Changing the rules of business™

ILOG CPLEX 10.0
Getting Sarted

January 2006

COPYRIGHT NOTICE

Copyright © 1987-2006, by ILOG S.A. and ILOG, Inc. All rights reserved.

General Use Restrictions

This document and the software described in this document are the property of ILOG and
are protected as ILOG trade secrets. They are furnished under alicense or nondisclosure
agreement, and may be used or copied only within the terms of such license or nondisclosure
agreement.

No part of thiswork may be reproduced or disseminated in any form or by any means,
without the prior written permission of ILOG S.A, or ILOG, Inc.
Trademarks

ILOG, the ILOG design, CPLEX, and all other logos and product and service names of
ILOG are registered trademarks or trademarks of ILOG in France, the U.S. and/or other
countries.

All other company and product names are trademarks or registered trademarks of their
respective holders.

Javaand all Java-based marks are either trademarks or registered trademarks of Sun
Microsystems, Inc. in the United States and other countries.

Microsoft and Windows are either trademarks or registered trademarks of Microsoft
Corporation in the United States and other countries.

document version 10.0

C N T E N T S
Table of Contents

Preface Introducing ILOG CPLEX i e e e e e 9
What IS ILOG CPLEX? . .. e 10

ILOG CPLEX COMPONENES . . . oottt it e e e e e 11

OptiMIzer OPLiONSot e e e e 12

Data Entry OptiONSo ot e 13

What You Need to KNOW o 13

What's in This Manual 13

Notation in this Manual 14

Related DOCUMENtatioN. o 15

Chapter 1 Setting Up ILOG CPLEX. 19
Installing ILOG CPLEX e 20

Setting Up LICENSING . ..o ot e 22

Using the Component Libraries 23

Chapter 2 Solving an LP with ILOG CPLEX e 27
Problem Statement 28

Using the Interactive Optimizer e 29

Using Concert Technology in C++ e 30

Using Concert Technology in Javat e 31

Using Concert Technology in .NET e 32

ILOG CPLEX 10.0 — GETTING STARTED 3

Chapter 3

Using the Callable Library. 33

Interactive Optimizer Tutorial e 35
Starting ILOG CPLEX. e e 36
USIiNg Help .o 36
Entering a Problem 38
Entering the Example Problem 38
Usingthe LP Format 39
Entering Data e 41
Displaying a Problem. 42
Displaying Problem StatiStiCs.ot 43
Specifying ltem RaNgeS oo 44
Displaying Variable or Constraint Namest 44
Ordering Variables e 45
Displaying CoNnStraintsttt 46
Displaying the Objective FUNCEION e 46
Displaying BoUNdso 46
Displaying a Histogram of NonZero COUNtS. ottt e e 47
Solving a Problem 48
Solving the Example Problem e 48
SOlULION OPLIONS. . . .ot 49
Displaying Post-Solution Information. 50
Performing Sensitivity Analysis 51
Writing Problem and Solution Files 53
Selectinga Write File Format. 53
WrtING LP Files . .. oo 54
Writing Basis Files 54
Using Path Names 55
Reading Problem Files 55
Selecting a Read File Format. 56
Reading LP Fileso 56
Using File EXIENSIONS.o e e 57

ILOG CPLEX 10.0 — GETTING STARTED

Chapter 4

Reading MPS Files 57

Reading Basis Files o 57
Setting ILOG CPLEX Parametersot i e 58
Adding Constraints and BoUNdSo 60
Changing a Problem 61
Changing Constraint or Variable Names e 62
Changing SeNSe. e 62
Changing Bounds. 63
RemMOVINg BOUNASo 63
Changing CoeffiCients 64
Deleting . . o 64
Executing Operating System Commandst 66
QUIttING ILOG CPLEX. . . o ot t 66
Concert Technology Tutorial for C++Users 69
The Design of CPLEX in Concert Technology 70
Compiling and Linking ILOG CPLEX in Concert Technology Applications............ 71
Testing Your Installation on UNIX o e 71
Testing Your Installation on WIindows 71
InCase of Problems 72
The Anatomy of an ILOG Concert Technology Application 72
Constructing the Environment: IOENV 72
Creating a Model: lloModel e 73
Solving the Model: oCPIEXot 76
Querying ResUItSo e e 76
Handling Errors 77
Building and SolvingaSmall LP Model in C++. i 78
General Structure of an ILOG CPLEX Concert Technology Application 78
Modeling by ROWSo 79
Modeling by Columns. 79
Modeling by Nonzero Elements 80
Complete Program.o 80

ILOG CPLEX 10.0 — GETTING STARTED 5

Chapter 5

Chapter 6

Writing and Reading Models and Files i 80

Selecting an Optimizer 81
Reading a Problem from a File: Exampleilolpex2.cpp. ..., 82
Reading the Model from a File. 83
Selecting the Optimizer e 83
Accessing Basis Information 83
Querying Quality MEaSUIeSttt e e 83
Complete Programo e 84
Modifying and Reoptimizing oottt 84
Modifying an Optimization Problem: Example ilolpex3.cpp, 84
Setting ILOG CPLEX Parameters e e e 85
Modifying an Optimization Problem 86
Starting from a Previous Basis.o e 86
Complete Program e 86
Concert Technology Tutorial for JavaUsers............ ..., .. 87
Compiling ILOG CPLEX Applications in ILOG Concert Technology 88
IN Case Problems ArSeot 89
The Design of ILOG CPLEX in ILOG Concert Technology., 90
The Anatomy of an ILOG Concert Technology Application. 90
Create the Model 91
Solve the Model 93
Query the ReSUILS o 93
Building and Solving a Small LP Model inJavac ... 94
Modeling by ROWSo 95
Modeling by ColUMNS. e 95
Modeling by NONZErOS oo 97
Complete Program e e 97
Concert Technology Tutorial for NETUsers. 99
What You Need to Know: Prerequisites. 100
What YoUu Will BE DOING oot e e e 101

ILOG CPLEX 10.0 — GETTING STARTED

Chapter 7

MOdEl . . . 102
SOOIV 102
DS I . . 102
Building a Small LP Problem in C# 103
MOd el . . 104
SOOIV L e 108
Complete Program 109
Callable Library Tutorial. e e e e 111
The Design of the ILOG CPLEX Callable Library i ... 111
Compiling and Linking Callable Library Applications 112
Building Callable Library Applications on UNIX Platforms 113
Building Callable Library Applications on Win32 Platforms 113
Building Applications that Use the ILOG CPLEX Parallel Optimizers 114
HOW ILOG CPLEX WOIKS. . . oot e e e e e 114
Opening the ILOG CPLEX ENVIroNMEeNtottt e 114
Instantiating the Problem Object 115
Populating the Problem Object e 115
Changing the Problem Object 116
Creating a Successful Callable Library Application. 116
Prototype the Model. 116
Identify the Routinestobe Called 117
Test Procedures in the Application 117
Assemble the Data. 117
Choose an OptiMIZEro e 118
Observe Good Programming PractiCesottt 118
Debug Your Program 118
Test Your AppliCatioN.ot 119
Use the EXampIesot 119
Building and Solving aSmall LP Model inC. i, 119
Complete Program. 121

ILOG CPLEX 10.0 — GETTING STARTED 7

Reading a Problem from a File: Examplelpex2.c.......... 121

Complete Program. 123
Adding Rows to a Problem: Example Ipex3.c. ... 123
Complete Programo 124
Performing Sensitivity Analysis 125
... 129

ILOG CPLEX 10.0 — GETTING STARTED

Introducing ILOG CPLEX

This preface introduces ILOG CPLEX 10.0. It includes sections about:
[What IsILOG CPLEX? on page 10

[What You Need to Know on page 13

[What'sin This Manual on page 13

[Motation in this Manual on page 14

[Related Documentation on page 15

ILOG CPLEX 10.0 — GETTING STARTED 9

What Is ILOG CPLEX?

ILOG CPLEX isatool for solving linear optimization problems, commonly referred to as
Linear Programming (LP) problems, of the form:

Maximize (or Minimize) c1Xg + Coxp F...t cpxy

subject to AXq + Xy ot apX, ~ by
ApXg T AgXy .t AppXy ~ by
Am1X1 T ampXo oot apnXy ~ by
with these bounds h<x1<Uuq
Ih< Xp < up

where ~ can be <, >, or =, and the upper bounds u; and lower bounds|; may be positive
infinity, negative infinity, or any real number.

The elements of data you provide asinput for thisLP are:

Objective function coefficients C1, Co, ..., Cp

Constraint coefficients a1, Aoy, -, A

Amy Am2s - Ay
Righthand sides by, by, ..., by

Upper and lower bounds Uq, Uy, ..., Uyandly, Ip, ..., |y

The optimal solution that ILOG CPLEX computes and returnsiis:

Variables X1, Xo, vey Xpy

ILOG CPLEX daso can solve several extensionsto LP;

[Metwork Flow problems, a special case of LP that CPLEX can solve much faster by
exploiting the problem structure.

[Quadratic Programming (QP) problems, where the LP objective function is expanded to
include quadratic terms.

[Quadratically Constrained Programming (QCP) problems that include quadratic terms

among the constraints. In fact, CPLEX can solve Second Order Cone Programming
(SOCP) problems.

10 ILOG CPLEX 10.0 — GETTING STARTED

[Mixed Integer Programming (MIP) problems, where any or al of the LP, QP, or QCP
variables are further restricted to take integer values in the optimal solution and where
MIP itself is extended to include constructs like Special Ordered Sets (SOS) and
semi-continuous variables.

ILOG CPLEX Components
CPLEX comesin three forms to meet a wide range of users needs:

[The CPLEX Interactive Optimizer isan executable program that can read a problem
interactively or from filesin certain standard formats, solve the problem, and deliver the
solution interactively or into text files. The program consists of thefile cplex.exe on
Windows platforms or cplex on UNIX platforms.

[Concert Technology isaset of C++, Java, and .NET class libraries offering an API that
includes modeling facilities to allow the programmer to embed CPLEX optimizersin
C++, Java, or .NET applications. Table 1. lists the files that contain the libraries.

Tablel Concert Technology Libraries

Microsoft Windows | UNIX
Ctt ilocplex.lib libilocplex.a
concert.lib libconcert.a
Java cplex.jar cplex.jar
NET ILOG.CPLEX.d1l1l
’ ILOG.Concert.dll

The ILOG Concert Technology libraries make use of the Callable Library (described
next).

[TheCPLEX CallableLibraryisacC library that allows the programmer to embed
ILOG CPLEX optimizersin applications written in C, Visual Basic, FORTRAN, or any
other language that can call C functions.Thelibrary is provided in filescplex100.1ib
and cplex100.d11 on Windows platforms, and in 1ibcplex.a, libcplex. so, and
libecplex.sl on UNIX platforms.

In this manual, the phrase CPLEX Component Librariesis used to refer equally to any of
these libraries. While all of the libraries are callable, the term CPLEX Callable Library as
used here refers specifically to the C library.

Compatible Platforms

ILOG CPLEX isavailable on Windows, UNIX, and other platforms. The programming
interface works the same way and provides the same facilities on all platforms.

ILOG CPLEX 10.0 — GETTING STARTED 11

12

Installation Requirements

If you have not yet installed ILOG CPLEX on your platform, please consult Chapter 1,
Setting Up ILOG CPLEX. It containsinstructions for installing ILOG CPLEX.

Optimizer Options

This manual explains how to use the LP algorithms that are part of ILOG CPLEX. The QP,
QCP, and MIP problem types are based on the L P concepts discussed here, and the
extensions to build and solve such problems are explained in the ILOG CPLEX User’s
Manual.

Default settingswill result in acall to an optimizer that is appropriate to the class of problem
you are solving. However you may wish to choose a different optimizer for special purposes.
An LP or QP problem can be solved using any of the following CPLEX optimizers: Dual
Simplex, Primal Simplex, Barrier, and perhaps also the Network Optimizer (if the problem
contains an extractable network substructure). Pure network models are al solved by the
Network Optimizer. QCP models, including the special case of SOCP models, are all solved
by the Barrier optimizer. MIP models are al solved by the Mixed Integer Optimizer, which
in turn may invoke any of the LP or QP optimizersin the course of its computation. Table 2
summarizes these possibl e choices.

Table2 Optimizers

LP Network |QP [QCP |[MIP
Dual Optimizer yes yes
Primal Optimizer yes yes
Barrier Optimizer yes yes yes
Mixed Integer Optimizer yes
Network Optimizer Note 1 | yes Note 1
Note 1: The problem must contain an extractable network substructure.

The choice of optimizer or other parameter settings may have avery large effect on the
solution speed of your particular class of problem. The ILOG CPLEX User's Manual
describes the optimizers, provides suggestions for maximizing performance, and notes the
features and algorithmic parameters unique to each optimizer.

