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11. INTEGER VARIABLES.

In applications, one is often led to seek integers x1, x2, · · · , xn which maximize a linear function

subject to linear constraints. For example, consider a hypothetical round-the-clock telephone switch-

board where operators work on nine-hour shifts. Regulations require that each operator works on

the same shift every day (or night). There are exactly eight shifts over the 24-hour period:

the first shift · · · midnight till 9 AM

the second shift · · · 9 AM till noon

the third shift · · · 6 AM till 3 PM

the fourth shift · · · 9 AM till 6 PM

the fifth shift · · · noon till 9 PM

the sixth shift · · · 3 PM till midnight

the seventh shift · · · 6 PM till 3 AM

the eighth shift · · · 9 PM till 6 AM.

The number of operators required at the switchboard varies with the time of day as indicated below:

midnight till 9 AM · · · one operator

6 AM till 9 AM · · · two operators

9 AM till noon · · · five operators

noon till 6 PM · · · six operators

6 PM till 9 PM · · · three operators

9 PM till midnight · · · two operators.
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The task, of course, is to satisfy these requirements by as few operators as possible. Denoting by xj

the number of operators working on the j−th shift, we are led to

minimize x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8

subject to x1 + x7 + x8 ≥ 1

x1 + x2 + x8 ≥ 1

x1 + x2 + x8 ≥ 1

x1 + x2 + x3 ≥ 2

x2 + x3 + x4 ≥ 5

x3 + x4 + x5 ≥ 6

x4 + x5 + x6 ≥ 6

x5 + x6 + x7 ≥ 3

x6 + x7 + x8 ≥ 2

x1, x2, x3, x4, x5, x6, x7, x8 ≥ 0.

(1)

The optimal solution of this LP problem is

x1 = x2 =
1

3
, x3 =

4

3
, x4 =

10

3
, x5 = x6 =

4

3
, x7 = x8 =

1

3
. (2)

For our application, these numbers are useless: we have forgotten to impose the natural requirement

that

eachxj = integer (j = 1, 2, · · · 8).

Adding this “integrality constraint” to the constraints of (1) we obtain an integer linear programming

problem (or an ILP problem for short); the optimal solution (2) of (1) is no longer feasible in the ILP

problem. There are various ways of solving such problems; in this section, we shall confine ourselves

to an elegant method developed by R. E. Gomory.

To begin with, note that the sum of the eight linear constraints in (1) reads

3
8∑

j=1

xj ≥ 26

or, when divided by three,
8∑

j=1

xj ≥
26

3
.

Hence every satisfactory schedule has to use at least 26/3 operators. On the other hand, the number

of operators used in any schedule is an integer. An integer not less than 26/3 is necessarily at least

nine; we conclude that a satisfactory schedule has to use at least nine operators. Note that the

inquality
8∑

j=1

xj ≥ 9, (3)
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although implied by the linear constraints of (1) together with the ingegrality constraint, is not

implied by the constraints of (1) alone: indeed, (2) satisfies the linear constraints of (1) but violates

(3). Such an inequality is called a cutting plane or simply a cut. The concept of a cut is crucial for

Gomory’s algorithm.

To illustrate the algorithm, we shall

minimize 2x1 + 3x2 + 2x3

subject to x1 + x2 + x3 ≤ 8

2x1 − x2 ≤ 3

x1 + x2 + x3 ≤ 8

x1, x2, x3 ≥ 0

x1, x2, x3 = integer.

(4)

In order to solve (4), we shall first consider the ordinary LP problem obtained from (4) by dropping

the integrality constraint:

minimize 2x1 + 3x2 + 2x3

subject to x1 + x2 + x3 ≤ 8

2x1 − x2 ≤ 3

3x2 + x3 ≤ 10

x1, x2, x3 ≥ 0.

