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10. THE DUAL SIMPLEX METHOD.

In Section 5, we have observed that solving an LP problem by the simplex method, we obtain a

solution of its dual as a by-product. Vice versa, solving the dual we also solve the primal. This

observation is useful for solving problems such as

maximize −4x1 − 8x2 − 9x3

subject to 2x1 − x2 − x3 ≤ 1

3x1 − 4x2 + x3 ≤ 3

−5x1 − 2x3 ≤ −8

x1, x2, x3 ≥ 0.

(1)

Since this problem does not have feasible origin, the routine approach calls for the two-phase method.

Nevertheless, we can avoid the two-phase method as soon as we realize that the dual of (1),

minimize y1 + 3y2 − 8y3

subject to 2y1 + 3y2 − 5y3 ≥ −4

−y1 − 4y2 ≥ −8

−y1 + y2 − 2y3 ≥ −9

y1, y2, y3 ≥ 0.

(2)

does have feasible origin. Hence we may simply solve the dual and then read the optimal primal

solution off the final table for the dual. In this section, we shall discuss a way of solving the dual

without actually saying so. That is accomplished by a method due to C. E. Lemke [ ] which is ucually

called the dual simplex method. We shall first describe it as a mirror image of the simplex method

and then we shall illustrate it on the example (1). Only then we shall note (without proof) that the

dual simplex method is nothing but a disguised simplex method working on the dual. In closing, we

shall mention a context in which the dual simplex method is particularly usuful.

To begin with, we need some new terminology. So far, we have called tables “feasible” if they

described feasible solutions; from now on, we shall call such tables primal feasible. On the other

hand, we shall call a table dual feasible uf in its formula for the objective function, every variable

has a nonpositive coefficient. Note that the simplex method produces a sequence of promal feasible

tables; as soon as it finds one which is also dual feasible, the method terminates. On the other hand,

the dual simplex method produces a sequence of dual feasible tables; as soon as it finds one which is

also promal feasible, the method terminates. In each iteration of the simplex method, we first choose

the entering variable and then determine the leaving variable. For the entering variable, we may

choose any nonbasic variable with a positive coeeficient in the z -row; as rule, we choose the variable
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with the largest positive coeeficient. Then we determine the leaving variable so as to preserve promal

feasibility in our next table. On the other hand, in each iteration of the dual simplex method, we first

choose the leaving variable and then determine the entering variable. For the leaving variable, we

may choose any basic variable whose current value is negative; as a rule, we shall choose the variable

with the largest absolute value. Then we shall determine the entering variable so as to preserve dual

feasibiity in our next table; this point deserves a more detailed explanation. For definiteness, let the

row that describes the leaving variable xi read

xi = −b+
∑
j∈N

ajxj (3)

and let the last row read

z = v +
∑
j∈N

djxj.

If aj ≤ 0 for every j ∈ N then our problem has no feasible solution: indeed, (3) implies that

xi ≤ −b < 0 whenever xj ≥ 0 for all j ∈ N . On the other hand, if aj > 0 for at least one j ∈ N then

we choose for the entering variable that xk for which ak > 0 and which minimizes the ratio dj/aj.

Let us verify that this choice does indeed preserve dual feasibility in our next table. Since we have

xk =
b

ak
+
xi
ak
−
∑
j 6=k

aj
ak
xk,

the last row of our next table reads

z = v −
∑
j 6=k

djxj − dk(
b

ak
+
xi
ak
−
∑
j 6=k

aj
ak
xk)

or, after simplifications,

z = (v − dkb

ak
)− dk

ak
xi −

∑
j 6=k

(dj −
dkaj
ak

)xj. (4)

