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Lecture 5
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1 Duality

The purpose of this lecture is to introduce duality, which is an important concept in linear
programming. One of the main uses is to give a certificate of optimality. We follow the
approach of Chvátal (1983).

1.1 Certificates of optimality

Recall our previous example.

max z = 5x1 + 6x2 + 9x3

x1 + 2x2 + 3x3 ≤ 5

x1 + x2 + 2x3 ≤ 3

x1, x2, x3 ≥ 0 (1)

The problem has an initial dictionary:

x4 = 5 − x1 − 2x2 − 3x3 ≥ 0

x5 = 3 − x1 − x2 − 2x3 ≥ 0

z = 5x1 + 6x2 + 9x3 (2)

It has optimum solution x∗

1 = 1, x∗

2 = 2, x∗

3 = 0, z∗ = 17, obtained from the final
dictionary:

x1 = 1 − x3 + x4 − 2x5

x2 = 2 − x3 − x4 + x5

z = 17 − 2x3 − x4 − 4x5 (3)

Our original proof of optimality came from the fact that all coefficients in the final
row are non-positive. In general cj ≤ 0 as this is the stopping condition for the simplex
method. Compare the objective row in (3) with that in the initial dictionary (2). Since
they are equivalent, and since the slack variables in (2) only appear once, we can obtain
the final objective function by adding the equation for x4 and four times the equation for
x5 to the initial objective function.
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Or we may work directly with the original inequalities in (1). If we add the first
constraint to four times the second constraint, we get:

x1 + 2x2 + 3x3 ≤ 5

4x1 + 4x2 + 8x3 ≤ 12

−−−−−−−−−−− − −−−−
5x1 + 6x2 + 11x3 ≤ 17

(4)

All of these inequalities are valid for every feasible x1, x2, x3. This gives us a proof of
optimality for the LP, since for every feasible x1, x2, x3 we have

z = 5x1 + 6x2 + 9x3 ≤ 5x1 + 6x2 + 11x3 ≤ 17

(5)

Let y1 be the multiplier for the first constraint, and y2 be the multiplier for the second.
We used y1 = 1 and y2 = 4. Observe that using the cj in the objective row of the final
dictionary (3) we have

y1 = −c4, y2 = −c5.

1.2 Formulation of the dual

In the previous section we hinted that the certificate provided by the multipliers yi can
be obtained from the optimum dictionary. In this section we give an independent way of
doing this. We may manipulate inequalities by one of the following two operations:

1. multiply by non-negative numbers

2. add inequalities together.

We will now formulate the properties that the yi should satisfy. The idea is that they
should give a way to combine the inequalities in the primal in order to give an upper
bound on z. So we must have:

(i) y1, y2 ≥ 0, since otherwise they are not valid multipliers.
(ii) After combining constraints, we must bound the objective z, so:

y1 + y2 ≥ 5, 2y1 + y2 ≥ 6, 3y1 + 2y2 ≥ 9.

Here are some multipliers satisfying (i) and (ii) and the upper bounds on z that they give:
y1 = 5 y2 = 0 z ≤ 25
y1 = 0 y2 = 6 z ≤ 18
y1 = 1 y2 = 4 z ≤ 17

The bound on z is given by 5y1 + 3y2. Since we want the lowest bound possible, we
have one further condition.

(iii) Find min w = 5y1 + 3y2.
Putting all this together we have formulated the dual problem, which is also a linear

program:
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min w = 5y1 + 3y2

y1 + y2 ≥ 5

2y1 + y2 ≥ 6

3y1 + 2y2 ≥ 9

y1, y2 ≥ 0 (6)

This has optimum solution: y∗1 = 1, y∗2 = 4, w∗ = 17.
Using exactly the same logic, we may define a dual for every LP in standard form.

The original LP is called the primal.

• Primal

max z =

n∑

j=1

cjxj (7)

n∑

j=1

aijxj ≤ bi (i = 1, ...,m) (8)

xj ≥ 0 (j=1,...n)

• Dual

min w =
m∑

i=1

biyi (9)

m∑

i=1

aijyi ≥ cj (j = 1, ..., n) (10)

yi ≥ 0 (i=1,...m)

If x1, .., xn satisfy the constraints of the primal, they are called primal feasible. Simi-
larly y1, ..., ym are dual feasible if they satisfy the constraints of the dual.