(5)

It is not very likely that an optimal solution of (5) constraints of integers x1, x2, x3; however, if such

a solution does exist then it automatically constitutes an optimal solution of (4). Inspired by this

observation, we shall proceed to solve (5). Applying the simplex method, we begin with the initial

table
x4 = 8 − x1 − x2 − x3

x5 = 3 − 2x1 + x2

x6 = 10 − 3x2 − x3

z = 2x1 + 3x2 + 2x3

(6)

and, after three iterations, arrive at the final table

x1 =
8

3
+

1

3
x4 −

2

3
x5 −

1

3
x6

x2 =
7

3
+

2

3
x4 −

1

3
x5 −

2

3
x6

x3 = 3 − 2x4 + x5 + x6

z =
55

3
−

4

3
x4 −

1

3
x5 −

2

3
x6.

(7)
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The resulting optimal solution (8/3, 7/3, 3) falis to satisfy the integrality constraint of (4). Neverthe-

less, the final able (7) contains valuable information which will bring us closer to solving (4). More

precisely, it points out a cut.

The last row (7) tells us that every feasible solution of (5) satisfies the inequality z ≤ 55/3.

Therefore every feasible solution of (4), bring a feasible solution of (4) gives an integer value to z.

That integer, not exceeding the non-integer 55/3, will certainly not exceed 18. In short, every feasible

solution of (4) satisfies the inequality

z = 2x1 + 3x2 + 2x3 ≤ 18. (8)

Note that (8) is not satisfied by every feasible solution of (5): indeed, (8/3, 7/3, 3) violates (8). Hence

(8) is a cut.

A more careful analysis of the last row of (7) will produce a stronger cut than (8). Indeed, that

row may be written as

(z + x4) + (
1

3
x4 +

1

3
x5 +

2

3
x6) =

55

3
. (9)

For every feasible solution (x1, x2, x3) of (4), and for the corresponding values of x4, x5, x6, z defined by

(6), the fiest bracket on the left-hand side of (9) is an integer and the second bracket is nonnegative.

Thus for every feasible solution of (4), the quantity z + x4 is an integer not exceeding 55/3; we

conclude that every feasible solution of (4) satisfies the inequality

z + x4 ≤ 18. (10)

Clearly, (10) is a stronger cut than (8). Substituting for z and x4 from (6), we may express (10) in

terms of the original variables as

x1 + x2 + x3 ≤ 10. (10′)

Now we are led to consider a new LP problem obtained by adding the cut (10’) to the constraints

of (5):

minimize 2x1 + 3x2 + 2x3

subject to x1 + x2 + x3 ≤ 8

2x1 − x2 ≤ 10

3x2 + x3 ≤ 10

x1 + 2x2 + x3 ≤ 10

x1, x2, x3 ≥ 0.

(11)

This problem and (5) are related to (4) in a similar way. Indeed, every feasible solution of (4) is a

feasible solution of (11); conversely, every integer feasible solution of (11) is a feasible solution of (4).

In addition, the two problems (4) and (11) have the same objective function. Linear programming
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problems with these properties are called relaxations of (4). As before, we shall proceed to solve (11)

with the aim of obtaining either an optimal solution of (4) or a new cut.

It would be silly and inefficient to solve (11) from scratch. Indeed, this problem has been obtained

by adding a new constraint to the problem (5) that we have already solved. In such a situation, the

dual simplex method is called for: we shall add to (7) a formula expressing the new slack variable in

terms of the nonbasic variables x4, x5, x6 and then we shall pivot to restore primal feasibility. From

(), we may express the new slack variable as

x7 = 10− x1 − 2x2 − x3;

substituting for x1, x2 and x3 from (6), we may convert this formula into the desired form. However,

there is an easy direct way of expressing x7 in terms of x4, x5 and x6. Indeed, from the identity (9)

we see that out cut (10) is equivalent to

1

3
x4 +

1

3
x5 +

2

3
x6 ≥

1

3

and so

x7 = −
1

3
+

1

3
x4 +

1

3
x5 +

2

3
x6.

Hence the new table reads

x1 =
8

3
+

1

3
x4 −

2

3
x5 −

1

3
x6

x2 =
7

3
+

2

3
x4 −

1

3
x5 −

2

3
x6

x3 = 3 − 2x4 + x5 + x6

x7 = −
1

3
+

1

3
x4 +

1

3
x5 +

2

3
x6

z =
55

3
−

4

3
x4 −

1

3
x5 −

2

3
x6.