Using the Parallel Optimizers

On a computer with multiple CPUs, the Barrier Optimizer and the MIP Optimizer are each
capable of running in parallel, that is, they can apply these additional CPUs to the task of
optimizing the model. The number of CPUs used by an optimizer is controlled by the user;

ILOG CPLEX 10.0 — GETTING STARTED

under default settings these optimizersrun in serial (single CPU) mode. When solving small
models, such asthosein this document, the effect of parallelism will generally be negligible.
On larger models, the effect is ordinarily beneficial to solution speed. See the section Using
Parallel Optimizersinthe ILOG CPLEX User's Manual for information on using CPLEX on
aparallel computer.

Data Entry Options

CPLEX provides several optionsfor entering your problem data. When using the Interactive
Optimizer, most users will enter problem data from formatted files. CPLEX supports the
industry-standard MPS (Mathematical Programming System) file format as well as CPLEX
LPformat, arow-oriented format many users may find more natural. Interactive entry (using
CPLEX LPformat) isaso apossibility for small problems.

Data entry options are described briefly in this manual. File formats are documented in the
reference manual ILOG CPLEX File Formats.

Concert Technology and Callable Library users may read problem data from the same kinds
of files asin the I nteractive Optimizer, or they may want to pass datadirectly into CPLEX to
gain efficiency. These options are discussed in a series of examples that begin with Building
and Solving a Small LP Model in C++, Building and Solving a Small LP Model in Java, and
Building and Solving a Small LP Model in C for the CPLEX Callable Library users.

What You Need to Know

In order to use ILOG CPLEX effectively, you need to be familiar with your operating
system, whether UNIX or Windows.

This manual assumes you already know how to create and manage files. In addition, if you
are building an application that uses the Component Libraries, this manual assumesthat you
know how to compile, link, and execute programs written in a high-level language. The
Callable Library iswritten in the C programming language, while Concert Technology is
available for users of C++, Java, and the .NET framework. This manua a so assumes that
you already know how to program in the appropriate language and that you will consult a
programming guide when you have questions in that area.

What's in This

Manual

Chapter 1, Setting Up ILOG CPLEX tells how to install CPLEX.

Chapter 2, Solving an LP with ILOG CPLEX shows you at a glance how to use the
Interactive Optimizer and each of the application programming interfaces (APIs): C++,

ILOG CPLEX 10.0 — GETTING STARTED 13

Java, .NET, and C. This overview isfollowed by more detailed tutorials about each
interface.

Chapter 3, Interactive Optimizer Tutorial, explains, step by step, how to use the Interactive
Optimizer: how to start it, how to enter problems and data, how to read and save files, how
to modify objective functions and constraints, and how to display solutions and analytical
information.

Chapter 4, Concert Technology Tutorial for C++ Users, describes the same activities using
the classes in the C++ implementation of the CPLEX Concert Technology Library.

Chapter 5, Concert Technology Tutorial for Java Users, describes the same activities using
the classes in the Javaimplementation of the CPLEX Concert Technology Library.

Chapter 6, Concert Technology Tutorial for .NET Users, describes the same activities using
NET facilities.

Chapter 7, Callable Library Tutorial, describes the same activities using the routines in the
ILOG CPLEX Callable Library.

All tutorials use examples that are delivered with the standard distribution.

Notation in this Manual

14

This manual observes the following conventions in notation and names.
[Important ideas are emphasized the first time they appear.

[Text that is entered at the keyboard or displayed on the screen as well as commands and
their options avail able through the Interactive Optimizer appear in this typeface, for
example, set preprocessing aggregator n.

[_Entries that you must fill in appear in this typerface; for example, write filename.

[_The names of C routines and parametersin the ILOG CPLEX Callable Library begin
with cpx and appear in this typeface, for example, cPXcopyobjnames.

[_The names of C++ classesin the CPLEX Concert Technology Library begin with 110
and appear inthis typeface, for example, 11oCplex.

[_The names of Java classes begin with 110 and appear inthis typeface, for example,
IloCplex.

[_The name of aclass or method in .NET is written as concatenated words with the first
letter of each word in upper case, for example, Intvar Of IntVar.VisitChildren.
Generally, accessors begin with the key word cet. Accessors for Boolean members
begin with 1s. Modifiers begin with set.

ILOG CPLEX 10.0 — GETTING STARTED

[_Combinations of keys from the keyboard are hyphenated. For example, control-c
indicates that you should press the control key and the ¢ key simultaneously. The symbol
<returns indicates end of line or end of data entry. On some keyboards, the key is
labeled enter or Enter.

Related Documentation

In addition to this introductory manual, the standard distribution of ILOG CPLEX comes
with the ILOG CPLEX User’s Manual and the ILOG CPLEX Reference Manual. All ILOG
documentation is available online in hypertext mark-up language (HTML). It is delivered
with the standard distribution of the product and accessible through conventional HTML
browsers.

[ThelLOG CPLEX User's Manual explains the relationship between the Interactive
Optimizer and the Component Libraries. It enlarges on aspects of linear programming
with ILOG CPLEX and shows you how to handle quadratic programming (QP)
problems, quadratically constrained programming (QCP) problems, second order cone
programming (SOCP) problems, and mixed integer programming (MIP) problems. It
tells you how to control ILOG CPLEX parameters, debug your applications, and
efficiently manage input and output. It also explains how to use parallel CPLEX
optimizers.

[The ILOG CPLEX Callable Library Reference Manual documents the Callable Library
routines and their arguments. This manual aso includes additional documentation about
error codes, solution quality, and solution status. It is available onlineas HTML and
Microsoft compiled HTML help (.CHM).

[The ILOG CPLEX C++ API Reference Manual documents the C++ API of the Concert
Technology classes, methods, and functions. It isavailable onlineasHTML and
Microsoft compiled HTML help (.CHM).

[_The ILOG CPLEX Java API Reference Manual supplies detailed definitions of the
Concert Technology interfaces and CPLEX Javaclasses. It isavailable onlineas HTML
and Microsoft compiled HTML help (.CHM).

[ThelLOG CPLEX .NET Reference Manual documents the NET API for CPLEX. Itis
available online as HTML and Microsoft compiled HTML help (.CHM).

[Thereference manual ILOG CPLEX Parameters contains atable of parametersthat can
be modified by parameter routines. It is the definitive reference manual for the purpose
and allowable settings of CPLEX parameters.

[Thereference manual ILOG CPLEX File Formats contains a list of file formats that
ILOG CPLEX supports as well as details about using them in your applications.

ILOG CPLEX 10.0 — GETTING STARTED 15

16

[_Thereference manual ILOG CPLEX Interactive Optimizer contains the commands of the
I nteractive Optimizer, along with the command options and links to examples of their
usein the ILOG CPLEX User’s Manual.

Asyou work with ILOG CPLEX on along-term basis, you should read the complete User’s
Manual to learn how to design models and implement solutions to your own problems.
Consult the reference manuals for authoritative documentation of the Component Libraries,
their application programming interfaces (APIs), and the I nteractive Optimizer.

ILOG CPLEX 10.0 — GETTING STARTED

Part |

Setting Up

This part shows you how to set up ILOG CPLEX and how to check your installation. It
includes information for users of Microsoft and UNIX platforms.

Setting Up ILOG CPLEX

You install ILOG CPLEX intwo steps: first, install the files from the distribution medium (a
CD or an FTP site) into adirectory on your local file system; then activate your license.

At that point, all of the features of CPLEX become functional and are available to you. The
chapters that follow this one provide tutorials in the use of each of the Technol ogies that
ILOG CPLEX provides: the ILOG Concert Technology Tutorialsfor C++, Java, and .NET
users, and the Callable Library Tutorial for C and other languages.

This chapter provides guidelines for:
[Installing ILOG CPLEX on page 20
[Fetting Up Licensing on page 22
[Wsing the Component Libraries on page 23
Important: Pleaseread theseinstructionsin their entirety before you begin the installation.
Remember that most ILOG CPLEX distributions will operate correctly only on the specific

platform and operating system for which they are designed. If you upgrade your operating
system, you may need to obtain a new ILOG CPLEX distribution.

ILOG CPLEX 10.0 — GETTING STARTED 19

Installing ILOG CPLEX

The stepstoinstal ILOG CPLEX involve identifying the correct distribution file for your
particular platform, and then executing a command that uses that distribution file. The
identification step is explained in the booklet that comes with the CD-ROM, or is provided
with the FTP instructions for download. After the correct distribution fileis at hand, the
installation proceeds as follows.

Installation on UNIX

On UNIX systems ILOG CPLEX 10.0 isinstalled in a subdirectory hamed cplex100,
under the current working directory where you perform the installation.

Use the cda command to move to the top level directory into which you want to install the
cplex subdirectory. Then type this command:

gzip -dc < path/cplex.tgz | tar xf -
where path isthefull path name pointing to the location of the ILOG CPLEX distribution
file (either on the CD-ROM or on a disk where you performed the FTP download). On
UNIX systems, both ILOG CPLEX and ILOG Concert Technology are installed when you
execute that command.
Installation on Windows

Beforeyou install ILOG CPLEX, you need to identify the correct distribution file for your
platform. There are instructions on how to identify your distribution in the booklet that
comes with the CD-ROM or with the FTP instructions for download. This booklet also tells
how to start the ILOG CPLEX installation on your platform.

Directory Structure

After completing the installation, you will have a directory structure like the onein
Figure 1.1 and Figure 1.2.

Be sure to read the readme . htm1 carefully for the most recent information about the
version of ILOG CPLEX you have installed.

20 ILOG CPLEX 10.0 — GETTING STARTED

cplex

platform

\— lib format

Java LIBRARY cplex.jar

CPLEX LIBRARY

Figure1.1 Sructure of the ILOG CPLEX installation directory

ILOG CPLEX 10.0 — GETTING STARTED

— bin
\—platform
\— EXECUTABLE FILES (Interactive Optimizer, .dll and .so files)
— examples
— data)]
tutorials (available only for .NET)
I src
platform
L lib format
) L Makefile or MSVC++ project files
— include
L ilcplex
L lib

21

concert

I include

L ilconcert
L lib
\—platform
L lib format

L CONCERT LIBRARY

— examples

data
— src

platform

L lib format

L Makefile or MSVC++ project files

Figure1.2 Sructure of the Concert Technology Installation Directory

Setting Up Licensing

ILOG CPLEX 10.0 runs under the control of the ILOG License Manager (ILM). Before you
canrun ILOG CPLEX, or any application that callsit, you must have established avalid
licensethat ILM can read. Licensing instructions are provided in the ILOG License Manager
User’s Guide & Reference, which isincluded with the standard ILOG CPLEX product
distribution. The basic steps are:

1. Install ILM. Normally you obtain ILM distribution media from the same place that you
obtain ILOG CPLEX.

2. Runthe ihostid program, whichisfound in the directory whereyouinstall ILM.

22 ILOG CPLEX 10.0 — GETTING STARTED

3. Communicate the output of step 2 to your local ILOG sales administration department.
They will send you alicense key in return. One way to communicate the results of step 2
to your local ILOG sales administration department is through the web page serving your
region.

Europe and Africal https://support.ilog.fr/license/index.cfm
Americas. https://support.ilog.com/license/index.cfm
Asia https://support.ilog.com.sg/license/index.cfm

4. Create afile on your system to hold this license key, and set the environment variable
ILOG_LICENSE FILE S0 that ILOG CPLEX will know where to find the license key.
(The environment variable need not be used if you install the license key in a platform-
dependent default file location.)

Using the Component Libraries

After you have completed the installation and licensing steps, you can verify that everything
isworking by running one or more of the examples that are provided with the standard
distribution.

Verifying Installation on UNIX

On aUNIX system, go to the subdirectory examples/machine/1ibformat that matches
your particular platform, and in it you will find afile named Makefile. Execute one of the
examples, for instance 1pex1 . c, by doing

make lpexl

lpexl -r #thisexampletakesone argument, either -r, -c, or -n
If your interest isin running one of the C++ examples, try

make ilolpexl

ilolpexl -r #thisisthe sameas 1pex1 and takesthe same arguments.
If your interest isin running one of the Java examples, try

make LPexl.class

java -Djava.library.path=../../../bin/<platform>: \
-classpath ../../../lib/cplex.jar: LPexl -r

Any of these examples should return an optimal objective function value of 202.5.

ILOG CPLEX 10.0 — GETTING STARTED 23

24

Verifying Installation on Windows

On a Windows machine, you can follow a similar process using the facilities of your
compiler interface to compile and then run any of the examples. A project file for each
exampleis provided, in aformat for Microsoft Visual Studio 6 and Visua Studio .NET.