1.3 Duality theorems

By construction, the purpose of the dual is to provide an upper bound on the value of the
primal solution. This idea is formalized in the weak duality theorem.

Theorem 1. (Weak Duality Theorem) Let x1, x2, ...xn be primal feasible and let y1, y2, ...yn

be dual feasible then

z =

n∑

j=1

cjxj ≤
m∑

i=1

biyi = w (11)
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Proof. Given feasible x1 · · · xn and y1 · · · yn,

n∑

j=1

aijxj ≤ bi

for each i = 1, ..,m, and since yi ≥ 0 we have

n∑

j=1

aijxjyi ≤ biyi.

Summing over all i:

m∑

i=1

n∑

j=1

aijxjyi ≤
m∑

i=1

biyi = w.

Similarly
m∑

i=1

aijyi ≥ cj

for each j = 1, ...n, and since xj ≥ 0 we have

m∑

i=1

aijxjyi ≥ cjxj .

Summing over j we have
m∑

i=1

n∑

j=1

aijxjyi ≥
n∑

j=1

cjxj = z

Combining and noting that we can reverse the order of summation in any finite sum, we
have

z =
n∑

j=1

cjxj ≤
m∑

i=1

n∑

j=1

aijxjyi ≤
m∑

i=1

biyi = w. (12)

It follows immediately that if equations hold throughout in (12), then the
corresponding solutions are both optimal. The strong duality theorem states that this is
always the case when an LP has an optimal solution.

Theorem 2. (Strong Duality Theorem) If a linear programming problem has an optimal
solution, so does its dual, and the respective objective functions are equal.

Proof. Let x∗ be an optimal solution with objective value z∗ = cT x∗. We will exhibit
a feasible dual solution y∗ with bT y∗ = cT x∗, and so optimality follows from the weak
duality theorem.

Consider the final optimal dictionary produced by the simplex method, and let cj, j =
1, 2, ..., n + m be the coefficient of xj in the objective row. We will set

y∗i = −cn+i, i = 1, ...,m
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and show that the following are satisfied:

y∗i ≥ 0 (i = 1, ...m) (13)
m∑

i=1

aijy
∗

i ≥ cj (j = 1, ..., n) (14)

z∗ =

n∑

j=1

cjx
∗

j =

m∑

i=1

biy
∗

i (15)

First, it is clear that inequality (13) is true since cn+i ≤ 0 is the stopping condition of the
simplex method.

Next we observe that the cost row in the final dictionary is equivalent to that in the
initial dictionary. So

z =

n∑

j=1

cjxj = z∗ +

n+m∑

k=1

ckxk (16)

where ck ≤ 0 and is zero for basic variables in the final dictionary. Using this,

z =

n∑

j=1

cjxj = z∗ +

n∑

j=1

cjxj +

m∑

i=1

cn+ixn+i

= z∗ +
n∑

j=1

cjxj +
m∑

i=1

cn+i(bi −
n∑

j=1

aijxj) (17)

= z∗ +

n∑

j=1

cjxj −
m∑

i=1

y∗i bi +

m∑

i=1

n∑

j=1

aijxjy
∗

i

= (z∗ −
m∑

i=1

y∗i bi) +

n∑

j=1

(cj +

m∑

i=1

aijy
∗

i )xj . (18)

Note that to get equation (18) we reverse the order of summation of the finite double sum.
We may conclude two things. Firstly, since there is no constant on the LHS, the RHS

constant must also be zero. (Consider setting xi = 0 for each i). So the constant on the
RHS must also be zero and

z∗ =

m∑

i=1

y∗i bi (19)

showing (15).
Secondly, we may equate the coefficients of xj (equivalently set xj = 1 and otherwise

xi = 0) to see that

cj = cj +

m∑

i=1

aijy
∗

i .

Noting again that cj ≤ 0 for each j, we have

m∑

i=1

aijy
∗

i ≥ cj for each j = 1, . . . , n) (20)

and so (14) holds.
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1.4 Outcomes for primal/dual problems

The weak and strong duality theorems give us information on what is the relationship
between the primal and dual problems. This is summarized in the table below.

P
P

P
P

P
P

P
PP

Primal
Dual

opt Infeasible unbounded

opt
√

× ×
Infeasible ×

√ √

unbounded ×
√

×

× :can not happen√
: can happen

In particular we may conclude that:

primal unbounded ⇒dual infeasible
primal infeasible ⇒dual infeasible or unbounded
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