Pivoting (with x7 leaving and x6 entering) we obtain

x6 =
1

2
−

1

2
x4 −

1

2
x5 +

2

3
x7

x1 =
5

2
+

1

2
x4 −

1

2
x5 −

1

2
x7

x2 = 2 + x4 − x7

x3 =
7

2
−

5

2
x4 +

1

2
x5 +

3

2
x7

z = 18 − x4 − x7.
(12)
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This table describes an optimal solution (5/2, 2, 7/2) of (11) which fails to satisfy the integrality

constraint of (4). Note that the current value of z is an integer and so the last row of (12) yields no

cut. However, nothing prebents us from applying the cut-producing technique to, say, the row that

express x1 in (12). That row may be written as

(x1 − x4) + (
1

2
x4 +

1

2
x5 +

1

2
x7) =

5

2
. (13)

As before, we conclude that every feasible solution of (4) satisfies the inequality

x1 − x4 ≤ 2;

adding this cut to the constraints of (11) we obtain a new relaxation of (4). We may formulate the

new relaxation explicitly as

minimize 2x1 + 3x2 + 2x3

subject to x1 + x2 + x3 ≤ 8

2x1 − x2 ≤ 3

3x2 + x3 ≤ 10

x1 + 2x2 + x3 ≤ 10

2x1 + x2 + x3 ≤ 10

x1, x2, x3 ≥ 0.

(14)

However, it is not necessary to do that. In order to solve (14), we only have to extract from (13) a

formula for the new variable x8 in terms of x4, x5, x7, then add this formula to (12) and apply the

dual simplex method. Hence we begin with the table

x6 =
1

2
−

1

2
x4 −

1

2
x5 +

2

3
x7

x1 =
5

2
+

1

2
x4 −

1

2
x5 −

1

2
x7

x2 = 2 + x4 − x7

x3 =
7

2
−

5

2
x4 +

1

2
x5 +

3

2
x7

x8 = −
1

2
+

1

2
x4 +

1

2
x5 +

1

2
x7

z = 18 − x4 − x7.

6



Then we pivot, with x8 leaving and x5 entering, and obtain

x5 = 1 − x4 − x7 + 2x8

x6 = 2x7 − x8

x1 = 2 + x4 − x8

x2 = 2 + x4 − x7

x3 = 4 − 3x4 + x7 + x8

z = 18 − x4 − x7 .

This time, luck is finally on our side: the last table describes an optimal solution (2, 2, 4) of (14).

This solution consists of integers and so it constitutes an optimal solution of (4).

The cut-producing technique illustrated above applies to all the problems with “all integer data”.

These are the problems

minimize
∑n

j=1
cjxj

subject to
∑n

j=1
aijxj ≤ bi (i = 1, 2, · · · ,m)

xj ≥ 0 (j = 1, 2, · · · , n)

xj = integer (j = 1, 2, · · · , n)

(15)

such that all the numbers aij, bi and cj are integers. The “all integer” property guarantees that,

for every choice of integers x1, x2, · · · , xn, all the slack variables xn+1, xn+2, · · · , xm and the objecive

function z assume integer values.

In order to provide an overview of Gomory’s algorithm, we shall solve another ILP problem with

all-integer data:

minimize x1 + x2

subject to 7x1 − 3x2 ≤ 7

−2x1 + 3x2 ≤ 3

x1, x2 ≥ 0

x1, x2 = integer.

(16)

Dropping the integrality constraint form (16), we obtain its relaxation

minimize x1 + x2

subject to 7x1 − 3x2 ≤ 7

−2x1 + 3x2 ≤ 3

x1, x2 ≥ 0.
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Solving this LP problem by the simplex method, we arrive at the final table

x1 = 2 −
1

5
x3 −

1

5
x4

x2 =
7

3
−

2

15
x3 −

7

15
x4

z =
13

3
−

1

3
x3 −

2

3
x4.

