10. THE DUAL SIMPLEX METHOD.

In Section 5, we have observed that solving an LP problem by the simplex method, we obtain a solution of its dual as a by-product. Vice versa, solving the dual we also solve the primal. This observation is useful for solving problems such as

$$
\begin{array}{llll}
\operatorname{maximize} & -4 x_{1}-8 x_{2}-9 x_{3} \\
\text { subject to } & 2 x_{1}-x_{2}-x_{3} & \leq 1 \\
& 3 x_{1} & -4 x_{2}+x_{3} & \leq 3 \tag{1}\\
& -5 x_{1} & & -2 x_{3} \\
& & & \leq-8 \\
& & x_{1}, x_{2}, x_{3} & \geq 0 .
\end{array}
$$

Since this problem does not have feasible origin, the routine approach calls for the two-phase method. Nevertheless, we can avoid the two-phase method as soon as we realize that the dual of (1),

$$
\begin{array}{llll}
\operatorname{minimize} & y_{1}+3 y_{2}-8 y_{3} \\
\text { subject to } & 2 y_{1}+3 y_{2}-5 y_{3} & \geq-4 \\
& -y_{1}-4 y_{2} & \geq-8 \tag{2}\\
& -y_{1}+y_{2}-2 y_{3} & \geq-9 \\
& & y_{1}, y_{2}, y_{3} & \geq 0 .
\end{array}
$$

does have feasible origin. Hence we may simply solve the dual and then read the optimal primal solution off the final table for the dual. In this section, we shall discuss a way of solving the dual without actually saying so. That is accomplished by a method due to C. E. Lemke [] which is ucually called the dual simplex method. We shall first describe it as a mirror image of the simplex method and then we shall illustrate it on the example (1). Only then we shall note (without proof) that the dual simplex method is nothing but a disguised simplex method working on the dual. In closing, we shall mention a context in which the dual simplex method is particularly usuful.

To begin with, we need some new terminology. So far, we have called tables "feasible" if they described feasible solutions; from now on, we shall call such tables primal feasible. On the other hand, we shall call a table dual feasible uf in its formula for the objective function, every variable has a nonpositive coefficient. Note that the simplex method produces a sequence of promal feasible tables; as soon as it finds one which is also dual feasible, the method terminates. On the other hand, the dual simplex method produces a sequence of dual feasible tables; as soon as it finds one which is also promal feasible, the method terminates. In each iteration of the simplex method, we first choose the entering variable and then determine the leaving variable. For the entering variable, we may choose any nonbasic variable with a positive coeeficient in the z -row; as rule, we choose the variable
with the largest positive coeeficient. Then we determine the leaving variable so as to preserve promal feasibility in our next table. On the other hand, in each iteration of the dual simplex method, we first choose the leaving variable and then determine the entering variable. For the leaving variable, we may choose any basic variable whose current value is negative; as a rule, we shall choose the variable with the largest absolute value. Then we shall determine the entering variable so as to preserve dual feasibiity in our next table; this point deserves a more detailed explanation. For definiteness, let the row that describes the leaving variable x_{i} read

$$
\begin{equation*}
x_{i}=-b+\sum_{j \in N} a_{j} x_{j} \tag{3}
\end{equation*}
$$

and let the last row read

$$
z=v+\sum_{j \in N} d_{j} x_{j} .
$$

If $a_{j} \leq 0$ for every $j \in N$ then our problem has no feasible solution: indeed, (3) implies that $x_{i} \leq-b<0$ whenever $x_{j} \geq 0$ for all $j \in N$. On the other hand, if $a_{j}>0$ for at least one $j \in N$ then we choose for the entering variable that x_{k} for which $a_{k}>0$ and which minimizes the ratio d_{j} / a_{j}. Let us verify that this choice does indeed preserve dual feasibility in our next table. Since we have

$$
x_{k}=\frac{b}{a_{k}}+\frac{x_{i}}{a_{k}}-\sum_{j \neq k} \frac{a_{j}}{a_{k}} x_{k},
$$

the last row of our next table reads

$$
z=v-\sum_{j \neq k} d_{j} x_{j}-d_{k}\left(\frac{b}{a_{k}}+\frac{x_{i}}{a_{k}}-\sum_{j \neq k} \frac{a_{j}}{a_{k}} x_{k}\right)
$$

or, after simplifications,

$$
\begin{equation*}
z=\left(v-\frac{d_{k} b}{a_{k}}\right)-\frac{d_{k}}{a_{k}} x_{i}-\sum_{j \neq k}\left(d_{j}-\frac{d_{k} a_{j}}{a_{k}}\right) x_{j} . \tag{4}
\end{equation*}
$$