In Case of Errors

If an error occurs during the make or compile step, then check that you are able to access the
compiler and the necessary linker/loader files and system libraries. If an error occurs on the
next step, when executing the program created by make, then the nature of the error message
will guide your actions. If the problem isin licensing, consult the ILOG License Manager
User's Guide and Reference for further guidance. For Windows users, if the program has
trouble locating cplex100.d11 OF ILOG.CPLEX.d11, make surethe DLL is stored either
in the current directory or in adirectory listed in your PATH environment variable.

The UNIX Makefile, or Windows project file, contains useful information regarding
recommended compiler flags and other settings for compilation and linking.

Compiling and Linking Your Own Applications

The source files for the examples and the makefiles provide guidance for how your own
application can call ILOG CPLEX. The following chapters give more specific information
on the necessary header files for compilation, and how to link ILOG CPLEX and Concert
Technology librariesinto your application.

[_Chapter 4, Concert Technology Tutorial for C++ Users contains information and
platform-specific instructions for compiling and linking the Concert Technology Library,
for C++ users.

[Chapter 5, Concert Technology Tutorial for Java Users contains information and
platform-specific instructions for compiling and linking the Concert Technology Library,
for Java users.

[Chapter 6, Concert Technology Tutorial for .NET Users offers an example of a CENET
application.

[Chapter 7, Callable Library Tutorial contains information and platform-specific
instructions for compiling and linking the Callable Library.

ILOG CPLEX 10.0 — GETTING STARTED

Part Il

Tutorials

This part provides tutorials to introduce you to each of the components of ILOG CPLEX.
[Interactive Optimizer Tutorial on page 35

[Concert Technology Tutorial for C++ Users on page 69

[Concert Technology Tutorial for Java Users on page 87

[Concert Technology Tutorial for .NET Users on page 99

[Callable Library Tutorial on page 111

Solving an LP with ILOG CPLEX

To help you learn which CPLEX component best meets your needs, this chapter briefly
demonstrates how to create and solve an LP model. It shows you at a glance the Interactive
Optimizer and the application programming interfaces (APIs) to CPLEX. Full details of
writing a practical program are in the chapters containing the tutorials.

[—Problem Satement on page 28

[Wsing the Interactive Optimizer on page 29

[Wsing Concert Technology in C++ on page 30
[Wsing Concert Technology in Java on page 31
[Wsing Concert Technology in .NET on page 32
[Wsing the Callable Library on page 33

ILOG CPLEX 10.0 — GETTING STARTED 27

Problem Statement

The problem to be solved is:

Maximize X + 2X; + 3X3
subject to X1 + X, + X3 £20

Xy — 3X, + X3 £30
with these bounds 0<x,<40

0 < Xp S oo

0<X3<+oo

28 ILOG CPLEX 10.0 — GETTING STARTED

Using the Interactive Optimizer

The following sampleis screen output from a CPLEX Interactive Optimizer session where
the model of an example is entered and solved. cpLEX> indicates the CPLEX prompt, and
text following this prompt is user input.

Welcome to CPLEX Interactive Optimizer 10.0.0

with Simplex, Mixed Integer & Barrier Optimizers
Copyright (c) ILOG 1997-2006
CPLEX is a registered trademark of ILOG

Type 'help' for a list of available commands.
Type 'help' followed by a command name for more
information on commands.

CPLEX> enter example
Enter new problem ['end' on a separate line terminates]:
maximize x1 + 2 x2 + 3 x3
subject to -x1 + x2 + x3 <= 20
x1l - 3 X2 + x3 <=30

bounds

0 <= x1 <= 40
0 <= x2

0 <= x3

end

CPLEX> optimize

Tried aggregator 1 time.

No LP presolve or aggregator reductions.
Presolve time = 0.00 sec.

Iteration log

Iteration: 1 Dual infeasibility = 0.000000
Iteration: 2 Dual objective = 202.500000
Dual simplex - Optimal: Objective = 2.0250000000e+002
Solution time = 0.01 sec. Iterations = 2 (1)

CPLEX> display solution variables x1-x3

Variable Name Solution Value
x1 40.000000
x2 17.500000
x3 42.500000

CPLEX> quit

ILOG CPLEX 10.0 — GETTING STARTED 29

Using Concert Technology in C++

30

Hereisa C++ application using ILOG CPLEX in Concert Technology to solve the example.
An expanded form of this exampleis discussed in detail in Concert Technology Tutorial for
C++ Userson page 69.

#include <ilcplex/ilocplex.h>

ILOSTLBEGIN
int
main (int argc, char **argv)

I1oEnv env;
try {
IloModel model (env) ;
IloNumVarArray vars (env) ;
vars.add (IloNumVar (env, 0.0, 40.0));
vars.add (IloNumVar (env)) ;
vars.add (IloNumVar (env)) ;
model .add (IloMaximize (env, vars[0] + 2 * vars[l] + 3 * vars([2]));
model.add(- vars[0] + vars[1] + vars[2] <= 20);
model .add (vars[0] - 3 * vars[l] + vars[2] <= 30);

IloCplex cplex(model) ;

if (!cplex.solve()) {
env.error() << "Failed to optimize LP." << endl;
throw(-1) ;

}

IloNumArray vals(env) ;

env.out () << "Solution status = " << cplex.getStatus() << endl;
env.out () << "Solution value = " << cplex.getObjValue() << endl;
cplex.getValues (vals, vars);

env.out () << "Values = " << vals << endl;

}

catch (IloException& e) {

cerr << "Concert exception caught: " << e << endl;
catch (...) {

cerr << "Unknown exception caught" << endl;

env.end() ;

return 0;
}// END main

ILOG CPLEX 10.0 — GETTING STARTED

Using Concert Technology in Java

HereisaJavaapplication using ILOG CPLEX with Concert Technology to solve the
example. An expanded form of this exampleis discussed in detail in Chapter 5, Concert
Technology Tutorial for Java Users.

import ilog.concert.*;
import ilog.cplex.*;

public class Example {
public static void main(Stringl[] args) {

try {
IloCplex cplex = new IloCplex();

double[] 1b = {0.0, 0.0, 0.0};
double[] ub = {40.0, Double.MAX VALUE, Double.MAX VALUE};
IloNumVar[] x = cplex.numVarArray (3, lb, ub);

double[] objvals = {1.0, 2.0, 3.0};
cplex.addMaximize (cplex.scalProd(x, objvals)) ;

cplex.addLe (cplex.sum(cplex.prod(-1.0, x[0]),
cplex.prod(1.0, x[1]),
cplex.prod(1.0, x[2])), 20.0);
cplex.addLe (cplex.sum(cplex.prod(1.0, x[0]),
cplex.prod(-3.0, x[1]),
cplex.prod(1.0, x[2])), 30.0);
if (cplex.solve()) {
cplex.output () .println("Solution status = " + cplex.getStatus());
cplex.output () .println("Solution value = " + cplex.getObjVvalue()) ;
double[] val = cplex.getValues (x) ;
int ncols = cplex.getNcols() ;
for (int j = 0; j < ncols; ++3j)
cplex.output () .println("Column: " + j + " Value = " + vall[jl);
}
cplex.end() ;
catch (IloException e) {
System.err.println("Concert exception '" + e + "' caught");

}
}
}

ILOG CPLEX 10.0 — GETTING STARTED 31

Using Concert Technology in .NET

Thereisan interactive tutorial, based on that same example, for .NET users of
ILOG CPLEX in Chapter 6, Concert Technology Tutorial for .NET Users.

32 ILOG CPLEX 10.0 — GETTING STARTED

Using the Callable Library

HereisaC application using the CPLEX Callable Library to solve the example. An
expanded form of this exampleis discussed in detail in Chapter 7, Callable Library Tutorial.
#include <ilcplex/cplex.h>

#include <stdlib.h>
#include <string.h>

#define NUMROWS 2
#define NUMCOLS 3
#define NUMNZ 6
int

main (int argc, char **argv)
{
int status = 0;
CPXENVptr env = NULL;
CPXLPptr 1lp = NULL;

double obj [NUMCOLS] ;
double 1b [NUMCOLS] ;
double ub [NUMCOLS] ;
double x [NUMCOLS] ;

int rmatbeg [NUMROWS] ;
int rmatind [NUMNZ] ;
double rmatval [NUMNZ] ;
double rhs [NUMROWS] ;
char sense [NUMROWS] ;

int solstat;
double objval;

env = CPXopenCPLEX (&status) ;
if (env == NULL) (
char errmsg[1024];
fprintf (stderr, "Could not open CPLEX environment.\n");
CPXgeterrorstring (env, status, errmsg);
fprintf (stderr, "%s", errmsg);
goto TERMINATE;

lp = CPXcreateprob (env, &status, "lpexl");

if (lp == NULL) {
fprintf (stderr, "Failed to create LP.\n");
goto TERMINATE;

}

CPXchgobjsen (env, lp, CPX MAX) ;

obj[0] = 1.0; objl1l] = 2.0; objl2] = 3.0;
1b[0] = 0.0; 1b[1] = 0.0; 1b[2] = 0.0;
ub[0] = 40.0; ub[1] = CPX INFBOUND; ub[2] = CPX INFBOUND;

status = CPXnewcols (env, 1lp, NUMCOLS, obj, lb, ub, NULL, NULL);
if (status) {

ILOG CPLEX 10.0 — GETTING STARTED 33

fprintf (stderr, "Failed to populate problem.\n") ;
goto TERMINATE;

}

rmatbeg[0] = 0;

rmatind[0] = 0; rmatind[1l] = 1; rmatind[2] = 2; sense[0] = 'L';
rmatval [0] = -1.0; rmatvall[l] 1.0; rmatval[2] = 1.0; rhs[0] = 20.0;
rmatbeg[1] = 3;

rmatind[3] = 0; rmatind[4] = 1; rmatind[5] = 2; sense[1l] = 'L';
rmatval[3] = 1.0; zrmatval[4] = -3.0; rmatval[5] = 1.0; rhs[1] = 30.0;

status = CPXaddrows (env, lp, 0, NUMROWS, NUMNZ, rhs, sense, rmatbeg,
rmatind, rmatval, NULL, NULL) ;
if (status) {
fprintf (stderr, "Failed to populate problem.\n");
goto TERMINATE;

}

status = CPXlpopt (env, 1p);

if (status) {
fprintf (stderr, "Failed to optimize LP.\n");
goto TERMINATE;

}

status = CPXsolution (env, lp, &solstat, &objval, x, NULL, NULL, NULL) ;
if (status) {
fprintf (stderr, "Failed to obtain solution.\n");
goto TERMINATE;
}
printf ("\nSolution status = %d\n", solstat);
printf ("Solution value = %f\n", objval);
printf ("Solution = [%f, %£, %f]\n\n", x[0], xI[1], x[2]);

TERMINATE:

if (1p != NULL) {
status = CPXfreeprob (env, &lp);
if (status) {
fprintf (stderr, "CPXfreeprob failed, error code %d.\n", status);
}

if (env != NULL) {
status = CPXcloseCPLEX (&env) ;
if (status) {
char errmsg[1024];
fprintf (stderr, "Could not close CPLEX environment.\n");
CPXgeterrorstring (env, status, errmsg);
fprintf (stderr, "%s", errmsg);

}

return (status);

}/* END main */

ILOG CPLEX 10.0 — GETTING STARTED

Interactive Optimizer Tutorial

This step-by-step tutorial introduces the major features of the ILOG CPLEX Interactive
Optimizer. In this chapter, you will learn about:

[Jarting ILOG CPLEX on page 36;

[Wsing Help on page 36;

[_Entering a Problem on page 38;

[Displaying a Problem on page 42;

[—Jolving a Problem on page 48;

[Performing Sensitivity Analysis on page 51;

[Writing Problem and Solution Files on page 53;
[Reading Problem Files on page 55;

[Fetting ILOG CPLEX Parameters on page 58;
[Adding Constraints and Bounds on page 60;

[CThanging a Problem on page 61,

[_HExecuting Operating System Commands on page 66;
[Quitting ILOG CPLEX on page 66.

ILOG CPLEX 10.0 — GETTING STARTED 35

Starting ILOG CPLEX

To start the ILOG CPLEX Interactive Optimizer, at your operating system prompt type the
command:

cplex

A message similar to the following one appears on the screen:

Welcome to CPLEX Interactive Optimizer 10.0.0

with Simplex, Mixed Integer & Barrier Optimizers
Copyright (c) ILOG 1997-2006
CPLEX 1is a registered trademark of ILOG

Type help for a list of available commands.
Type help followed by a command name for more
information on commands.

CPLEX>

Thelast ling, cPLEX>, iSsthe prompt, indicating that the product is running and is ready to
accept one of theavailable ILOG CPLEX commands. Usethe he1p command to see alist of
these commands.