For moment, let us consider the feneral situation when we have arrived at the final table for some re-

laxation of an ILP problem (15) with all-integer data. Denoting by N the set of “nonbasic subscripts”

we may write the last row of that table as

z = v −
∑

j∈N

djxj. (17)

If v is not an integer then (17) may be used to produce a cut. Indeed, writing ⌊t⌋ for the largest

integer not exceeding t (so that ⌊1/2⌋ = 0, ⌊−1/3⌋ = −1, etc.) we may write (17) as

(z +
∑

j∈N

⌊dj⌋xj) +
∑

j∈N

(dj − ⌊dj⌋)xj = v. (18)

IF (x1, x2, · · · , xn) is a deasible solution of (15) then first bracket has an integer value whereas the

second bracket has a nonnegatibe value. We conclude that every feasible solution of (15) satisfies

the inequality

z +
∑

j∈N

⌊dj⌋xj ≤ ⌊v⌋; (19)

this inequality is our cut. Adding (19) to the constraints of the previous relaxation, we obtain a new

relaxation of (15). In order to solve this relaxation, we first observe that (19) is equivalent to

∑

j∈N

(dj − ⌊dj⌋)xj ≥ v − ⌊v⌋

and so its slack variable (say xk+1) can be expressed as

xk+1 = (⌊v⌋ − v) +
∑

j∈N

(dj − ⌊dj⌋)xj. (20)

Then we add (20) to our last table and apply the dual simplex method to restore primal feasibility.

It is important to note that, for every choice of integers x1, x2, · · · , xn, the new variable xk+1 assumes

an integer value. That may not be obvious from (20); however, it does follow quite easily from the

equivalent formula

xk+1 = ⌊v⌋ − z −
∑

j∈N

⌊dj⌋xj.
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Returing to our example, we add the formula

x5 = −
1

3
+

1

3
x3 +

2

3
x4

to our last able and apply the dual simplex method. One iteration (with x5 leaving and x3 entering)

leads to

x1 =
9

5
+

1

5
x4 −

3

5
x5

x2 =
11

5
−

1

15
x4 −

2

5
x5

x3 = 1 − 2x4 + 3x5

z = 4 − x5.

That table brings up the general problem of finding a cut when z has an integer value.

In that general case, we may assume that at least one of the original variables x1, x2, · · · , xn has

a non-integer value. (If that is not the case then we are done: since the optimal solution of the

last relaxation consists of integers, it constitutes an optimal solution of the ILP problem.) The row

expressing that variable,

xi = b−
∑

j∈N

ajxj,

may be written as

(xi +
∑

j∈N

⌊aj⌋xj) +
∑

j∈N

(aj − ⌊aj⌋)xj ≤ b

and yields the cut

xi +
∑

j∈N

⌊aj⌋xj ≤ ⌊b⌋

which is equivalent to ∑

j∈N

(aj − ⌊aj⌋)xj ≥ b− ⌊b⌋.

The new slack variable

xk+1 = (⌊b⌋ − b) +
∑

j∈N

(aj − ⌊aj⌋)xj

assumes integer values for every choice of integers x1, x2, · · · , xn; indeed, we have

xk+1 = ⌊b⌋ − xi −
∑

j∈N

⌊aj⌋xj .

The whole procedure is no different from that of deriving cuts from the formula for z. In fact, any

row with a non-integer absolute term can be used to produce a cut. The row that is actually used is

called the source row.
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Returning to our example once again, we let the xi -row be the source row. Thus we add

x6 = −
4

5
+

4

5
x4 +

3

5
x5

to our last table and then apply the dual simplex method. After two iterations we obtain the table

x5 =
2

9
+

2

9
x3 +

5

9
x6

x4 =
5

6
−

1

6
x3 +

5

6
x6

x1 =
11

6
−

1

6
x3 −

1

6
x6

x2 =
35

18
−

1

18
x3 +

7

18
x6

z =
34

9
−

2

9
x3 −

5

9
x6.

This table illustrates a minor feature of the algorithm that has not come up so far: note that for

every choice of nonnegative x3 and x6, the variable x5 assumes a positive value. The constraint

x5 ≥ 0, being implied by x3 ≥ 0 and x6 ≥ 0, is superflous and so we may delete the x5 row from the

last table without affecting the problem. More generally, from a final table for some relaxation, we

may delete a row

xi = b+
∑

j∈N

djxj

as long as xi is a “superflous slack” variable (that is, as long as i > n and dj > 0 for each j ∈ N).