We have, of cource, $a_{k}>0$ and $d_{j} \geq 0$ for every j ; in addition, $a_{j}>0$ implies $d j / a_{j} \geq d_{k} / a_{k}$. Hence the coefficient at each variable in (4) is negatibe or zero; our new table is dual feasible. Finally, let us recall that in absence of degeneracy, each iteration of the simplex method increases the value of z (and so cycling cannot occur). By dual degeneracy, we mean the phenomenon of at least one nonbasic variable having the coefficient zero in the z-row of a dual feasible table. It follows directly from (4) that in absense of dual degeneracy, each iteration of the dual simplex method decreases the value of z (and so cycling cannot occur). In Section 3, we have proved that degeneray can be prevented by the perturbation technique. Similarly, dual degeneracy can be prebented when, for a hypothetial small ϵ, the objective function $\sum c_{j} x_{j}$ is replacced by

$$
\sum_{j=1}^{n}\left(c_{j}+\epsilon^{j}\right) x_{j} .
$$

Next, we shall illustrate the dual simplex method on the example (1). Writing down the formulas for the slack variables and for the objective function, we obtain the table

$$
\begin{array}{rlrl}
x_{4} & =1 & -2 x_{1}+x_{2}+x_{3} \\
x_{5} & =3-3 x_{1}+4 x_{2} & -x_{3} \\
x_{6} & =-8+5 x_{1} & & +2 x_{3} \\
\hline z & = & -4 x_{1}-8 x_{2}-9 x_{3} .
\end{array}
$$

Since this table is dual feasible, we may use it to initialize the dual simplex method. Next, we have to choose the leaving variable. Since only one bariable has a negative value, the choice is unique: x_{6} will leave. In order to determine the entering variable, we compare the ratios $4 / 5$ and $9 / 2$; since the first is smaller, x_{1} will enter. Pivoting as usual, we arrive at the table

$$
\begin{aligned}
& x_{1}=\frac{8}{5} \\
& x_{4}=-\frac{11}{5}+x_{2}+\frac{9}{5} x_{3}+\frac{1}{5} x_{6} \\
& x_{3}-\frac{2}{5} x_{6} \\
& x_{5}=-\frac{9}{5}+4 x_{2}+\frac{1}{5} x_{3}-\frac{3}{5} x_{6} \\
& z=-\frac{32}{5}-8 x_{2}-\frac{37}{5} x_{3}-\frac{4}{5} x_{6} .
\end{aligned}
$$

Note that the value of z has decreased. Now there are two negative variables; since x_{4} has the larger absolute value, we shall make it leaving. In order to determine the entering variable, we compare the ratios $8 / 1$ and $37 / 9$ (since $-2 / 5$ is negative, the ratio $4 / 2$ is ignored); since the second is smaller, x_{3} will enter. Our next table reads

$$
\begin{aligned}
x_{3} & =\frac{11}{9}-\frac{5}{9} x_{2}+\frac{2}{9} x_{6}+\frac{5}{9} x_{4} \\
x_{1} & =\frac{10}{9}+\frac{2}{9} x_{2}+\frac{1}{9} x_{6}-\frac{2}{9} x_{4} \\
x_{5} & =-\frac{14}{9}+\frac{35}{9} x_{2}-\frac{5}{9} x_{6}+\frac{1}{9} x_{4} \\
z & =-\frac{139}{9}-\frac{35}{9} x_{2}-\frac{22}{9} x_{6}-\frac{37}{9} x_{4}
\end{aligned}
$$

Next, x_{5} leaves and x_{2} enters:

$$
\begin{aligned}
x_{2} & =\frac{2}{5}+\frac{1}{7} x_{6}-\frac{1}{35} x_{4}+\frac{9}{35} x_{5} \\
x_{3} & =1+\frac{1}{7} x_{6}+\frac{4}{7} x_{4}-\frac{1}{7} x_{5} \\
x_{1} & =\frac{6}{5}+\frac{1}{7} x_{6}-\frac{8}{35} x_{4}+\frac{2}{35} x_{5} \\
\hline z & =-17-3 x_{6}-4 x_{4}-x_{5} .
\end{aligned}
$$

The last table, being both dual feasible and primal feasible, is the final table for our problem: the optimal solution of (1) is $x_{1}=6 / 5, x_{2}=2 / 5, x_{3}=1$.