Using Help

36

ILOG CPLEX accepts commandsin several different formats. You can type either the full
command name, or any shortened form that uniquely identifies that name. For example,
enter help after the cpLEX> prompt, as shown:

CPLEX> help

You will seealist of the ILOG CPLEX commands on the screen.
Since all commands start with a unique letter, you could also enter just the single | etter h.

CPLEX> h

ILOG CPLEX does not distinguish between upper- and lower-case |etters, so you could
enter h, H, help, or HELP. All of these variationsinvoke the help command. The samerules
apply to al ILOG CPLEX commands. You need only type enough letters of the command to
distinguish it from all other commands, and it does not matter whether you type upper- or
lower-case letters. This manual uses lower-case |etters.

ILOG CPLEX 10.0 — GETTING STARTED

After you type the help command, alist of available commands with their descriptions
appears on the screen, like this:

add
baropt
change
conflict
display
enter
feasopt
help
mipopt
netopt
optimize
primopt
quit
read

set
tranopt
write
xecute

add constraints to the problem

solve using barrier algorithm

change the problem

refine a conflict for an infeasible problem
display problem, solution, or parameter settings
enter a new problem

find relaxation to infeasible linear problem
provide information on CPLEX commands

solve a mixed integer program

solve the problem using network method

solve the problem

solve using the primal method

leave CPLEX

read problem or advanced start information from a file
set parameters

solve using the dual method

write problem or solution information to a file
execute a command from the operating system

Enter enough characters to uniquely identify commands & options.
Commands can be entered partially (CPLEX will prompt you for
further information) or as a whole.

To find out more about a specific command, type help followed by the name of that
command. For example, to learn more about the primopt command type:

help primopt

Typing the full name is unnecessary. Alternatively, you can try:

hp

The following message appears to tell you more about the use and syntax of the primopt

command:

The PRIMOPT command solves the current problem using
a primal simplex method or crosses over to a basic solution
if a barrier solution exists.

Syntax:

A problem must exist in memory (from using either the
ENTER or READ command) in order to use the PRIMOPT

command .

Sensitivity information (dual price and reduced-cost

information)

as well as other detailed information about

the solution can be viewed using the DISPLAY command,
after a solution is generated.

Summary

The syntax for the help command is:

ILOG CPLEX 10.0 — GETTING STARTED

37

help command name

Entering a Problem

38

Most users with larger problems enter problems by reading data from formatted files. That
practice is explained in Reading Problem Files on page 55. For now, you will enter asmaller
problem from the keyboard by using the enter command. The processis outlined
step-by-step in these topics:

[_Entering the Example Problem on page 38;
[Wsing the LP Format on page 39;
[HEntering Data on page 41.

Entering the Example Problem

As an example, this manual uses the following problem:

Maximize X, + 2%, + 3X;3
subject to —X; + Xy + X3 £20

X; — 3X, + X3 <30
with these bounds 0<x;<40

0<Xy<+oo

0 < Xg < oo

This problem has three variables (xy, X,, and x3) and two less-than-or-equal-to constraints.

The enter command is used to enter a new problem from the keyboard. The procedureis
almost as simple as typing the problem on a page. At the cPLEX> prompt type:

enter
A prompt appears on the screen asking you to give aname to the problem that you are about
to enter.
Naming a Problem

The problem name may be anything that is allowed as afile name in your operating system.
If you decide that you do not want to enter a new problem, just pressthe <returns> key
without typing anything. The cpLEX> prompt will reappear without causing any action. The
same can be done at any cpLEX> prompt. If you do not want to complete the command,
simply pressthe <returns key. For now, type in the name example at the prompt.

Enter name for problem: example

ILOG CPLEX 10.0 — GETTING STARTED

The following message appears:
Enter new problem ['end' on a separate line terminates]:
and the cursor is positioned on a blank line below it where you can enter the new problem.

You can aso type the problem name directly after the enter command and avoid the
intermediate prompt.

Summary
The syntax for entering aproblem is:

enter problem name

Using the LP Format

Entering anew problem is basically like typing it on a page, but there are afew rulesto
remember. These rules conform to the ILOG CPLEX LP file format and are documented in
the reference manual ILOG CPLEX File Formats. LP format appears throughout this
tutorial.

The problem should be entered in the following order:
1. Objective Function
2. Constraints

3. Bounds

Objective Function
Before entering the objective function, you must state whether the problemisa
minimization or maximization. For this example, you type:

maximize
x1 + 2x2 + 3x3

You may typeminimize OF maximize on the same line as the objective function, but you
must separate them by at least one space.

Variable Names

In the example, the variables are named simply x1, x2, x3, but you can give your variables
more meaningful names such as cars or gallons. The only limitations on variable names
in LP format are that the names must be no more than 255 characters long and use only the
alphanumeric characters (a-z, A-Z, 0-9) and certain symbols: ! "#$% & (),.;?@ _“"{}
~. Any line with more than 510 characters is truncated.

A variable name cannot begin with a number or a period, and there is one character
combination that cannot be used: the letter e or & alone or followed by a number or another
e, since this notation is reserved for exponents. Thus, a variable cannot be named e24 nor

ILOG CPLEX 10.0 — GETTING STARTED 39

40

e9cats NOr eels nor any other name with this pattern. This restriction applies only to
problems entered in LP format.

Constraints

After you have entered the objective function, you can move on to the constraints. However,
before you start entering the constraints, you must indicate that the subsequent lines are
constraints by typing:

subject to

or

st

These terms can be placed alone on aline or on the same line as the first constraint if
separated by at least one space. Now you can type in the constraints in the following way:

st
-x1 + x2 + x3 <= 20
x1 - 3x2 + x3 <= 30

Constraint Names

In this simple example, it is easy to keep track of the small number of constraints, but for
many problems, it may be advantageous to name constraints so that they are easier to
identify. You can do so in ILOG CPLEX by typing a constraint name and a colon before the
actual constraint. If you do not give the constraints explicit names, ILOG CPLEX will give
them thedefault namesc1, c2, . . . , cn.Intheexample, if you want to call the
congtraints t ime and 1abor, for example, enter the constraints like this:

st
time: -x1 + x2 + X3 <= 20
labor: x1 - 3x2 + x3 <= 30

Constraint names are subject to the same guidelines as variable names. They must have no
more than 255 characters, consist of only allowed characters, and not begin with anumber, a
period, or the letter e followed by a positive or negative number or another e.

Objective Function Names

The objective function can be named in the same manner as constraints. The default name
for the objective function is obj. ILOG CPLEX assigns this name if no other is entered.

Bounds

Finaly, you must enter the lower and upper bounds on the variables. If no bounds are
specified, ILOG CPLEX will automatically set the lower bound to 0 and the upper bound to
+e0. You must explicitly enter bounds only when the bounds differ from the default val ues.
In our example, the lower bound on x1 is 0, which is the same as the default. The upper
bound 40, however, is not the default, so you must enter it explicitly. You must type bounds
on a separate line before you enter the bound information:

ILOG CPLEX 10.0 — GETTING STARTED

bounds
x1 <= 40

Since the bounds on x2 and x3 are the same as the default bounds, there is no need to enter
them. You have finished entering the problem, so to indicate that the problem is compl ete,

type:
end
on thelast line.
The cpLEX> prompt returns, indicating that you can again enter alLOG CPLEX command.

Summary

Entering a problem in ILOG CPLEX is straightforward, provided that you observe afew
simplerules:

[Thetermsmaximize Of minimize must precede the objective function; the term
subject to must precede the constraints section; both must be separated from the
beginning of each section by at least one space.

[_The word bounds must be aone on aline preceding the bounds section.

[On thefinal line of the problem, end must appear.

Entering Data

You can use the <returns> key to split long constraints, and ILOG CPLEX still interprets
the multiple lines as asingle constraint. When you split aconstraint in this way, do not press
<returns> in the middle of avariable name or coefficient. The following is acceptable:

time: -x1 + x2 + <returns>
x3 <= 20 <return>
labor: x1 - 3x2 + x3 <= 30 <return>

The entry below, however, isincorrect since the <returns key splits avariable name.

time: -x1 + X2 + X <return>
3 <= 20 <return>
labor: x1 - 3x2 + x3 <= 30 <return>

If youtype alinethat ILOG CPLEX cannot interpret, a message indicating the problem will
appear, and the entire constraint or objective function will be ignored. You must then
re-enter the constraint or objective function.

The final thing to remember when you are entering a problem is that after you have pressed
<returns, you can no longer directly edit the characters that precede the <returns. As
long as you have not pressed the <returns> key, you can use the <backspaces key to go
back and change what you typed on that line. After <returns has been pressed, the change
command must be used to modify the problem. The change command is documented in
Changing a Problem on page 61.

ILOG CPLEX 10.0 — GETTING STARTED 41

Displaying a Problem

42

Now that you have entered a problem using ILOG CPLEX, you must verify that the problem
was entered correctly. To do so, use the display command. At the cPLEX> prompt type:

display
A list of theitems that can be displayed then appears. Some of the options display parts of
the problem description, while others display parts of the problem solution. Options about

the problem solution are not available until after the problem has been solved. The list looks
likethis:

Display Options:

conflict display conflict that demonstrates model infeasibility
problem display problem characteristics

sensitivity display sensitivity analysis

settings display parameter settings

solution display existing solution

Display what:

If you type problemin reply to that prompt, that option will list a set of problem
characteristics, like this:

Display Problem Options:

all display entire problem

binaries display binary variables

bounds display a set of bounds

constraints display a set of constraints or node supply/demand values
generals display general integer variables

histogram display a histogram of row or column counts
integers display integer variables

names display names of variables or constraints
gpvariables display quadratic variables

semi-continuous display semi-continuous and semi-integer variables
sos display special ordered sets

stats display problem statistics

variable display a column of the constraint matrix

Display which problem characteristic:

Enter the option a11 to display the entire problem.

Maximize

obj: x1 + 2 X2 + 3 X3
Subject To

cl: - x1 + X2 + x3 <= 20

c2: x1 - 3 x2 + x3 <= 30
Bounds

0 <= x1 <= 40
All other variables are >= 0.

ILOG CPLEX 10.0 — GETTING STARTED

The default names ob3j, c1, c2, are provided by ILOG CPLEX.

If that iswhat you want, you are ready to solve the problem. If there is a mistake, you must
use the change command to modify the problem. The change command is documented in
Changing a Problem on page 61.

Summary

Display problem characteristics by entering the command:

display problem

Displaying Problem Statistics

When the problem is as small as our example, it is easy to display it on the screen; however,
many real problems are far too large to display. For these problems, the stats option of the
display problem command is helpful. When you select stats, information about the

attributes of the problem appears, but not the entire problem itself. These attributes include:

[the number and type of constraints
[variables
[nonzero constraint coefficients
Try thisfeature by typing:
display problem stats
For our example, the following information appears:

Problem name: example

Variables 3 [Nneg: 2, Box: 1]
Objective nonzeros 3
Linear constraints : 2 [Less: 2]

Nonzeros : 6

RHS nonzeros 2

Thisinformation tells us that in the example there are two constraints, three variables, and
six nonzero constraint coefficients. The two constraints are both of the type
less-than-or-equal-to. Two of the three variables have the default nonnegativity bounds

(0 < x < +o0) and one isrestricted to a certain range (a box variable). In addition to a
constraint matrix nonzero count, there is a count of nonzero coefficients in the objective
function and on the righthand side. Such statistics can help to identify errorsin a problem
without displaying it in its entirety.

You can see more information about the values of the input datain your problem if you set
the datacheck parameter before you type the comman display problem stats.
(Parameters are explained Setting ILOG CPLEX Parameters on page 58 later in this
tutorial.) To set the datacheck parameter, type the following for now:

set read datacheck yes

ILOG CPLEX 10.0 — GETTING STARTED 43

44

With this setting, the command display problem stats shows thisadditional
information:

Variables : Min LB: 0.000000 Max UB: 40.00000
Objective nonzeros : Min : 1.000000 Max : 3.000000
Linear constraints
Nonzeros : Min : 1.000000 Max : 3.000000
RHS nonzeros : Min : 20.00000 Max : 30.00000

Another way to avoid displaying an entire problem is to display a specific part of it by using
one of the following three options of the display problem command:

[dames, documented in Displaying Variable or Constraint Names on page 44, can be
used to display a specified set of variable or constraint names;

[donstraints, documented in Displaying Constraints on page 46, can be used to
display a specified set of constraints;

[Bounds, documented in Displaying Bounds on page 46, can be used to display a
specified set of bounds.

