such that t ∈ range(W ) for all t ≥ 0. Let aI = mink{hik} to be
the componentwise minimum of h. Also assume there exists on realization hl such that a = hl. Then
the second stage constraint is equivalent to Wy = a− Tx, y ≥ 0.

5 Enhancement: Multicut Version

In Step 3 of the L-shaped method. all K realizations of the second-stage program are optimized to
obtain their optimal simplex multipliers. These multipliers are then aggregated to generate on cut.
In multicut version, one cur per realization in the second stage is placed. L-Shaped Algorithm

Step 0: Set r = ν = 0 and s(k) = 0 for all k = 1, · · · ,K

5



Step 1: Set ν = ν + 1. Solve the following LP:

minimize: c>x + θ

such that: Ax = b;
Dlx ≥ dl, l = 1, · · · , r;

El(k)x + θ ≥ el(k), l(k) = 1, · · · , s(k); (5)
x ≥ 0, θ ∈ R.

Let (xν , θν
1 , · · · , θν

K) be an optimal solution. If no constraint (5) is present, θν is set equal to
−∞ and is not considered in the computation of xν .

Step 2: As before.

Step 3: For k = 1, · · · ,K solve the linear program:

Minimize: w = q>k y

Subject to: Wy = hk − Tkx
ν , (6)

y ≥ 0.

Let πν
k be the simplex multipliers associated with the optimal solution of Problem k of type (6).

If
θν
k < pk(πν

k)>(hk − Tkx
ν), (7)

define
Es(k)+1 := pk(πν

k)>Tk,

es(k)+1 := pk(πν
k)>hk,

and set s(k) = s(k)+1. If (7) does not hold for any k stop; xν is an optimal solution. Otherwise,
return to Step 1.

We illustrate this algorithm by the first example. Starting from x1 = 0, the sequence of iterations is
as follows:

Iteration 1: x1 is not optimal, send the cuts

θ1 ≥ 1− x

3
; θ2 ≥ 2− x

3
; θ3 ≥ 4− x

3
.

Iteration 2: x2 = 10, θ2
1 = −3, θ2

2 = −8/3, θ2
3 = −2 is not optimal; send the cuts

θ1 ≥ x− 1
3

; θ2 ≥ x− 2
3

; θ3 ≥ x− 4
3

.

Iteration 3: x3 = 2, θ3
1 = 1/3, θ3

2 = 0, θ3
3 = 2/3 is the optimal solution.

6