We have accused the dual simplex method of being "nothing but a disguised simpex method working on the dual". In order to examine this accusation, we shall now solve the dual (2) of (1). In the canonical form, (2) reads

$$
\begin{array}{llll}
\operatorname{maximize} & -y_{1}-3 y_{2}+8 y_{3} \\
\text { subject to } & 2 y_{1}-3 y_{2}+5 y_{3} & \leq 4 \\
& y_{1}+4 y_{2}+ & \leq 8 \\
& y_{1}-y_{2}+2 y_{3} & \leq 9 \\
& & y_{1}, y_{2}, y_{3} & \geq 0 .
\end{array}
$$

Applying the simplex method, we construct the following sequence of tables:
First table:

$$
\begin{array}{rl}
y_{6} & =9-2 y_{3}+y_{2}-y_{1} \\
y_{5} & =8 \\
y_{4} & =4-4 y_{2}-y_{1} \\
\hline z & =8 y_{3}+3 y_{2}+2 y_{1} \\
\hline z & 8 y_{3}-3 y_{2}-y_{1} .
\end{array}
$$

Second table:

$$
\begin{aligned}
& y_{3}=\frac{4}{5}+\frac{3}{5} y_{2}+{ }_{5}^{2} y_{1}-{ }_{5}^{5} y_{4} \\
& y_{6}=\frac{37}{5}-\frac{1}{5} y_{2}-{ }_{5}{ }_{5} y_{1}+\frac{2}{5} y_{4} \\
& y_{5}=8-4 y_{2}-y_{1} \\
& z=\frac{32}{5}+\frac{9}{5} y_{2}+\frac{11}{5} y_{1}-{ }_{5}^{5} y_{4} .
\end{aligned}
$$

Third table:

$$
\begin{aligned}
y_{1} & =\frac{37}{9}-\frac{1}{9} y_{2}+\frac{2}{9} y_{4}-\frac{5}{9} y_{6} \\
y_{3} & =\frac{22}{9}+\frac{5}{9} y_{2}-\frac{1}{9} y_{4}-\frac{}{9} y_{6} \\
y_{5} & =\frac{35}{9}-\frac{35}{9} y_{2}-\frac{2}{9} y_{4}+\frac{5}{9} y_{6} \\
z & =\frac{139}{9}+\frac{14}{9} y_{2}-\frac{10}{9} y_{4}-\frac{11}{9} y_{6}
\end{aligned}
$$

Forth table:

$$
\begin{aligned}
y_{2} & =1-\frac{2}{35} y_{4}+\frac{1}{7} y_{6}-\frac{9}{35} y_{5} \\
y_{1} & =4+\frac{8}{35} y_{4}-\frac{4}{7} y_{6}+\frac{1}{35} y_{5} \\
y_{3} & =3-\frac{1}{7} y_{4}-\frac{1}{7} y_{6}-\frac{1}{7} y_{5} \\
\hline z & =17-\frac{6}{5} y_{4}-y_{6}-\frac{2}{5} y_{5} .
\end{aligned}
$$

Comparing this sequence of four tables with the sequence of four tables produced by the dual simplex method, we shall uncover an interesting correspondence. To begin with, let us forget all about the actual coefficients in those tables; instead, let us concentrate on the basic-nonbasic status of variables, as recorded below.

	The dual simlex method		The simplex method on the dual	
	Basic	Nonbasic	Basic	Nonbasic
First table	x_{4}, x_{5}, x_{6}	x_{1}, x_{2}, x_{3}	y_{6}, y_{5}, y_{4}	y_{3}, y_{2}, y_{1}
Second table	x_{1}, x_{4}, x_{5}	x_{2}, x_{3}, x_{6}	y_{3}, y_{6}, y_{5}	y_{2}, y_{1}, y_{4}
Third table	x_{3}, x_{1}, x_{5}	x_{2}, x_{6}, x_{4}	y_{1}, y_{3}, y_{5}	y_{2}, y_{4}, y_{6}
Forth table	x_{2}, x_{3}, x_{1}	x_{6}, x_{4}, x_{5}	y_{2}, y_{1}, y_{3}	y_{4}, y_{6}, y_{5}

In order to discern the pattern of this table, we shall note that the variables $x_{1}, x_{2}, \cdots, x_{6}$ can be matched up with the variables $y_{1}, y_{2}, \cdots, y_{6}$ in a rather natural way. For example, both x_{4} and y_{1} are associated with the first primal constraint: x_{4} is its slack and y_{1} is its multiplier. In the same way, every constraint, primal or dual, associates with a pair of variables x_{i}, y_{j} :

the first primal constraint	\cdots	x_{4}, y_{1}
the second primal constraint	\cdots	x_{5}, y_{2}
the third primal constraint	\cdots	x_{6}, y_{3}
the first dual constraint	\cdots	y_{4}, x_{1}
the second dual constraint	\cdots	y_{5}, x_{2}
the third dual constraint	\cdots	y_{6}, x_{3}.