Specifying Iltem Ranges

For some options of the display command, you must specify the item or range of items
you want to see. Whenever input defining arange of itemsisrequired, ILOG CPLEX
expectstwo indices separated by a hyphen (the range character -). The indices can be names
or matrix index numbers. You simply enter the starting name (or index number), a hyphen
(=), and finally the ending name (or index number). ILOG CPLEX automatically setsthe
default upper and lower limits defining any range to be the highest and lowest possible
values. Therefore, you have the option of leaving out either the upper or lower name (or
index number) on either side of the hyphen. To see every possible item, you would simply
enter —.

Another way to specify arange of itemsisto use awildcard. ILOG CPLEX accepts these
wildcardsin place of the hyphen to specify arange of items:

[question mark (?) for asingle character;
[—asterisk (*) for zero or more characters.
For example, to specify al items, you could enter * (instead of -) if you want.

The sequence of characters c1? matches the name of every constraint in therange from c1o
to c19, for example.

Displaying Variable or Constraint Names

You can display avariable name by using the display command with the options
problem names variables. If youdo not enter theword variables, ILOG CPLEX
prompts you to specify whether you wish to see a constraint or variable name.

ILOG CPLEX 10.0 — GETTING STARTED

Type the following command:

display problem names variables

In response, ILOG CPLEX prompts you to specify a set of variable names to be displayed,
like this:

Display which variable name(s) :

Specify these variables by entering the names of the variables or the numbers corresponding
to the columns of those variables. A single number can be used or arange suchas 1-2. All
of the names can be displayed at after if you type a hyphen (the character -). Try this by
entering a hyphen at the prompt and pressing the <returns key.

Display which variable name(s): -

You could also use awildcard to display variable names, like this:

Display which variable name(s): *

In the example, there are three variables with default names. ILOG CPLEX displays these
three names:

xl x2 X3

If you want to see only the second and third names, you could either enter the range as 2-3
or specify everything following the second variable with 2-. Try this technique:

display problem names variables
Display which variable name(s): 2-
x2 X3

If you enter a number without a hyphen, you will see asingle variable name:

display problem names variables
Display which variable name(s): 2
x2

Summary
[You can use awildcard in the display command to specify arange of items.
[You can display variable names by entering the command:

display problem names variables

[You can display constraint names by entering the command:

display problem names constraints

Ordering Variables

In the example problem there is a direct correlation between the variable names and their
numbers (x1 isvariable 1, x2 isvariable 2, etc.); that is not always the case. The internal

ILOG CPLEX 10.0 — GETTING STARTED 45

46

ordering of the variablesis based on their order of occurrence when the problem is entered.
For example, if x2 had not appeared in the objective function, then the order of the variables
would be x1, x3, x2.

You can seethe internal ordering by using the hyphen when you specify the range for the
variables option. The variables are displayed in the order corresponding to their internal
ordering.

All of the options of the di sp1ay command can be entered directly after theword display
to eliminate intermediate steps. The following command is correct, for example:

display problem names variables 2-3

Displaying Constraints

To view asingle constraint within the matrix, use the command and the constraint number.
For exampl e, type the following:

display problem constraints 2
The second constraint appears:

c2: x1 - 3 x2 + x3 <= 30

You can also use awildcard to display arange of constraints, like this:

display problem constraints *

Displaying the Objective Function

When you want to display only the objective function, you must enter its name (ob3 by
default) or an index number of 0.

display problem constraints
Display which constraint name(s): 0
Maximize

obj: x1 + 2 x2 + 3 x3

Displaying Bounds

To see only the bounds for the problem, type the following command (don’t forget the
hyphen or wildcard):

display problem bounds -

or, try awildcard, likethis:

display problem bounds *

Theresult is;

0 <= x1 <= 40

ILOG CPLEX 10.0 — GETTING STARTED

All other variables are >= 0.

Summary
The general syntax of the display command is:

display option [option2] identifier - [identifier2]

Displaying a Histogram of NonZero Counts

For large models, it can sometimes be helpful to see summaries of nonzero counts of the
columns or rows of the constraint matrix. Thiskind of display is known as a histogram.
There are two commands for displaying histograms: one for columns, one for rows.

display problem histogram c

display problem histogram r

For the small example in this tutorial, the column histogram looks like this:
Column counts (excluding fixed variables) :

Nonzero Count: 2
Number of Columns: 3

It tells you that there are three columns each having two nonzeroes, and no other columns.
Similarly, the row histogram of the same small problem looks like this:

Row counts (excluding fixed variables) :

Nonzero Count: 3
Number of Rows: 2

It tells you that there are two rows with three nonzeroes in each of them.

Of course, in amore complex model, there would usually be awider variety of nonzero
counts than those histograms show. Here is an example in which there are sixteen columns
where only one row is non zero, 756 columns where two rows are non zero, and so forth.

Column counts (excluding fixed variables) :
Nonzero Count: 1 2 3 4 5 6 15 16
Number of Columns: 16 756 1054 547 267 113 2 1

If there has been an error during entry of the problem, perhaps a constraint coefficient
having been omitted by mistake, for example, summaries like these, of amodel where the
structure of the constraint matrix is known, may help you find the source of the error.

ILOG CPLEX 10.0 — GETTING STARTED 47

Solving a Problem

48

The problem is now correctly entered, and ILOG CPLEX can be used to solveit. This
example continues with the following topics:

[—3olving the Example Problem on page 48;
[—Jolution Options on page 49;
[Displaying Post-Sol ution Information on page 50.

Solving the Example Problem

The optimize command tellsILOG CPLEX to solve the LP problem. ILOG CPLEX uses
the dual simplex optimizer, unless another method has been specified by setting the
LPMETHOD parameter (explained more fully in the ILOG CPLEX User’s Manual).
Entering the Optimize Command

At the cPLEX> prompt, type the command:

optimize

Preprocessing

First, ILOG CPLEX triesto simplify or reduce the problem using its presolver and
aggregator. If any reductions are made, a message will appear. However, in our small
example, no reductions are possible.

Monitoring the Iteration Log

Next, an iteration log appears on the screen. ILOG CPLEX reportsits progress asit solves
the problem. The solution process involves two stages:

[—during Phase |, ILOG CPLEX searches for afeasible solution

[ih Phasell, ILOG CPLEX searches for the optimal feasible solution.

The iteration log periodically displays the current iteration number and either the current
scaled infeasibility during Phase I, or the objective function value during Phase I1. After the
optimal solution has been found, the objective function value, solution time, and iteration
count (total, with Phase | in parentheses) are displayed. Thisinformation can be useful for
monitoring the rate of progress.

Theiteration log display can be modified by the set simplex display command to
display differing amounts of data while the problem is being solved.

Reporting the Solution
After it finds the optimal solution, ILOG CPLEX reports:

[the objective function value

ILOG CPLEX 10.0 — GETTING STARTED

[the problem solution time in seconds
[thetotal iteration count
[the Phase | iteration count (in parentheses)

Optimizing our example problem produces a report like the following one (although the
solution times vary with each computer):

Tried aggregator 1 time.

No presolve or aggregator reductions.

Presolve Time = 0.00 sec.

Iteration Log . . .

Iteration: 1 Dual infeasibility = 0.000000
Iteration: 2 Dual objective = 202.500000
Dual simplex - Optimal: Objective = 2.0250000000e+02
Solution Time = 0.00 sec. Iterations = 2 (1)

CPLEX>

In our example, ILOG CPLEX finds an optimal solution with an objective value of 202.5in
two iterations. For this simple problem, 1 Phase | iteration was required.

Summary
To solve an LP problem, use the command:

optimize

Solution Options

Here are some of the basic options in solving linear programming problems. Although the
tutorial example does not make use of these options, you will find them useful when
handling larger, more realistic problems.

C_HFiling lteration Logs on page 49;

[Re-Solving on page 50;

[_Wsing Alternative Optimizers on page 50;
[Interrupting the Optimization Process on page 50.

For detailed information about performance options, refer to the ILOG CPLEX User’s
Manual.

Filing Iteration Logs

Every time ILOG CPLEX solves a problem, much of the information appearing on the
screen isalso directed into alog file. Thisfile isautomatically created by ILOG CPLEX
with the name cplex. log. If thereisan existing cplex. 1og file in the directory where
ILOG CPLEX islaunched, ILOG CPLEX will append the current session datato the

ILOG CPLEX 10.0 — GETTING STARTED 49

50

existing file. If you want to keep a unique log file of a problem session, you can change the
default name with the set logfile command. (Seethe ILOG CPLEX User’'s Manual.)
The log fileis written in standard ASCII format and can be edited with any text editor.

Re-Solving

You may re-solve the problem by reissuing the opt imize command. ILOG CPLEX restarts
the solution process from the previous optimal basis, and thus requires zero iterations. If you
do not wish to restart the problem from an advanced basis, usethe set advance command
to turn off the advanced start indicator.

Remember that a problem must be present in memory (entered viathe enter command or
read from afile) before you issue the opt imize command.

Using Alternative Optimizers

In addition to the opt imize command, ILOG CPLEX can usethe primal simplex optimizer
(primopt command), the dual simplex optimizer (tranopt command), the barrier
optimizer (baropt command) and the network optimizer (netopt command). Many
problems can be solved faster using these alternative optimizers, which are documented in
more detail in the ILOG CPLEX User’s Manual. If you want to solve a mixed integer
programming problem, the opt imize command is equivalent to the mipopt command.

Interrupting the Optimization Process

Our short example was solved very quickly. However, larger problems, particularly mixed
integer problems, can take much longer. Occasionally it may be useful to interrupt the
optimization process. ILOG CPLEX allows such interruptionsif you use control-c. (The
control and c keys must be pressed simultaneously.) Optimization is interrupted, and
ILOG CPLEX issues a message indicating that the process was stopped and displays
progressinformation. If you issue another optimization command in the same session,
ILOG CPLEX will resume optimization from where it was interrupted.

Displaying Post-Solution Information

After an optimal solution isfound, ILOG CPLEX can provide many different kinds of
information for viewing and analyzing the results. Thisinformation is accessed viathe
display command and via some write commands.

Information about the following is available with the display solution command:
[—abjective function value;

[Solution values,

[numerical quality of the solution;

[dack values;

[rfeduced costs;

ILOG CPLEX 10.0 — GETTING STARTED

[dual values (shadow prices);
[DBasic rows and columns.

For information on the write commands, see Writing Problem and Solution Files on
page 53. Sensitivity analysis can also be performed in analyzing results, as explained in
Performing Sensitivity Analysis on page 51.

For example, to view the optimal value of each variable, enter the command:

display solution variables -

In response, the list of variable names with the solution value for each variable is displayed,

likethis:

Variable Name Solution Value
x1 40.000000
x2 17.500000
x3 42.500000

To view the dack values of each constraint, enter the command:
display solution slacks -
The resulting message indicates that for this problem the slack variables are all zero.

All slacks in the range 1-2 are 0.

To view the dual values (sometimes called shadow prices) for each constraint, enter the
command:

display solution dual -

The list of constraint names with the solution value for each constraint appears, like this:

Constraint Name Dual Price
cl 2.750000
c2 0.250000
Summary

Display solution characteristics by entering a command with the syntax:

display solution identifier

Performing Sensitivity Analysis

Sensitivity analysis of the objective function and righthand side provides meaningful insight
about ways in which the optimal solution of a problem changesin response to small changes
in these parts of the problem data.

Sensitivity analysis can be performed on the following:

ILOG CPLEX 10.0 — GETTING STARTED 51

52

[oabjective function;

[Trighthand side values,

[Bbounds.

To view the sensitivity analysis of the objective function, enter the command:
display sensitivity obj -

You can also use awildcard to query solution information, like this:
display sensitivity obj *

For our example, ILOG CPLEX displays the following ranges for sensitivity analysis of the
objective function:

OBJ Sensitivity Ranges

Variable Name Reduced Cost Down Current Up
x1 3.5000 -2.5000 1.0000 +infinity
X2 Zero -5.0000 2.0000 3.0000
x3 zero 2.0000 3.0000 +infinity

ILOG CPLEX displays each variable, itsreduced cost and the range over which its objective
function coefficient can vary without forcing a change in the optimal basis. The current
value of each objective coefficient is also displayed for reference. Objective function
sensitivity analysisis useful to determine how sensitive the optimal solution isto the cost or
profit associated with each variable.

Similarly, to view sensitivity analysis of the righthand side, type the command:

display sensitivity rhs -

For our example, ILOG CPLEX displays the following ranges for sensitivity analysis of the
righthand side (RHS):

RHS Sensitivity Ranges

Constraint Name Dual Price Down Current Up
cl 2.7500 -36.6667 20.0000 +infinity
c2 0.2500 -140.0000 30.0000 100.0000

ILOG CPLEX displays each constraint, its dual price, and arange over which its righthand
side coefficient can vary without changing the optimal basis. The current value of each RHS
coefficient is also displayed for reference. Righthand side sensitivity information is useful
for determining how sensitive the optimal solution and resource values are to the availability
of those resources.

