Lecture 9

Professor: David Avis
Scribe:Daichi Paku, rev. DA 2011/6/30

1 Single machine scheduling with precedence constraints

: job i must be completed before j can start. (no cycles)

1.1 Problem

Input: a precedence graph with n jobs, and each job j has processing time p_{j}.

Several possible objective:

(i) makespan: minimum length schedule. \rightarrow This is easy, by topological sort.
(ii) minimum sum of completion times, possibly weighted.

$$
\min \sum_{j=1}^{n} w_{j} c_{j} \quad\left(\begin{array}{ccl}
c_{j} & : & \text { completion time of job } j . \\
w_{j} & : & \text { weight of job } j
\end{array}\right)
$$

This is NP-hard, and we discuss this problem in this lecture.

Feasible schedule: just a permutation of $1,2, \cdots n$ consistent with the given graph.

In this example, $c_{1}=p_{1}, c_{2}=p_{1}+p_{5}, c_{3}=p_{1}+p_{5}+p_{2}, \cdots, c_{7}=l$, where $l=\sum_{j=1}^{n} p_{j}$.

1.2 Smith's rule

Suppose there are no precedence constraints, we can use Smith's rule.
For example, $p_{1}=2, p_{2}=4, p_{3}=3$. We can gain the optimal solution by scheduling the jobs in nondecreasing order of p_{j}.

| p_{1} | p_{3} | 1 | p_{2} | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| p_{1} | , | 1 | p_{1} | 1 |

Then, this is optimal.
If we have weights, $w_{1}=1, w_{2}=10, w_{3}=1$, then we schedule the jobs in nondecreasing order of the ratios p_{j} / w_{j}.

This is optimal.

1.3 Formulation

Decision variable

$$
x_{j t}=\left\{\begin{array}{ll}
1 & \text { if job } j \text { starts at time } t \\
0 & \text { otherwise }
\end{array} \quad\binom{j=1,2, \cdots, n}{t=1,2, \cdots, l}\right.
$$

Constraints

1. Each job must start sometime.

$$
\begin{equation*}
\sum_{t=1}^{l} x_{j t}=1 \quad(j=1,2, \cdots n) \tag{1}
\end{equation*}
$$

2. At each time exactly only one job is runnning.

For example. $\left(n=3, p_{1}=2, p_{2}=4, p_{3}=3\right)$
\square : if job starts here, it is running at time s

Exactly one job must start in the shaded area, so,

$$
x_{15}+x_{16}+x_{23}+x_{24}+x_{25}+x_{26}+x_{34}+x_{35}+x_{36}=1
$$

Another example.

In this case,

$$
x_{11}+x_{12}+x_{21}+x_{22}+x_{31}+x_{32}=1
$$

Generally.

$$
\begin{equation*}
\sum_{j=1}^{n} \sum_{t=\max \left(1, s+1-p_{j}\right)}^{s} x_{j t}=1 \quad(s=1,2, \cdots l) \tag{2}
\end{equation*}
$$

3. Precedence constraints.

Example. $\left(p_{i}=3, p_{j}=4, i \rightarrow j\right)$

If job i has not started in time $1,2, \cdots, s$, job j cannot start in time $1,2, \cdots, s+p_{i}$.

$$
\begin{equation*}
\sum_{t=1}^{s+p_{i}} x_{j t} \leq \sum_{v=1}^{s} x_{i v} \quad\binom{s=1,2, \cdots l-p_{i}-p_{j}}{\text { for each }(i \rightarrow j)} \tag{3}
\end{equation*}
$$

4. (Release time: job j cannot start before time r_{j})

$$
\begin{equation*}
x_{j s}=0 \quad\left(s=1,2, \cdots, r_{j}-1\right) \tag{4}
\end{equation*}
$$

Objective function

If job j starts at time t, that is if $x_{j t}=1$, then j will finish at $c_{j}=t+p_{j}$.
So,

$$
\min \sum_{j=1}^{n} w_{j} c_{j}=\sum_{j=1}^{n} w_{j}\left[\sum_{t=1}^{l}\left(t+p_{j}\right) x_{j t}\right] .
$$

1.4 Second formulation

Decision variable

$$
x_{i j}=\left\{\begin{array}{ll}
1 & \text { if job } i \text { precedes job } j \text { in the schedule } \\
0 & \text { otherwise }
\end{array} \quad \text { (for all jobs } i, j\right. \text { distinguished) }
$$

For example.

$$
\begin{array}{|l|l|l|l|}
\hline p_{2} & p_{3} & p_{1} & p_{4} \\
\hline
\end{array}
$$

Constraints

1. Antireflexive. It must be that either job i is before job j, or j is before i in the scheduling, then

$$
\begin{equation*}
x_{i j}+x_{j i}=1 \quad(\text { for all } i, j) \tag{5}
\end{equation*}
$$

