
Winter 2008 CS567 Stochastic Linear/Integer Programming
Guest Lecturer: Xu, Huan

Class 2: More Modeling Examples

1 Capacity Expansion

Capacity expansion models optimal choices of the timing and levels of investments to meet future
demands of given product. Here we consider the case of power expansion for electricity generation: to
find optimal levels of investments in various types of power plants to meet future electricity demand.
We discuss three modeling here: static deterministic model, dynamic model and stochastic model.

1.1 Static Deterministic Model

Three properties of a given power plant i can be singled out: the investment cost ri, the operating cost
qi and the availability factor ai which indicates the percent of time the power plant can effectively be
operated. Demands for electricity can be considered a single product, but the level of demand varies
over time. Analysts usually use load duration curve to describe the demand over time in decreasing
order of demand level.

The load duration curve can be approximated by a piecewise constant curve with m segments. Let
d1 = D1, dj = Dj −Dj−1, j = 2, · · · ,m represent the additional power demand in mode j with a time
τj . In the static situation, the problem consists of finding the optimal investment foe each mode, i.e..,
to find a particular plant i such that the total cost of effectively producing electricity during the time
τj :

i(j) = arg min
i=1,··· ,n

{
ri + qiτj

ai

}
.

The solution of the static model captures one essential feature of the problem: base load demand
should be covered by equipment with low operating costs and peak load demand should be covered
by equipment with low investment costs.

1.2 Dynamic Model

At least four elements justify using a dynamic or multistage model:

1. the long-term evolution of equipment costs;

2. the long-term evolution of the load curve;

3. the appearance of new technologies;

4. the obsolescence of currently available equipment.

Of significant importance is the evolution of demand in both the total energy demanded, and the peak
level which determines the total capacity that must be available.

Hence, the following multistage model is proposed to handle this:
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• t = 1, · · · , H index the periods or stages;

• i = 1, · · · , n index the available technologies;

• j = 1, · · · ,m index the operating modes in the load duration curve;

• ai = availability factor of i;

• Li = life time of i;

• gt
i = existing capacity of i at time t, decided before t = 1;

• rt
i = unit investment cost for i at time t;

• qt
i = unit production cost for i at time t;

• dt
j = maximal power demanded in mode j at time t;

• τ t
j = duration of mode j at time t;

• xt
i = new capacity made available for technology i at time t;

• wt
i = total capacity of i available at time t;

• yt
ij = capacity of i effectively used at time t in mode j.

The electricity generation H-stage problem can be defined as

min
x,y,w

H∑

i=1




n∑

i=1

rt
iw

t
i +

n∑

i=1

n∑

j=1

qt
iτ

t
jy

tij




s.t.: wt
i = wt−1

i + xt
i − xt−Li

i , i = 1, · · · , n, t = 1, · · · ,H,
n∑

i=1

yt
ij = dtj , j = 1, · · · ,m, t = 1, · · · ,H,

m∑

j=1

yt
ij ≤ ai(gt

i + wt
i), i = 1, · · · ,m, t = 1, · · · ,H,

x, y, w ≥ 0.

The objective function is the sum of investment plus maintenance costs and operating costs. Compared
to the static model, the factor ai goes to the constraint.

1.3 Stochastic Model

In contrast to the dynamic model which assumes that the evolutions are all deterministic, we can also
consider them as truly random. This leads to the stochastic model. The major difference here is xt

i

now represent the new capacity of i decided at time t, which becomes available at xt+∆i
i (∆i is the

construction delay). We use boldface to represent random variables:

• xt
i = new capacity decided at time t for equipment i;

• wt
i = total capacity of i available at time t;
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• ξ = the vector of random parameters at time t;

The stochastic model is then:

min
x,y,w

Eξ

H∑

i=1




n∑

i=1

rt
iw

t
i +

n∑

i=1

n∑

j=1

qt
iτ

t
jy

tij




s.t.: wt
i = wt−1

i + xt
i − xt−Li

i , i = 1, · · · , n, t = 1, · · · ,H,
n∑

i=1

yt
ij = dtj , j = 1, · · · ,m, t = 1, · · · ,H,

m∑

j=1

yt
ij ≤ ai(gt

i + wt−∆i
i ), i = 1, · · · ,m, t = 1, · · · ,H,

x,y,w ≥ 0.

(1)

Notice here, the decision wt, yt only depend on the realization of the random vector up to time t, but
can not depend on future realizations of the random vector. That is, it is non-anticipative.

If the decision variable (wt, yt) were not dependent on ξt, the objective function can be written as

∑
t

∑

i


Eξrt

iw
t
i +

∑

j

Eξqt
iτ

t
i y

t
ij


 =

∑
t

∑

i


r̄t

iw
t
i +

∑

j

(qiτj)yt
ij


 .

That is, it becomes a deterministic formulation.

Problem 1 is a multistage stochastic liner program with a special property: block separable recourse.
This property stems from a separation that can be made between the aggregate level decision (xt,wt)
and the detailed-level decisions yt. Suppose future demands are always independent of the past. In this
case, the decision on capacity to install in the future at some t only depends on available capacity and
does not depend on the outcomes up to time t. The same xt must then be optimal for any realization
of ξ. The only stochastic decision is in the operation-level: yt, which now depends separately on each
period’s capacity. Thus, this multi-period problem becoms a less complex two-period problem.