ILOG CPLEX can aso display lower bound sensitivity ranges with the command

display sensitivity 1b

and upper bound sensitivity with the command

ILOG CPLEX 10.0 — GETTING STARTED

display sensitivity ub

Summary
Display sensitivity analysis characteristics by entering a command with the syntax:

display sensitivity identifier

Writing Problem and Solution Files
The problem or its solution can be saved by using the write command. This command
writes the problem statement or a solution report to afile.
The tutorial example continues in the topics:
[Felecting a Write File Format on page 53;
[WWiting LP Files on page 54;
[Witing Basis Files on page 54;
[Wsing Path Names on page 55.

Selecting a Write File Format

When you type the write command in the Interactive Optimizer, ILOG CPLEX displaysa
menu of options and prompts you for afile format, like this:

File type options:

bas INSERT format basis file

clp Conflict file

dpe Binary format for dual-perturbed problem
dua MPS format of explicit dual of problem

emb MPS format of (embedded) network

1p LP format problem file

min DIMACS min-cost network-flow format of (embedded) network
mps MPS format problem file

mst MIP start file

net CPLEX network format of (embedded) network
ord Integer priority order file

ppe Binary format for primal-perturbed problem
pre Binary format for presolved problem

prm Non-default parameter settings

rlp LP format problem with generic names

rew MPS format problem with generic names

sav Binary matrix and basis file

sol Solution file

File type:

ILOG CPLEX 10.0 — GETTING STARTED 53

54

[The BASformat isused for storing basis information and is introduced in Writing Basis
Files on page 54. See also Reading Basis Files on page 57.

[The LP format was discussed in Using the LP Format on page 39. Using this format is
explained in Writing LP Files on page 54 and Reading LP Files on page 56.

[—The MPS format is covered in Reading MPS Files on page 57.

Reminder: All these file formats are documented in more detail in the reference manual
ILOG CPLEX File Formats.

Writing LP Files
When you enter the write command. the following message appears:

Name of file to write:

Enter the problem name "example”, and ILOG CPLEX will ask you to select atype from a
list of options. For thisexample, choose LP. ILOG CPLEX displays aconfirmation message,
like this:

Problem written to file 'example'.

If you would like to save the file with a different name, you can simply usethewrite
command with the new file name as an argument. Try this, using the name example2. This
time, you can avoid intermediate prompts by specifying an LP problem type, like this:

write example2 lp

Another way of avoiding the prompt for afile format is by specifying thefile type explicitly
in the file name extension. Try the following as an example:

write example.lp

Using afile extension to indicate the file type is the recommended naming convention. This
makes it easier to keep track of your problem and solution files.

When thefiletypeis specified by the file name extension, ILOG CPLEX ignores subsequent
file type information issued within the write command. For example, ILOG CPLEX
responds to the following command by writing an LP format problem file;

write example.lp mps

Writing Basis Files

Another optiona fileformat isBAS. Unlikethe LP and MPS formats, thisformat is not used
to store a description of the problem statement. Rather, it is used to store information about
the solution to a problem, information known as abasis. Even after changes are made to the
problem, using a prior basisto start the optimization from an advanced basis can speed

ILOG CPLEX 10.0 — GETTING STARTED

solution time considerably. A basis can be written only after a problem has been solved. Try
this now with the following command:

write example.bas

In response, ILOG CPLEX displays a confirmation message, like this:

Basis written to file 'example.bas'.

Using Path Names

A full path name may aso be included to indicate on which drive and directory any file
should be saved. The following might be avalid write command if the disk drive on your
system contains aroot directory named problems:

write /problems/example.lp

Summary
The general syntax for the write command is.

write filename file format

or

write filename.file extension

where file extension indicatesthe format in which thefileisto be saved.

Reading Problem Files

When you are using ILOG CPLEX to solve linear optimization problems, you may
frequently enter problems by reading them from files instead of entering them from the
keyboard.

Continuing the tutorial from Writing Problem and Solution Files on page 53, the topics are:
[Felecting a Read File Format on page 56

[Reading LP Files on page 56

[Wsing File Extensions on page 57

[Reading MPSFiles on page 57

[Reading Basis Files on page 57

ILOG CPLEX 10.0 — GETTING STARTED 55

56

Selecting a Read File Format

When you type the read command in the Interactive Optimizer with the name of afile
bearing an extension that it does not recognize, ILOG CPLEX displaysthe following prompt
about file formats on the screen:

File type options:

bas INSERT format basis file

1p LP format problem file

min DIMACS min-cost network-flow format file
mps MPS format problem file

mst MIP start file

net CPLEX network-flow format file
ord Integer priority order file
prm Non-default parameter file

sav Binary matrix and basis file
sol Solution file

File type:

Reminder: All these file formats are documented in more detail in the reference manual
ILOG CPLEX File Formats.

Reading LP Files
At the cPLEX> prompt type:

read

The following message appears requesting a file name:
Name of file to read:
Four files have been saved at this point in this tutorial:
example
example?2
example.lp

example.bas

Specify the file named example that you saved while practicing the write command.

You recall that the example problem was saved in LP format, so in response to the file type
prompt, enter:

1p

ILOG CPLEX displays a confirmation message, like this:

ILOG CPLEX 10.0 — GETTING STARTED

Problem 'example' read.
Read Time = 0.03 sec.

The example problem is now in memory, and you can manipulate it with ILOG CPLEX
commands.

Tip: Theintermediate prompts for the read command can be avoided by entering the
entire command on oneline, like this:

read example lp

Using File Extensions

If the file name has an extension that corresponds to one of the supported file formats,
ILOG CPLEX automatically reads it without your having to specify the format. Thus, the
following command automatically reads the problem file example.1p in LP format:

read example.lp

Reading MPS Files

ILOG CPLEX can also read industry-standard M PS formatted files. The problem called
afiro.mps (provided inthe ILOG CPLEX distribution) serves as an example. If you
includethe .mps extensionin thefile name, ILOG CPLEX will recognize the file as being
in MPS format. If you omit the extension, ILOG CPLEX will attempt to determine whether
thefileis of atypethat it recognizes.

read afiro mps
After the file has been read, the following message appears.

Selected objective sense: MINIMIZE
Selected objective name: obj

Selected RHS name: rhs
Problem ‘afiro’ read.
Read time = 0.01 sec.

ILOG CPLEX reports additional information when it reads MPS formatted files. Since these
files can contain multiple objective function, righthand side, bound, and other information,
ILOG CPLEX displays which of these is being used for the current problem. See the ILOG
CPLEX User’s Manual to learn more about special considerations for using MPS formatted
files.

Reading Basis Files

In addition to other file formats, the read command is also used to read basisfiles. These
files contain information for ILOG CPLEX that tells the simplex method where to begin the
next optimization. Basis files usualy correspond to the result of some previous optimization

ILOG CPLEX 10.0 — GETTING STARTED 57

and help to speed re-optimization. They are particularly helpful when you are dealing with
very large problemsif small changes are made to the problem data.

Writing Basis Files on page 54 showed you how to save abasisfile for the example after it
was optimized. For thistutorial, first read the example. 1p file. Then read this basisfile by
typing the following command:

read example.bas

The message of confirmation:;

Basis 'example.bas' read.

indicates that the basis file was successfully read. If the advanced basisindicator is on, this
basiswill be used as a starting point for the next optimization, and any new basis created
during the session will be used for future optimizations. If the basis changes during a
session, you can save it by using the write command.

Summary
The general syntax for the read command is:

read filename file format

or

read filename.file extension

where file extension correspondsto one of the allowed file formats.

Setting ILOG CPLEX Parameters

ILOG CPLEX users can vary parameters by means of the set command. This command is
used to set ILOG CPLEX parameters to values different from their default values. The
procedure for setting a parameter is similar to that of other commands. Commands can be
carried out incrementally or all in one line from the cpPLEX> prompt. Whenever a parameter
isset to anew value, ILOG CPLEX inserts acomment in the log file that indicates the new
value.

Setting a Parameter
To see the parameters that can be changed, type:

set

58 ILOG CPLEX 10.0 — GETTING STARTED

The parameters that can be changed are displayed with a prompt, like this:

Available Parameters:

advance set indicator for advanced starting information
barrier set parameters for barrier optimization
clocktype set type of clock used to measure time

conflict set parameters for finding conflicts

defaults set all parameter values to defaults

emphasis set optimization emphasis

feasopt set parameters for feasopt

logfile set file to which results are printed

lpmethod set method for linear optimization

mip set parameters for mixed integer optimization
network set parameters for network optimizations

output set extent and destinations of outputs
preprocessing set parameters for preprocessing

gpmethod set method for quadratic optimization

read set problem read parameters

sifting set parameters for sifting optimization

simplex set parameters for primal and dual simplex optimizations
threads set default parallel thread count

timelimit set time limit in seconds

workdir set directory for working files

workmem set memory available for working storage (in megabytes)

Parameter to set:

If you pressthe <returns key without entering a parameter name, the following message is
displayed:

No parameters changed.

Resetting Defaults

After making parameter changes, it is possible to reset all parameters to default values by
issuing one command:

set defaults
Thisresetsall parameters to their default values, except for the name of the log file.

Summary
The general syntax for the set command is:

set parameter option new value

Displaying Parameter Settings
The current values of the parameters can be displayed with the command:

display settings all

A list of parameters with settings that differ from the default values can be displayed with
the command:

ILOG CPLEX 10.0 — GETTING STARTED 59

display settings changed

For a description of al parameters and their default values, see the reference manual
ILOG CPLEX Parameters.

ILOG CPLEX also accepts customized system parameter settings via a parameter
specification file. See the reference manual ILOG CPLEX File Formats for a description of
the parameter specification file and its use.

Adding Constraints and Bounds

60

If you wish to add either new constraints or bounds to your problem, use the add command.
This command is similar to the enter command in the way it is used, but it has one
important difference: the enter command is used to start a brand new problem, whereasthe
add command only adds new information to the current problem.

Suppose that in the example you need to add a third constraint:
Xy + 2% + 3X3 =50
You may do either interactively or from afile.

Adding Interactively

Type the add command, then enter the new constraint on the blank line. After validating the
congtraint, the cursor moves to the next line. You are in an environment identical to that of
the enter command after having issued subject to. At this point you may continue to
add constraints or you may type bounds and enter new bounds for the problem. For the
present example, type end to exit the add command. Your session should look like this:

add

Enter new constraints and bounds [‘end’ terminates]:
x1 + 2x2 + 3x3 >= 50

end

Problem addition successful.

When the problem is displayed again, the new constraint appears, like this:
display problem all

Maximize

obj: x1 + 2 X2 + 3 X3
Subject To

cl: - x1 + X2 + x3 <= 20
c2: x1 - 3 x2 + x3 <= 30
c3: x1 + 2 x2 + 3 x3 >= 50
Bounds

0 <= x1 <= 40

All other variables are >= 0.
end

ILOG CPLEX 10.0 — GETTING STARTED

Adding from a File

Alternatively, you may read in new constraints and bounds from afile. If you enter afile
name after the add command, ILOG CPLEX will read afile matching that name. The file
contents must comply with standard ILOG CPLEX LP format. ILOG CPLEX does not
prompt for afile name if noneis entered. Without a file name, interactive entry is assumed.

Summary

The general syntax for the add command is:
add

or

add filename

Changing a Problem
The enter and add commands allow you to build a problem from the keyboard, but they do
not allow you to change what you have built. You make changes with the change command.
The change command can be used for:
[Changing Constraint or Variable Names
[Changing Sense
[Changing Bounds and Removing Bounds
[Changing Coefficients
[Deleting entire constraints or variables

Start out by changing the name of the constraint that you added with the add command. In
order to see alist of change options, type:

change

ILOG CPLEX 10.0 — GETTING STARTED 61

62

The elements that can be changed are displayed like this:

Change options:

bounds change bounds on a variable

coefficient change a coefficient

delete delete some part of the problem

name change a constraint or variable name

objective change objective function value

problem change problem type

gpterm change a quadratic objective term

rhs change a right-hand side or network supply/demand value
sense change objective function or a constraint sense

type change variable type

Change to make:

Changing Constraint or Variable Names
Enter name at the Change to make: prompt to change the name of a constraint:

Change to make: name

The present name of the constraint is c3. In the example, you can change the name to new3
to differentiate it from the other constraints using the following entries:

Change a constraint or variable name [‘c’ or ‘v’]: c

Present name of constraint: c3

New name of constraint: new3
The constraint ‘c3’ now has name ‘new3’.

The name of the constraint has been changed.

The problem can be checked with adisplay command (for example,
display problem constraints new3) to confirm that the change was made.

This same technique can also be used to change the name of avariable.