Now we may observe that at each stage of the computations, from the first table to the fourth, our correspondence carries the nonbasic (resp. basic) variables x_{i} onto the basic (resp. nonbasic) variables y_{j}. Next, bringing in the numerical values of the coefficients, we shall make a startling
discovery. For example, let us compare the third tables in each sequence:

$$
\begin{align*}
x_{3} & =\frac{11}{9}-\frac{5}{9} x_{2}+\frac{2}{9} x_{6}+\frac{5}{9} x_{4} \\
x_{1} & =\frac{10}{9}+\frac{2}{9} x_{2}+\frac{1}{9} x_{6}-\frac{2}{9} x_{4} \\
x_{5} & =-\frac{14}{9}+\frac{35}{9} x_{2}-\frac{5}{9} x_{6}+\frac{1}{9} x_{4} \tag{5}\\
z & =-\frac{139}{9}-\frac{35}{9} x_{2}-\frac{22}{9} x_{6}-\frac{37}{9} x_{4}
\end{align*}
$$

and

$$
\begin{align*}
y_{1} & =\frac{37}{9}-\frac{1}{9} y_{2}+\frac{2}{9} y_{4}-\frac{5}{9} y_{6} \\
y_{3} & =\frac{22}{9}+\frac{5}{9} y_{2}-\frac{1}{9} y_{4}-\frac{{ }_{9}^{4}}{9} \\
y_{5} & =\frac{35}{9}-\frac{35}{9} y_{2}-\frac{{ }_{9}}{9} y_{4}+\frac{5}{9} y_{6} \tag{6}\\
z & =\frac{139}{9}+\frac{14}{9} y_{2}-\frac{10}{9} y_{4}-\frac{11}{9} y_{6}
\end{align*}
$$

The two tables (5) and (6) look dangerously alike. For example, the numbers in the last row of (5) are, from left to right, $-139 / 9,35 / 9,22 / 9,7 / 9$. Similarly, the numbers in the x_{1}-row of (5) are, from left to right, $10 / 9,2 / 9,1 / 9,-2 / 9$ whereas the numbers in the y_{4}-column of (6) are, from bottom to top, $-10 / 9,-2 / 9,-1 / 9,2 / 9$. And so on. The entire table (6) can be reconstructed from (5) and vice versa. The same correspondence exists between the first tables in each sequence, between the second tables in each sequence and between the fourth tables in each sequence. In fact, that correspondence is quite general: given a table for some problem, we may readily construct its mirror image for the dual. Pivoting from one primal table to another amounts to pivoting from the first mirror image to the second. The correspondence can be described, and its validity established, without much difficulty. However, the argument involves a fair amount of formal plugging and griding which is not our cup of tea. We simply wanted to point out the close parallelism between the two sequences.

Finally, we shall discuss a use of the dual simplex method which often comes up in applications. For example, let us return to Nikki's nutrition problem from Section 1. With a little less forethought, she might bave formulated her problem as

$$
\begin{array}{lllll}
\operatorname{maximize} & 3 x_{1}+24 x_{2}+13 x_{3}+9 x_{4}+20 x_{5}+19 x_{6} & \geq 2000 \\
\text { subject to } & 110 x_{1}+205 x_{2}+160 x_{3}+160 x_{4}+420 x_{5}+260 x_{6} & \geq 55 \\
& 4 x_{1}+32 x_{2}+13 x_{3}+8 x_{4}+4 x_{5}+14 x_{6} & \geq 800 \\
& 2 x_{1}+12 x_{2}+54 x_{3}+285 x_{4}+22 x_{5}+80 x_{6} & \geq x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6} & \geq 0 .
\end{array}
$$

Solving (7), she would arrive at the optimal solution $x_{1}=14.24, x_{2}=x_{3}=0, x_{4}=2.71, x_{5}=x_{6}=0$. That menu, involving more than fourteen servings of oatmeal is clearly unacceptable to her. It would be only now that she would recognize the imperative of imposing an upper bound on the amount of oatmeal to be devoured each day. Thus she might add the constraint $x_{1} \leq 4$ to (7) and solve the new problem from scratch. Doing so, she would waste all her calculations which led to solving (7); that could be avoided by appropriate use of the dual simplex method.