2. Transitivity. We allow no cycles. That means:
(a) If $x_{i j}=1$ and $x_{j k}=1$ then $x_{k i}=0$.
(b) If $x_{j k}=1$ and $x_{k i}=1$ then $x_{i j}=0$.
(c) If $x_{k i}=1$ and $x_{i j}=1$ then $x_{j k}=0$.

and we can write these as the single constraint:

$$
\begin{equation*}
x_{i j}+x_{j k}+x_{k i} \leq 2 \quad(\text { for all } i, j, k \text { distinguished }) \tag{6}
\end{equation*}
$$

Now, we can eliminate half of the variables by using (5).

$$
x_{j i}=1-x_{i j} \quad(j>i)
$$

Then (6) is,

$$
\begin{align*}
x_{i j}+x_{j k}-x_{i k} & \leq 1 \tag{7}\\
-x_{i j}-x_{j k}+x_{i k} & \leq 0
\end{align*} \quad\binom{\text { for all } i, j, k}{i<j<k}
$$

3. Precedence constraints.

Actually easy.

$$
\begin{equation*}
x_{i j}=1 \quad(\text { for each }(i \rightarrow j)) \tag{8}
\end{equation*}
$$

Objective function

For example.

$$
\begin{array}{|l|l|l|l|l|}
\hline p_{4} & p_{2} & p_{3} & p_{1} & p_{5} \\
\hline
\end{array} \longrightarrow\left(\begin{array}{rl}
c_{3} & =p_{4}+p_{2}+p_{3} \\
& =x_{43} p_{4}+x_{23} p_{3}+x_{13} p_{1}+x_{53} p_{5}
\end{array}\right)
$$

Generally.

$$
\begin{equation*}
\min \sum_{j=1}^{n} w_{j} c_{j}=\sum_{j=1}^{n} w_{j}\left[\sum_{i=1, i \neq j}^{n} p_{i} x_{i j}+p_{j}\right] \tag{9}
\end{equation*}
$$

Again we can eliminate half of the variables using (5).
Question: Can we include release times r_{j} for each job j in this model?
This looks tricky. Since release time may cause idle time, the current objective function is not correct. Nevertheless, Nemhauser and Savelsbergh [2] showed it could be done as follows. Assume the jobs are labelled so that $0 \leq r_{1} \leq r_{2} \ldots \leq r_{n}$.

- For simplicity, introduce new constant variables $x_{j j}=1$ for each job j.
- Introduce lower bounds on completion time c_{j} for each job j as follows:

$$
\begin{equation*}
c_{j} \geq r_{i} x_{i j}+\sum_{k<i, k \neq j} p_{k}\left(x_{i k}+x_{k j}-1\right)+\sum_{k \geq i, k \neq j} p_{k} x_{k j}+p_{j} \quad 1 \leq i, j \leq n \tag{10}
\end{equation*}
$$

- Use the objective function $\min \sum_{j=1}^{n} w_{j} c_{j}$

The correctness of the lower bound on c_{j} can be seen as follows. Let i be any job that is processed before j, ie. $x_{i j}=1$. Clearly job i cannot start before r_{i}. To this we can add the following to get a lower bound on c_{j} :

- the processing times of all jobs $k<i$ (which by assumption have release time at most r_{i}) which go after job i and before job j, ie. $x_{i k}+x_{k j}-1=1$.
- the processing times of all jobs $k \geq i$ (which by assumption have release time at or after r_{i}) which go before job j, ie. $x_{k j}=1$.
- the processing time of job j.

To see the correctness of the objective function, consider an optimum solution to the problem and let $x_{i j}$ be set according to this solution. We need to see that c_{j} as specified by the bounds (10) is the correct value for the completion time of job $j, j=1,2, \ldots, n$. This means that it should satisfy at least one inequality as an equation, and this equation should give the correct value of c_{j}. In the optimum solution, the jobs are scheduled in consective blocks that contain no idle time. The blocks are separated by idle time. Let B be the block containing job j. If j is the first job in B then necessarily j starts at r_{j} and (10) is an equation giving the correct completion time $r_{j}+p_{j}$ since the two summations are empty. Otherwise let $i \neq j$ be the first job in the block B. As there is no idle time in B, j will start immediately after the sum of the processing times of all jobs that precede it and are either i or follow i in the schedule. For jobs with $k \geq i$ we require only $x_{k j}=1$ since they could not be scheduled before r_{i}. For jobs with $k<i$ we also require $x_{i k}=1$, for otherwise they would be scheduled in another block. Therefore (10) is satisfied as an equation for this value or i and j and gives the correct completion time for job j.

As a final note, in (10) we could eliminate the second summation entirely and drop the condition $k<i$ in the first summation. However, the formulation (10) gives a stronger linear programming relaxation.

References

[1] A.B. Keha, K. Khowala. J.W. Fowler, "Mixed integer programming formulations for single machine scheduling problems",Computers \& Ind. Eng. 56(2009)357-367.
[2] G. L. Nemhauser and M.W.P. Savelsbergh, "A cutting plane algorithm for the single machine scheduling problem with release times," NATO ASI serries F: Computer and Systems Sciences 82(1992)63-84.