Changing Sense

Next, change the sense of the new3 constraint from > to < using the sense option of the
change command. At the CPLEX> prompt, type:

change sense

ILOG CPLEX prompts you to specify a constraint. There are two ways of specifying this
congtraint: if you know the name (for example, new3), you can enter the name; if you do not
know the name, you can specify the index of the constraint. In this example, theindex is 3
for the new3 constraint. Try the first method and type:

Change sense of which constraint: new3
Sense of constraint 'new3' is '>='.

ILOG CPLEX 10.0 — GETTING STARTED

ILOG CPLEX tellsyou the current sense of the selected constraint. All that is left now isto
enter the new sense, which can be entered as <=, >=, or =. You can also type simply
< (interpreted as<) or > (interpreted as>). Theletters 1, g, and e arealso interpreted as <, >,

and = respectively.

New sense ['<=' or '>=' or '=']l: <=
Sense of constraint 'mew3' changed to '<='.

The sense of the constraint has been changed.

The sense of the objective function may be changed by specifying the objective function
name (its default is obj) or the number O when ILOG CPLEX prompts you for the
constraint. You are then prompted for anew sense. The sense of an objective function can
take the value maximum Or minimum or the abbreviation max or min.

Changing Bounds

When the example was entered, bounds were set specifically only for the variable x1. The
bounds can be changed on this or other variables with the bounds option. Again, start by
selecting the command and option.

change bounds

Select the variable by name or number and then select which bound you would like to
change. For the example, change the upper bound of variable x2 from +e- to 50.

Change bounds on which variable: x2
Present bounds on variable x2: The indicated variable is >= 0.

Change lower or upper bound, or both ['1l’, ‘u’, or ‘b’]: u
Change upper bound to what [‘+inf’ for no upper bound]: 50
New bounds on variable 'x2’: 0 <= x2 <= 50

Removing Bounds

To remove abound, set it to +eo or —o. Interactively, use theidentifiers inf and -inf
instead of the symbols. To change the upper bound of x2 back to +, use the oneline
command:

change bounds x2 u inf

You receive the message:

New bounds on variable 'x2': The indicated variable is >= 0.

The bound is now the same as it was when the problem was originally entered.

ILOG CPLEX 10.0 — GETTING STARTED 63

64

Changing Coefficients

Up to this point all of the changes that have been made could be referenced by specifying a
single constraint or variable. In changing a coefficient, however, a constraint and a variable
must be specified in order to identify the correct coefficient. As an example, change the
coefficient of x3 in the new3 constraint from 3 to 30.

Asusual, you must first specify which change command option to use:

change coefficient
You must now specify both the constraint row and the variable column identifying the
coefficient you wish to change. Enter both the constraint name (or number) and variable
name (or number) on the same line, separated by at least one space. The constraint nameis

new3 and the variableis number 3, so in response to the following prompt, type new3 and 3,
like this, to identify the one to change:

Change which coefficient [‘constraint’ ‘variable’]: new3 3
Present coefficient of constraint ‘new3’, variable ‘3’ is 3.000000.

Thefinal step isto enter the new value for the coefficient of x3.

Change coefficient of constraint ‘new3’, variable ‘3’ to what: 30
Coefficient of constraint ‘new3’, variable ‘3’ changed to 30.000000.

Objective & RHS Coefficients

To change a coefficient in the objective function, or in the righthand side, use the
corresponding change command option, objective or rhs. For example, to specify the
righthand side of constraint 1 to be 25.0, a user could enter the following (but for this
tutorial, do not enter this now):

change rhs 1 25.0

Deleting

Another option to the change command isdelete. Thisoption isused to remove an entire
congtraint or avariable from aproblem. Return the problem to its original form by removing
the constraint you added earlier. Type:

change delete

ILOG CPLEX 10.0 — GETTING STARTED

ILOG CPLEX displaysalist of delete options.

Delete options:

constraints delete range of constraints

gconstraints delete range of quadratic constraints
indconstraints delete range of indicator constraints
soss delete range of special ordered sets
variables delete range of variables

equality delete range of equality constraints
greater-than delete range of greater-than constraints
less-than delete range of less-than constraints

Deletion to make:

At thefirst prompt, specify that you want to delete a constraint.

Deletion to make: constraints

At the next prompt, enter a constraint name or number, or arange as you did when you used
the display command. Since the constraint to be deleted is named new3, enter that name:

Delete which constraint(s): new3
Constraint 3 deleted.

Check to be sure that the correct range or number is specified when you perform this
operation, since constraints are permanently removed from the problem. Indices of any
congtraints that appeared after a deleted constraint will be decremented to reflect the
removal of that constraint.

The last message indicates that the operation is complete. The problem can now be checked
to seeif it has been changed back to its original form.

display problem all
Maximize

obj: x1 + 2 x2 + 3 x3
Subject To

cl: - x1 + X2 + x3 <= 20
c2: x1l - 3 x2 + x3 <= 30
Bounds

0 <= x1 <= 40
All other variables are >= 0.

When you remove a constraint with the delete option, that constraint no longer existsin
memory; however, variables that appear in the deleted constraint are not removed from
memory. If avariable from the deleted constraint appears in the objective function, it may
still influence the solution process. If that is not what you want, these variables can be
explicitly removed using the delete option.

Summary
The general syntax for the change command is:

ILOG CPLEX 10.0 — GETTING STARTED 65

change option identifier [identifier2] new value

Executing Operating System Commands

The execute command (xecute) issimple but useful. It executes operating system
commands outside of the ILOG CPLEX environment. By using xecute, you avoid having
to save a problem and quit ILOG CPLEX in order to carry out a system function (such as
viewing a directory, for example).

Asan example, if you wanted to check whether all of the files saved in the last session are
really in the current working directory, the following ILOG CPLEX command shows the
contents of the current directory in a UNIX operating system, using the UNIX command 1s:

xecute 1ls -1

total 7448

-r--r--r-- 1 3258 Jul 14 10:34 afiro.mps
-YWXY-XY-X 1 3783416 Apr 22 10:32 cplex
-rw-r--r-- 1 3225 Jul 14 14:21 cplex.log
-YwW-r--r-- 1 145 Jul 14 11:32 example
-YW-Y--T-- 1 112 Jul 14 11:32 example.bas
-YwW-r--r-- 1 148 Jul 14 11:32 example.lp
-IW-r--r-- 1 146 Jul 14 11:32 example2

After the command is executed, the cPLExX > prompt returns, indicating that you are till in
ILOG CPLEX. Most commands that can normally be entered from the prompt for your
operating system can also be entered with the xecute command. The command may be as
simple aslisting the contents of adirectory or printing the contents of afile, or ascomplex as
starting atext editor to modify afile. Anything that can be entered on one line after the
operating system prompt can also be executed from within ILOG CPLEX. However, this
command differs from other ILOG CPLEX commandsin that it must be entered on asingle
line. No prompt will be issued. In addition, the operating system may fail to carry out the
command if insufficient memory is available. In that case, no message isissued by the
operating system, and the result is areturn to the cPLEX > prompt.

Summary
The general syntax for the xecute command is:

xecute command line

Quitting ILOG CPLEX

When you are finished using ILOG CPLEX and want to leave it, type:

quit

66 ILOG CPLEX 10.0 — GETTING STARTED

If a problem has been modified, be sure to save the file before issuing a quit command.
ILOG CPLEX will not prompt you to save your problem.

ILOG CPLEX 10.0 — GETTING STARTED 67

68

ILOG CPLEX 10.0

GETTING STARTED

Concert Technology Tutorial for C++ Users

This tutorial shows you how to write C++ applications using ILOG CPLEX with Concert
Technology. In this chapter you will learn about:

[_The Design of CPLEX in Concert Technology on page 70

[Compiling and Linking ILOG CPLEX in Concert Technology Applications on page 71
[_The Anatomy of an ILOG Concert Technology Application on page 72

[Building and Solving a Small LP Model in C++ on page 78

[Writing and Reading Models and Files on page 80

[Jelecting an Optimizer on page 81

[Reading a Problem from a File: Example ilolpex2.cpp on page 82

[Modifying and Reoptimizing on page 84

[Modifying an Optimization Problem: Example ilolpex3.cpp on page 84

ILOG CPLEX 10.0 — GETTING STARTED 69

The Design of CPLEX in Concert Technology

70

A clear understanding of C++ objectsis fundamental to using ILOG Concert Technology
with ILOG CPLEX to build and solve optimization models. These objects can be divided
into two categories:

1. Modeling objects are used to define the optimization problem. Generally an application
creates multiple modeling objectsto specify one optimization problem. Those objectsare
grouped into an 11oModel oObject representing the complete optimization problem.

2. IloCplex Objectsare used to solve the problems that have been created with the
modeling objects. An I1oCplex object reads a model and extracts its data to the
appropriate representation for the ILOG CPLEX optimizer. Then the 11oCplex object
isready to solve the model it extracted and be queried for solution information.

Thus, the modeling and optimization parts of a user-written application program are
represented by a group of interacting C++ objects created and controlled within the
application. Figure 4.1 shows a picture of an application using ILOG CPLEX with
ILOG Concert Technology to solve optimization problems.

User-Written Application

Concert Technology
modeling objects " — — — — — —

\/

CPLEX internals

Figure4.1 A View of ILOG CPLEX with ILOG Concert Technology

The ILOG CPLEX internals include the computing environment, its communication
channels, and your problem objects.

This chapter gives a brief tutorial illustrating the modeling and solution classes provided by
ILOG Concert Technology and ILOG CPLEX. More information about the algorithm class
IloCplex and its nested classes can be found in the ILOG CPLEX User’s Manual and
ILOG CPLEX Reference Manual.

ILOG CPLEX 10.0 — GETTING STARTED

Compiling and Linking ILOG CPLEX in Concert Technology Applications

When compiling a C++ application with a C++ library like ILOG CPLEX in ILOG Concert
Technology, you need to tell your compiler where to find the ILOG CPLEX and Concert
include files (that is, the header files), and you also need to tell the linker where to find the
ILOG CPLEX and Concert libraries. The sample projects and makefiles illustrate how to
carry out these crucial steps for the examplesin the standard distribution. They use relative
path names to indicate to the compiler where the header files are, and to the linker where the
libraries are.

Testing Your Installation on UNIX
To run the test, follow these steps.

1. First check the readme.html file in the standard distribution to locate the right
subdirectory containing amakefile appropriate for your platform.

2. Go to that subdirectory.

3. Thenusethesamplemakefile located thereto compile and link the examples that
came in the standard distribution.

make all compilesand links examplesfor al of the APIs.

make all cpp compilesand linksthe examples of the C++ API.
4. Execute one of the compiled examples.

make execute all executesall of the examples.

make execute cpp executesonly the C++ examples.

Testing Your Installation on Windows

To run the test on a Windows platform, first consult the readme . htm1 file in the standard
distribution. That file will tell you where to find another text file that contains information
about your particular platform. That second file will have an abbreviated name that
corresponds to a particular combination of machine, architecture, and compiler. For
example, if you are working on a personal computer with Windows operating system and
Microsoft Visual C++ compiler, then the readme . htm1 file will direct you to the
msvc.html file where you will find detailed instructions about how to create a project to
compile, link, and execute the examples in the standard distribution.

The examples have been tested repeatedly on al the platforms compatible with
ILOG CPLEX, soif you successfully compile, link, and execute them, then you can be sure
that your installation is correct.

ILOG CPLEX 10.0 — GETTING STARTED 71

In Case of Problems

If you encounter difficulty when you try thistest, then thereisaproblem in your installation,
and you need to correct it before you begin real work with ILOG CPLEX.

For example, if you get a message from the compiler such as
ilolpex3.cpp 1: Can’t find include file ilcplex/ilocplex.h

then you need to verify that your compiler knows where you have installed ILOG CPLEX
and itsincludefiles (that is, its header files).

If you get a message from the linker, such as

1d: -lcplex: No such file or directory

then you need to verify that your linker knowswherethe ILOG CPLEX library islocated on
your system.

If you get a message such as

ilm: CPLEX: no license found for this product

or

ilm: CPLEX: invalid encrypted key "MNJVUXTDJV82" in
"/usr/ilog/ilm/access.ilm";run ilmcheck

then there is a problem with your license to use ILOG CPLEX. Review the ILOG License
Manager User’s Guide and Reference to see whether you can correct the problem. If not,
call thetechnical support hotline and repeat the error message there.

If you successfully compile, link, and execute one of the examples in the standard
distribution, then you can be sure that your installation is correct, and you can begin to use
ILOG CPLEX with ILOG Concert Technology seriously.

The Anatomy of an ILOG Concert Technology Application

72

ILOG Concert Technology isa C++ class library, and therefore ILOG Concert Technology
applications consist of interacting C++ objects. This section gives ashort introduction to the
most important classes that are usually found in a complete ILOG Concert Technology
CPLEX application.