We have, of cource, ak > 0 and dj ≥ 0 for every j; in addition, aj > 0 implies dj/aj ≥ dk/ak. Hence

the coefficient at each variable in (4) is negatibe or zero; our new table is dual feasible. Finally,

let us recall that in absence of degeneracy, each iteration of the simplex method increases the value

of z (and so cycling cannot occur). By dual degeneracy, we mean the phenomenon of at least one

nonbasic variable having the coefficient zero in the z-row of a dual feasible table. It follows directly

from (4) that in absense of dual degeneracy, each iteration of the dual simplex method decreases

the value of z (and so cycling cannot occur). In Section 3, we have proved that degeneray can be

prevented by the perturbation technique. Similarly, dual degeneracy can be prebented when, for a

hypothetial small ε, the objective function
∑
cjxj is replacced by

n∑
j=1

(cj + εj)xj.
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Next, we shall illustrate the dual simplex method on the example (1). Writing down the formulas

for the slack variables and for the objective function, we obtain the table

x4 = 1 − 2x1 + x2 + x3

x5 = 3 − 3x1 + 4x2 − x3

x6 = −8 + 5x1 + 2x3

z = − 4x1 − 8x2 − 9x3.

Since this table is dual feasible, we may use it to initialize the dual simplex method. Next, we have

to choose the leaving variable. Since only one bariable has a negative value, the choice is unique: x6

will leave. In order to determine the entering variable, we compare the ratios 4/5 and 9/2; since the

first is smaller, x1 will enter. Pivoting as usual, we arrive at the table

x1 =
8

5
−

2

5
x3 +

1

5
x6

x4 = −
11

5
+ x2 +

9

5
x3 −

2

5
x6

x5 = −
9

5
+ 4x2 +

1

5
x3 −

3

5
x6

z = −
32

5
− 8x2 −

37

5
x3 −

4

5
x6.

Note that the value of z has decreased. Now there are two negative variables; since x4 has the larger

absolute value, we shall make it leaving. In order to determine the entering variable, we compare the

ratios 8/1 and 37/9 (since −2/5 is negative, the ratio 4/2 is ignored); since the second is smaller, x3

will enter. Our next table reads

x3 =
11

9
−

5

9
x2 +

2

9
x6 +

5

9
x4

x1 =
10

9
+

2

9
x2 +

1

9
x6 −

2

9
x4

x5 = −
14

9
+

35

9
x2 −

5

9
x6 +

1

9
x4

z = −
139

9
−

35

9
x2 −

22

9
x6 −

37

9
x4.

Next, x5 leaves and x2 enters:

x2 =
2

5
+

1

7
x6 −

1

35
x4 +

9

35
x5

x3 = 1 +
1

7
x6 +

4

7
x4 −

1

7
x5

x1 =
6

5
+

1

7
x6 −

8

35
x4 +

2

35
x5

z = −17 − 3x6 − 4x4 − x5.
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The last table, being both dual feasible and primal feasible, is the final table for our problem: the

optimal solution of (1) is x1 = 6/5, x2 = 2/5, x3 = 1.

We have accused the dual simplex method of being “nothing but a disguised simpex method

working on the dual”. In order to examine this accusation, we shall now solve the dual (2) of (1). In

the canonical form, (2) reads

maximize −y1 − 3y2 + 8y3

subject to 2y1 − 3y2 + 5y3 ≤ 4

y1 + 4y2 + ≤ 8

y1 − y2 + 2y3 ≤ 9

y1, y2, y3 ≥ 0.

Applying the simplex method, we construct the following sequence of tables:

First table:
y6 = 9 − 2y3 + y2 − y1

y5 = 8 − 4y2 − y1

y4 = 4 − 5y3 + 3y2 + 2y1

z = 8y3 − 3y2 − y1.

Second table:

y3 =
4

5
+

3

5
y2 +

2

5
y1 −

1

5
y4

y6 =
37

5
−

1

5
y2 −

9

5
y1 +

2

5
y4

y5 = 8 − 4y2 − y1

z =
32

5
+

9

5
y2 +

11

5
y1 −

8

5
y4.