To explain how the dual simplex method is used in such a situation, we shall consider an example which is numerically simpler,

$$
\begin{array}{lll}
\operatorname{maximize} & 5 x_{1}+4 x_{2}+3 x_{3} \\
\text { subject to } & 2 x_{1}+3 x_{2}+x_{3} & \leq 5 \\
& 4 x_{1}+x_{2}+2 x_{3} & \leq 11 \tag{8}\\
& 3 x_{1}+4 x_{2}+2 x_{3} & \leq 8 \\
& & x_{1}, x_{2}, x_{3} \geq 0
\end{array}
$$

In fact, this is the first LP problem we have ever solved; the final table reads

$$
\begin{align*}
x_{3} & =1+x_{2}+3 x_{4}-2 x_{6} \\
x_{1} & =2-2 x_{2}-2 x_{4}+x_{6} \\
x_{5} & =1+5 x_{2}+2 x_{4} \tag{9}\\
\hline z & =13-3 x_{2}-x_{4}-x_{6} .
\end{align*}
$$

For some reason, we decide to add a new constraint, $x_{1}+x_{2}+x_{3} \leq 1$, to the old constraints of (8). That constraint makes the optimal solution $x_{1}=2, x_{2}=0, x_{3}=1$ infeasible in the new problem,

$$
\begin{array}{lll}
\operatorname{maximize} & 5 x_{1}+4 x_{2}+3 x_{3} \\
\text { subject to } & 2 x_{1}+3 x_{2}+x_{3} & \leq 5 \\
& 4 x_{1}+x_{2}+2 x_{3} & \leq 11 \tag{10}\\
& 3 x_{1}+4 x_{2}+2 x_{3} & \leq 8 \\
& x_{1}+x_{2}+x_{3} & \leq 1 \\
& & x_{1}, x_{2}, x_{3}
\end{array} \leq 0 .
$$

In order to solve (10), we may simply start from scratch; an alternative is to apply the dual simplex method to an enlarged version of (9). Pursing that line we have to express the new slack variable

$$
x_{7}=1-x_{1}-x_{2}-x_{3}
$$

in terms of the nonbasic variables x_{2}, x_{4}, x_{6} of (9). The desired expression is obtained simply by substituting for x_{1} and x_{3} from (9):

$$
\begin{aligned}
x_{7} & =1-\left(2-2 x_{2}-2 x_{4}+x_{6}\right)-x_{2}-\left(1+x_{2}+3 x_{4}-2 x_{6}\right) \\
& =-2-x_{4}+x_{6} .
\end{aligned}
$$

Adding this formula to (9) we obtain the table

$$
\begin{aligned}
& x_{7}=-2 \\
& x_{3}=1+x_{4}+x_{6} \\
& x_{1}=2-3 x_{4}-2 x_{6} \\
& x_{5}=1+2 x_{2}-2 x_{4}+x_{6} \\
& z=13-5 x_{2}+2 x_{4} \\
& z_{2}-3 x_{2}-x_{4}-x_{6}
\end{aligned}
$$

which, being dual feasible, initializes the dual simlex method. Leave x_{7}, enter x_{6} :

$$
\begin{aligned}
& x_{7}=-2 \\
& x_{3}=1 \quad-x_{4}+x_{6} \\
& x_{1}=2-3 x_{4}-2 x_{6} \\
& x_{5}=1+2 x_{2}-2 x_{4}+x_{6} \\
& r z=13-3 x_{2}+2 x_{4} \\
& z-3 x_{2}-x_{4}-x_{6} .
\end{aligned}
$$

Leave x_{3}, enter x_{4} :

$$
\begin{aligned}
x_{4} & =3-x_{2}+2 x_{7}+x_{3} \\
x_{6} & =5-x_{2}+3 x_{7}+x_{3} \\
x_{1} & =1-x_{2}-x_{7}-x_{3} \\
x_{5} & =7+3 x_{2}+4 x_{7}+2 x_{3} \\
\hline z & =5-x_{2}-5 x_{7}-2 x_{3} .
\end{aligned}
$$

The last table, being both primal feasible and dual feasible, represents an optimal solution of (10).
In this example, the attack from scratch would bring us to the optimal solution in only one iteration whereas our strategy took two iterations. However, the dual simplex method often turns out to be the more economical of the two. Used in this context, the dual simplex method constitutes an important subroutine of an algorithm we shall discuss in the next section.