Consider the following example: we have a two-period three-operating-mode problem, with n = 4,
∆i = 1, a = 1; g = 0. The only random variable is d1 = ξ. The other demands are d2 = 3 and d3 = 2.
The investment costs are r1 = (10, 7, 16, 6)> with production costs q2 = (4, 4.5, 3.2, 5.5)> and load
duration τ2 = (10, 6, 1)>. We also add a budget constraint to keep all investment below 120. The
resulting stochastic program is:

min : 10x1
1 + 7x1

2 + 16x1
3 + Eξ[

3∑

j=1

τ2
j (4y2

1j + 4.5y2
2j + 3.2y2

3j + 5.5y2
4j)]

s.t.: 10x1
1 + 7x1

2 + 16x1
3 ≤ 120,

− x1
i +

3∑

i=1

y2
ij ≤ 0, i = 1 · · · , 4,

y∑

i=1

y2
i1 = ξ,

y∑

i=1

y2
ij = d2

j , j = 2, 3

x, y ≥ 0.
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Assuming that ξ takes on the values 3, 5 and 7 with probabilities 0.3, 0.4 and 0.3 respectively, an
optimal solution includes x1 = (2.67, 4.00, 3.33, 2.00)> with optimal value of 381.85. If we consider
the expected parameter formulation, the optimal solution is (0.00, 3.00 5.00 2.00>) with an objective
value 365. However, if we use this solution in the stochastic problem, then with probability 0.3 the
demands are not satisfied.

Formulation of 1 requires that the demand is always satisfied, in practice it is often relaxed to a
probability constraint:

P [
n−1∑

i=1

ai(gt
i + wt

i) ≥
m∑

j=1

Dt
j ] ≥ α, ∀t,

for some α ∈ (0, 1).This is often called a chance constraint or probability constraint in stochastic
programming. Notice this constraint is equivalent to a deterministic constraint:

n−1∑

i=1

ai(gt
i + wt

i) ≥ (F t)−1(α), ∀t,

where F t is the distributed function of
∑m

j=1 dt
j .

2 Design for Manufacturing Quality

Consider a designer deciding various product specification to achieve some measure of product cost
and performance. However, the specification may not completely determine the characteristics of each
manufactured product. Key characteristics of the product are often random. For example, every
item includes variations due to machining or other processing, and each customer also does not use
the product in the same way. Thus, cost and performance become random variables, and stochastic
programming can help in this case, because deterministic methods can yield costly results that are
only discovered after production has begun.

In this section, we consider the design of a simple axle assembly for a bicycle cart.

The designer must determine the specified length w and the diameter ξ of the axle. Together, these
quantities determine the performance characteristic of the product. The goal is to determine a com-
bination to achieve the greatest expected profit.

In the production process, the actual dimensions are not exactly those that are specified. For this
example, we suppose that the length w can be produced exactly but the diameter ξ is a random variable
ξ(x) that depends on a specified value x that represents, for example the setting of a machine. We
assume the following triangular distribution of ξ(x):

fx(ξ) =





(100/x2)(ξ − 0.9x) if 0.9x ≤ ξ ≤ x,
(100/x2)(1.1x− ξ) if x ≤ ξ ≤ 1.1x,
0 otherwise.

The decision is to determine w and x subject to w ≤ wmax and x ≤ xmax, in order to maximize the
expected utility.

Further assume that we sell as many as we can produce under the maximum selling price, and the
maximum selling price depends on the length and is expressed as

r(1− e−0.1w),
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where r is the maximum possible for any such products.

Our production costs for labor and equipment are assumed to be fixed, so only material cost is variable.
This cost is proportional to the mean value of the specified dimension because material is acquired
before the production process. That is,

c(wπx2)/4,

for some unit cost c.

We have certain quality constraint:

w

ξ3
≤ 39.27,

w3

ξ4
≤ 63169.

When either of these constraints is violated, the axle deforms, which incurs a quality cost proportional
to the square of the violation. That is:

Q(w, x, ξ) = min
y
{qy2

∣∣w/ξ3 − y ≤ 39.27; w3/ξ4 − 300y ≤ 63169},

and the expected quality cost given w and x is

Q(w, x) =
∫

ξ
Q(w, x, ξ)fx(ξ)dξ

=q

∫ 1.1x

0.9x
(100/x2) min{ξ − 0.9x, 1.1x− ξ}[max{0, w/ξ3 − 39.27, w3/300ξ4 − 210.56}]2dξ.

The overall problem is to find

max (total revenue er item - manufacturing cost per item -expected quality cost).

Mathematically, we write this as

max z(w, x) = r(1− e−0.1w)− c(wπx2)/4−Q(w, x)
s.t. 0 ≤ w ≤ wmax, 0 ≤ x ≤ xmax.

Let wmax = 36, xmax = 1.25, r = 10, c = 0.025, q = 1. The optimal solution is w∗ = 33.6 and
x∗ = 1.038 where the objective function is 8.94.

If we consider the expected parameter formulation, we get a solution w̄ = 35.0719 and x̄ = 0.963, with
the optimal value 9.07. It seems that the expected profit is even better than the stochastic solution.
That is because, the optimal value using the expected parameter overestimate the true expected profit.
Substitute this solution into the stochastic formulation, the expected profit is −26.79. Hence we see
that the VSS is 35.73.
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