Third table:

y1 =
37

9
−

1

9
y2 +

2

9
y4 −

5

9
y6

y3 =
22

9
+

5

9
y2 −

1

9
y4 −

2

9
y6

y5 =
35

9
−

35

9
y2 −

2

9
y4 +

5

9
y6

z =
139

9
+

14

9
y2 −

10

9
y4 −

11

9
y6.
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Forth table:

y2 = 1 −
2

35
y4 +

1

7
y6 −

9

35
y5

y1 = 4 +
8

35
y4 −

4

7
y6 +

1

35
y5

y3 = 3 −
1

7
y4 −

1

7
y6 −

1

7
y5

z = 17 −
6

5
y4 − y6 − −

2

5
y5.

Comparing this sequence of four tables with the sequence of four tables produced by the dual simplex

method, we shall uncover an interesting correspondence. To begin with, let us forget all about the

actual coefficients in those tables; instead, let us concentrate on the basic-nonbasic status of vari-

ables, as recorded below.

The dual simlex method The simplex method on the dual

Basic Nonbasic Basic Nonbasic

First table x4, x5, x6 x1, x2, x3 y6, y5, y4 y3, y2, y1

Second table x1, x4, x5 x2, x3, x6 y3, y6, y5 y2, y1, y4

Third table x3, x1, x5 x2, x6, x4 y1, y3, y5 y2, y4, y6

Forth table x2, x3, x1 x6, x4, x5 y2, y1, y3 y4, y6, y5

In order to discern the pattern of this table, we shall note that the variables x1, x2, · · · , x6 can

be matched up with the variables y1, y2, · · · , y6 in a rather natural way. For example, both x4 and

y1 are associated with the first primal constraint: x4 is its slack and y1 is its multiplier. In the same

way, every constraint, primal or dual, associates with a pair of variables xi, yj:

the first primal constraint · · · x4, y1

the second primal constraint · · · x5, y2

the third primal constraint · · · x6, y3

the first dual constraint · · · y4, x1

the second dual constraint · · · y5, x2

the third dual constraint · · · y6, x3.

Now we may observe that at each stage of the computations, from the first table to the fourth,

our correspondence carries the nonbasic (resp. basic) variables xi onto the basic (resp. nonbasic)

variables yj. Next, bringing in the numerical values of the coefficients, we shall make a startling
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discovery. For example, let us compare the third tables in each sequence:

x3 =
11

9
−

5

9
x2 +

2

9
x6 +

5

9
x4

x1 =
10

9
+

2

9
x2 +

1

9
x6 −

2

9
x4

x5 = −
14

9
+

35

9
x2 −

5

9
x6 +

1

9
x4

z = −
139

9
−

35

9
x2 −

22

9
x6 −

37

9
x4

(5)

and

y1 =
37

9
−

1

9
y2 +

2

9
y4 −

5

9
y6

y3 =
22

9
+

5

9
y2 −

1

9
y4 −

2

9
y6

y5 =
35

9
−

35

9
y2 −

2

9
y4 +

5

9
y6

z =
139

9
+

14

9
y2 −

10

9
y4 −

11

9
y6.

(6)

The two tables (5) and (6) look dangerously alike. For example, the numbers in the last row of (5)

are, from left to right, −139/9, 35/9, 22/9, 7/9. Similarly, the numbers in the x1 -row of (5) are, from

left to right, 10/9, 2/9, 1/9, −2/9 whereas the numbers in the y4 -column of (6) are, from bottom to

top, −10/9, −2/9, −1/9, 2/9. And so on. The entire table (6) can be reconstructed from (5) and vice

versa. The same correspondence exists between the first tables in each sequence, between the second

tables in each sequence and between the fourth tables in each sequence. In fact, that correspondence

is quite general: given a table for some problem, we may readily construct its mirror image for the

dual. Pivoting from one primal table to another amounts to pivoting from the first mirror image

to the second. The correspondence can be described, and its validity established, without much

difficulty. However, the argument involves a fair amount of formal plugging and griding which is not

our cup of tea. We simply wanted to point out the close parallelism between the two sequences.

Finally, we shall discuss a use of the dual simplex method which often comes up in applications.

