
Computational Intractability 2010/4/8, rev. 2011/4/14

Lecture 1

Professor: David Avis Scribe:Shohei Nishida

1 Integer programming

There are many important practical problems that can be formulated as integer programs.
In fact, the whole class of NP-complete problems have such a formulation. This means
that we cannot expect polynomially fast algorithms to exist for integer programming.
Nevertheless, important theoretical advances, coupled with fast computer processors, have
opened up new possibilities for finding optimum solutions via integer programming.

1.1 Formulating integer programs

Integer programs are just linear programs for which some or all variables are constrained
to be integers. The simplest has a single constraint and binary variables and is called the
knapsack problem: The input data are two integer sequences, a1, a2, · · ·, an and c1, c2, · · ·, cn

and and an integer b.

max z =
n

∑

j=1

cjxj

n
∑

j=1

ajxj ≤ b (1)

xj = 0 or 1, j = 1, 2, ..., n

The general form is given by an m by n matrix A, an n-vector c and an m-vector b.
Here m is the number of constraints, and n is the number of decision variables.

max z = cT x

Ax ≤ b

x ≥ 0 integer (2)

2 Examples

2.1 Sushi problem

There are n pieces of sushi. Each of them has cost, ai yen, and enjoyment ci. Unfortunately
we have only b yen.We want to maximize total enjoyment with total cost at most b yen.
Which pieces of sushi should we buy? Indeed, this is exactly the knapsack problem
formulated as (1).

1 - 1

2.2 Two machine scheduling problem

Given n jobs that have processing time t1, t2, · · ·, tn,and finish time T . We have two
computers and a job can be scheduled to either computer. we want to find a schedule such
that all jobs are completed by time T , if such a schedule exists. One way to do this is to
find the maximum assignment of work to computer 1 that can be done by time T . This
can be achieved by the following integer program, which is a special case of the knapsack
problem where each aj = cj .

max z =
n

∑

j=1

tjxj

n
∑

j=1

tjxj ≤ T

xj =

{

1 if job j is scheduled on machine 1
0 otherwise

2.3 Travelling salesman problem

There are n cities that a salesman has to visit. We are given aij, the distance between
point i and point j, for each pair of cities i, j. Note that aij is not necessarily equal to aji.
For example, the flying time from Tokyo to Vancouver is not the same as from Vancouver
to Tokyo. The problem is to find the minimum length tour visiting each city once and
returning to the starting point. Here is an integer programming formulation. We can
model the problem as a complete graph with edges in each direction between each pair of
cities.

min z =
∑

1≤i6=j≤n

aijxij

∑

i6=j

xij = 1 j = 1, 2, ..., n (3)

∑

j 6=i

xij = 1, i = 1, 2, ..., n (4)

∑

i,j∈S

xij = |S| − 1 for all S ⊂ {1, 2, ..., n}, 2 ≤ |S| ≤ n − 1 (5)

xij =

{

1 use edge from i to j
0 otherwise

To understand the meaning of the constraints (5) first consider the problem without these
constraints. The meaning of the constraints (3) is that there must be some incoming edge
to each city j. Similarly, the meaning of the constraints (4) is that there must be some
outgoing edge for each city i.

Without the constraints (5) we may have short cycles. For example, with n = 6 cities,
we could use edges 1-2-3-1 and 4-5-6-4. This route satisfies all other constraints, but is
not a travelling salesman tour. Indeed, it violates (5) with S = {1, 2, 3} and S = {4, 5, 6}.
For this reason the constraints (5) are called subtour elimination constraints.

1 - 2