Of course, the deletion is purely optional; the only motivation behind it is the desire to decrease the

size of the table and to avoid unnecessary caluculations in the future. Deleting the x5 -row from the

last table we obtain

x4 =
5

6
−

1

6
x3 +

5

6
x6

x1 =
11

6
−

1

6
x3 −

1

6
x6

x2 =
35

18
−

1

18
x3 +

7

18
x6

z =
34

9
−

2

9
x3 −

5

9
x6.

Letting the z -row be the source row, we add

x7 = −
7

9
+

2

9
x3 +

5

9
x6.
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After one iteration of the dual simplex method, we obtain

x3 =
7

2
−

5

2
x6 +

9

2
x7

x1 =
5

4
+

1

4
x6 −

3

4
x7

x2 =
7

4
−

1

4
x6 −

1

4
x7

x4 =
1

4
+

5

4
x6 −

3

4
x7

z = 3 − x7.

Letting the x2 -row be the source row, we add

x8 = −
3

4
+

1

4
x6 +

1

4
x7.

After two iterations of the dual simplex method, we obtain

x7 =
4

7
+

1

7
x3 +

10

7
x8

x6 =
17

7
−

1

7
x3 +

18

7
x8

x1 =
10

7
−

1

7
x3 −

3

7
x8

x2 = 1 − x8

x4 =
20

7
−

2

7
x3 +

15

7
x8

z =
17

7
−

1

7
x3 −

10

7
x8.

Now the superfluous x7 -row may be deleted. Then, letting the z -row be the source row, we add

x9 = −
3

7
+

1

7
x3 +

3

7
x8.

After one iteration of the dual simplex method, we obtain

x3 = 3 − 3x8 + 7x9

x6 = 2 + 3x8 − x9

x1 = 1 − x9

x2 = 1 − x8

x4 = 2 + 3x8 − 2x9

z = 2 − x8 − x9.
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This table describes an optimal solution (1, 1) of (16).

The reader may find it illuminating to review our second example in terms of geometry. The

feasible region of the first relaxation of (16) is depicted below.

The small circles represent points with integer coodinates x1, x2; it is obvious that (16) has only

four feasible solutions: (0, 0), (0, 1), (1, 0) and (1, 1). Solving (16), we have introduced five cuts in a

succession. Here they go, expressed in terms of x1 and x2:

the first cut · · · x1 + x2 ≤ 4

the second cut · · · −x1 + 3x2 ≤ 4

the third cut · · · x1 + x2 ≤ 3

the fourth cut · · · x2 ≤ 1

the fifth cut · · · x1 ≤ 1.

Introducing each new cut in this sequence, we have obtained a new relaxation of (16); its feasible

region resulted by “cutting off” a part of the feasible region of the previous relation. This process is

illustrated below.
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Figure 1: After the first cut

Figure 2: After the second cut

Finally, let us touch upon the question of “finite termination”: it is conceivable that the algorithm,

as we have described it so far, might keep on producing cuts in an endless sequence and never

terminate. (However, the author must confess that he does not know any example where this actually

happens.) Gomory has shown how to avoid such a misfortune by careful choices of the source rows

[ ]. We shall not reproduce his proof.

This section ends on a sour note. True, the cutting plane algorithm always terminates. However,

the sequence of cuts that is creates is usually very long, often too long to handle. Somewhat para-

doxically, quite unsophistcated methods for solving ILP problems whose efficiency comes anywhere

near to, say, that of the simplex method. In fact, there are results [ ], [ ] in the theory of “com-

putational complexity” which strongly suggest that there is no “efficient” algorithm for solving the
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Figure 3: After the third cut

Figure 4: After the fourth cut

Figure 5: After the fifth cut
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ILP problems. With the present level of computer technology, about 200 variables seems to be the

upper bound on the size of ILP problems that can be solved within a reasonable time. (Of course, if

the problems exhibit certain special structures then there may be efficient algorithms which exploit

those special structures; such algorithms push the limits much farther.)
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