For example, let us return to Nikki’s nutrition problem from Section 1. With a little less forethought,

she might bave formulated her problem as

maximize 3x1 + 24x2 + 13x3 + 9x4 + 20x5 + 19x6

subject to 110x1 + 205x2 + 160x3 + 160x4 + 420x5 + 260x6 ≥ 2000

4x1 + 32x2 + 13x3 + 8x4 + 4x5 + 14x6 ≥ 55

2x1 + 12x2 + 54x3 + 285x4 + 22x5 + 80x6 ≥ 800

x1, x2, x3, x4, x5, x6 ≥ 0.

(7)
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Solving (7), she would arrive at the optimal solution x1 = 14.24, x2 = x3 = 0, x4 = 2.71, x5 = x6 = 0.

That menu, involving more than fourteen servings of oatmeal is clearly unacceptable to her. It would

be only now that she would recognize the imperative of imposing an upper bound on the amount of

oatmeal to be devoured each day. Thus she might add the constraint x1 ≤ 4 to (7) and solve the

new problem from scratch. Doing so, she would waste all her calculations which led to solving (7);

that could be avoided by appropriate use of the dual simplex method.

To explain how the dual simplex method is used in such a situation, we shall consider an example

which is numerically simpler,

maximize 5x1 + 4x2 + 3x3

subject to 2x1 + 3x2 + x3 ≤ 5

4x1 + x2 + 2x3 ≤ 11

3x1 + 4x2 + 2x3 ≤ 8

x1, x2, x3 ≥ 0.

(8)

In fact, this is the first LP problem we have ever solved; the final table reads

x3 = 1 + x2 + 3x4 − 2x6

x1 = 2 − 2x2 − 2x4 + x6

x5 = 1 + 5x2 + 2x4

z = 13 − 3x2 − x4 − x6.
(9)

For some reason, we decide to add a new constraint, x1 + x2 + x3 ≤ 1, to the old constraints of (8).

That constraint makes the optimal solution x1 = 2, x2 = 0, x3 = 1 infeasible in the new problem,

maximize 5x1 + 4x2 + 3x3

subject to 2x1 + 3x2 + x3 ≤ 5

4x1 + x2 + 2x3 ≤ 11

3x1 + 4x2 + 2x3 ≤ 8

x1 + x2 + x3 ≤ 1

x1, x2, x3 ≥ 0.

(10)

In order to solve (10), we may simply start from scratch; an alternative is to apply the dual simplex

method to an enlarged version of (9). Pursing that line we have to express the new slack variable

x7 = 1− x1 − x2 − x3

in terms of the nonbasic variables x2, x4, x6 of (9). The desired expression is obtained simply by

substituting for x1 and x3 from (9):

x7 = 1− (2− 2x2 − 2x4 + x6)− x2 − (1 + x2 + 3x4 − 2x6)

= −2− x4 + x6.
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Adding this formula to (9) we obtain the table

x7 = −2 − x4 + x6

x3 = 1 + x2 + 3x4 − 2x6

x1 = 2 − 2x2 − 2x4 + x6

x5 = 1 + 5x2 + 2x4

z = 13 − 3x2 − x4 − x6

which, being dual feasible, initializes the dual simlex method. Leave x7, enter x6:

x7 = −2 − x4 + x6

x3 = 1 + x2 + 3x4 − 2x6

x1 = 2 − 2x2 − 2x4 + x6

x5 = 1 + 5x2 + 2x4

z = 13 − 3x2 − x4 − x6.

Leave x3, enter x4:

x4 = 3 − x2 + 2x7 + x3

x6 = 5 − x2 + 3x7 + x3

x1 = 1 − x2 − x7 − x3

x5 = 7 + 3x2 + 4x7 + 2x3

z = 5 − x2 − 5x7 − 2x3.

The last table, being both primal feasible and dual feasible, represents an optimal solution of (10).

In this example, the attack from scratch would bring us to the optimal solution in only one

iteration whereas our strategy took two iterations. However, the dual simplex method often turns

out to be the more economical of the two. Used in this context, the dual simplex method constitutes

an important subroutine of an algorithm we shall discuss in the next section.
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