Constructing the Environment: lloEnv

An environment, that is, an instance of 11cEnv istypically the first object created in any
Concert Technology application.

ILOG CPLEX 10.0 — GETTING STARTED

You construct an I1oEnv object by declaring avariable of type 110Env. For example, to
create an environment named env, you do this:

IloEnv env;

Note: The environment object created in an ILOG Concert Technology application is
different from the environment created in the ILOG CPLEX C library by calling the routine
CPXopenCPLEX.

The environment object is of central importance and needs to be available to the constructor
of al other ILOG Concert Technology classes because (among other things) it provides
optimized memory management for objects of ILOG Concert Technology classes. This
provides a boost in performance compared to using the system memory management
system.

Asisthe case for most ILOG Concert Technology classes, 110Env isahandle class. This
means that the variable env is a pointer to an implementation object, which is created at the
same time as env in the above declaration. One advantage of using handlesis that if you
assign handle objects, al that is assigned is a pointer. So the statement

IloEnv env2 = env;

creates a second handle pointing to the implementation object that env already points to.
Hence there may be an arbitrary number of 110Env handle objects all pointing to the same
implementation object. When terminating the ILOG Concert Technology application, the
implementation object must be destroyed as well. This must be done explicitly by the user
by calling

env.end() ;

for just ONE of the 110Env handles pointing to the implementation object to be destroyed.
The call to env.end isgeneraly thelast ILOG Concert Technology operation in an
application.

Creating a Model: lloModel

After creating the environment, a Concert application is ready to create one or more
optimization models. Doing so consists of creating a set of modeling objects to define each
optimization model.

Modeling objects, like 110Env objects, are handles to implementation objects. Though you
will be dealing only with the handle objects, it isthe implementation objects that contain the
data that specifies the optimization model. If you need to remove an implementation object
from memory, you need to call the end method for one of its handle objects.

Modeling objects are also known as extractables because it is the individual modeling
objectsthat are extracted one by one when you extract an optimization model to T1oCplex.
So, extractables are characterized by the possibility of being extracted to a gorithms such as

ILOG CPLEX 10.0 — GETTING STARTED 73

74

IloCplex. Infact, they al areinherited from the class 11oExtractable. In other words,
IloExtractable isthe base class of dl classes of extractables or modeling objects.

The most fundamental extractable classis 11oModel. Objects of thisclass are used to define
acomplete optimization model that can later be extracted to an T1oCplex object. You create
amodel by constructing an object of type 11oModel. For example, to construct a modeling
object named mode1, within an existing environment named env, you would do the
following:

IloModel model (env) ;

At this point, it isimportant to note that the environment is passed as a parameter to the
constructor. There is also a constructor that does not use the environment parameter, but this
constructor creates an empty handle, the handle corresponding to aNULL pointer. Empty
handles cannot be used for anything but for assigning other handles to them. Unfortunately,
it isacommon mistake to try to use empty handles for other things.

After an I1oModel object has been constructed, it is popul ated with the extractables that
define the optimization model. The most important classes here are:
IloNumVar representing modeling variables;

IloRange defining constraints of the form | <= expr <= u, where expr isa
linear expression; and

IloObjective representing an objective function.
You create objects of these classes for each variable, constraint, and objective function of
your optimization problem. Then you add the objects to the model by calling
model . add (object) ;
for each extractable object. Thereisno need to explicitly add the variable objectsto a

model, as they are implicitly added when they are used in the range constraints (instances of
I1loRange) Or the objective. At most one objective can be used in amodel with T1ocplex.

Modeling variables are constructed as objects of class 11oNumvar, by defining variables of
type I1oNumvar. Concert Technology provides several constructorsfor doing this; the most
flexibleformis:

IloNumVar x1(env, 0.0, 40.0, ILOFLOAT) ;

This definition creates the modeling variable x1 with lower bound 0.0, upper bound 40.0
and type 1LOFLOAT, Which indicates the variable is continuous. Other possible variable
typesinclude 1Lo1INT for integer variables and 11.0BoOL for Boolean variables.

For each variable in the optimization model a corresponding object of class 11oNumvar
must be created. Concert Technology provides awealth of waysto help you construct all the
IloNumVar oObjects.

ILOG CPLEX 10.0 — GETTING STARTED

After al the modeling variables have been constructed, they can be used to build
expressions, which in turn are used to define objects of class 1100bjective and
IloRange. Forexample,

IloObjective obj = IloMinimize(env, X1 + 2*x2 + 3*x3);

This creates the extractable ob7 of type 1100bjective which represents the objective
function of the example presented in Introducing ILOG CPLEX.

Consider in more detail what this line does. The function T1oMinimize takesthe
environment and an expression as arguments, and constructs anew I1oobjective object
from it that defines the objective function to minimize the expression. This new object is
returned and assigned to the new handle ob.

After an objective extractable is created, it must be added to the model. As noted above this
isdone with the add method of 11oModel. If thisisall that the variable ob7 is needed for, it
can be written more compactly, like this:

model.add (IloMinimize (env, x1 + 2*x2 + 3*x3));

Thisway there is no need for the program variable obj and the program is shorter. If in
contrast, the objective function is needed | ater, for example, to change it and reoptimize the
model when doing scenario analysis, the variable obj must be created in order to refer to the
objective function. (From the standpoint of algorithmic efficiency, the two approaches are
comparable.)

Creating constraints and adding them to the model can be done just as easily with the
following statement:

model.add (-x1 + x2 + x3 <= 20);

Thepart -x1 + x2 + x3 <= 20 creates an object of class T1orRange that isimmediately
added to the model by passing it to the method T1oModel : : add. Again, if areferenceto the
IloRange Object is heeded later, an 11orange handle object must be stored for it. Concert
Technology providesflexible array classesfor storing data, such asthese 11o0rRange objects.
Aswith variables, Concert Technology provides a variety of constructors that help create
range constraints.

While those examples use expressions with modeling variables directly for modeling, it
should be pointed out that such expressions are themselves represented by yet another
Concert Technology class, 11oExpr. Like most Concert Technology objects, T1oExpr
objects are handles. Consequently, the method end must be called when the object isno
longer needed. The only exceptions are implicit expressions, where the user does not create
an I1oExpr object, such as when writing (for example) x1 + 2*x2. For such implicit
expressions, the method end should not be called. The importance of the class 110Expr
becomes clear when expressions can no longer be fully spelled out in the source code but
need instead to be built up in aloop. Operators like += provide an efficient way to do this.

ILOG CPLEX 10.0 — GETTING STARTED 75

Solving the Model: lloCplex

After the optimization problem has been created in an I11oModel object, it istimeto create
the 11oCplex object for solving the problem. Thisis done by creating an instance of the
class 11oCplex. For example, to create an object named cplex, do the following:

IloCplex cplex(env) ;

again using the environment env as aparameter. The ILOG CPLEX object can then be used
to extract the model to be solved. One way to extract the model isto call

cplex.extract (model). However, experienced Concert users recommend a shortcut that
performs the construction of the cplex object and the extraction of the model in oneline:

IloCplex cplex(model) ;

This shortcut works because the modeling object model contains within it the reference to
the environment named env.

After thisline, object cplex isready to solve the optimization problem defined by mode1l.
Solving the model is done by calling:

cplex.solve () ;

This method returns an 11oBool value, where 11oTrue indicates that cplex successfully
found afeasible (yet not necessarily optimal) solution, and 11oFalse indicates that no
solution was found. More precise information about the outcome of the last call to the
method solve can be obtained by caling:

cplex.getStatus () ;

The returned value tells you what ILOG CPLEX found out about the model: whether it
found the optimal solution or only afeasible solution, whether it proved the model to be
unbounded or infeasible, or whether nothing at all has been determined at this point. Even
more detailed information about the termination of the solve call is available through
method I1oCplex: :getCplexStatus.

Querying Results

After successfully solving the optimization problem, you probably areinterested in
accessing the solution. The following methods can be used to query the solution value for a
variable or aset of variables:

IloNum IloCplex::getValue (IloNumVar var) const;
void IloCplex::getValues (IloNumArray val,
const IloNumVarArray var) const;

For example:

IloNum vall = cplex.getValue (x1) ;

ILOG CPLEX 10.0 — GETTING STARTED

stores the solution value for the modeling variable x1 in val1. Other methods are available
for querying other solution information. For example, the objective function value of the
solution can be accessed using:

IloNum objval = cplex.getObjVvalue() ;

Handling Errors

Concert Technology providestwo lines of defense for dealing with error conditions, suited
for addressing two kinds of errors. The first kind covers simple programming errors.
Examples of thiskind are: trying to use empty handle objects or passing arrays of
incompatible lengths to functions.

Thiskind of error isusually an oversight and should not occur in a correct program. In order
not to pay any runtime cost for correct programs asserting such conditions, the conditions
are checked using assert statements. The checking is disabled for production runs if
compiled with the -DNDEBUG compiler option.

The second kind of error is more complex and cannot generally be avoided by correct
programming. An example is memory exhaustion. The data may simply require too much
memory, even when the program is correct. Thiskind of error is aways checked at runtime.
In cases where such an error occurs, Concert Technology throws a C++ exception.

In fact, Concert Technology provides ahierarchy of exception classes that all derive from
the common base class 11oException. Exceptions derived from this class are the only kind
of exceptionsthat are thrown by Concert Technology. The exceptions thrown by 11oCplex
objects all derivefromclass I1oAlgorithm: : Exception Of IloCplex: : Exception.

To handle exceptions gracefully in a Concert Technology application, include al of the code
inatry/catch clause, likethis:

I1oEnv env;

try {

/] ...

} catch (IloException& e) {

cerr << "Concert Exception: " << e << endl;
} catch (...) {

cerr << "Other Exception" << endl;

}

env.end() ;

Note: The construction of the environment comes before the try/catch clause. In case of
an exception, env. end must still be called. To protect against failure during the
construction of the environment, another try/catch clause may be added.

If code other than Concert Technology code is used in the part of that sample denoted by
..., dl other exceptions will be caught with the statement catch (. . .). Doing soisgood
practice, asit assures that no exception is unhandled.

ILOG CPLEX 10.0 — GETTING STARTED 77

Building and Solving a Small LP Model in C++

78

A complete example of building and solving asmall LP model can now be presented. This
example demonstrates:

[General Sructure of an ILOG CPLEX Concert Technology Application on page 78
[Modeling by Rows on page 79

[Modeling by Columns on page 79

[Modeling by Nonzero Elements on page 80

Example i1olpex1 . cpp, Which is one of the example programs in the standard

ILOG CPLEX distribution, is an extension of the example presented in Introducing

ILOG CPLEX. It shows three different ways of creating an ILOG Concert Technology LP
model, how to solveit using 11oCplex, and how to access the solution. Here isthe problem
that the example optimizes:

Maximize X + 2X; + 3X3
subject to —X; + X, + X3 £20

Xy — 3X, + X3 £30
with these bounds 0<x,<40

0 < Xp S oo

0<X3<+oo

General Structure of an ILOG CPLEX Concert Technology Application

Thefirst operation isto create the environment object env, and the last operation isto
destroy it by calling env.end. The rest of the codeisenclosed inatry/catch clauseto
gracefully handle any errors that may occur.

First the example creates the model object and, after checking the correctness of command
line parameters, it creates empty arrays for storing the variables and range constraints of the
optimization model. Then, depending on the command line parameter, the example callsone
of the functions populatebyrow, populatebycolumn, Of populatebynonzero, to fill
the model object with a representation of the optimization problem. These functions place
the variable and range objects in the arrays var and con which are passed to them as
parameters.

After the model has been populated, the 11ocplex algorithm object cplex is created and
the model is extracted to it. The following call of the method so1ve invokes the optimizer.
If it failsto generate a solution, an error message is issued to the error stream of the
environment, cplex.error (), and the integer -1 is thrown as an exception.

ILOG CPLEX 10.0 — GETTING STARTED

IloCplex providesthe output streams out for general logging, warning for warning
messages, and error for error messages. They are preconfigured to cout, cerr, and cerr
respectively. Thus by default you will seelogging output on the screen when invoking the
method solve. This can be turned off by calling

cplex.setOut (env.getNullStream()), that is, by redirecting the out stream of the
IloCplex object cplex to the null stream of the environment.

If asolution isfound, solution information is output through the channel, env . out whichis
initialized to cout by default. The output operator << is defined for type

IloAlgorithm: :Status asreturned by the call to cplex.getStatus. It isaso defined
for 11oNumarray, the ILOG Concert Technology class for an array of numerical values, as
returned by the callsto cplex.getvalues, cplex.getDuals, cplex.getSlacks, and
cplex.getReducedCosts. In genera, the output operator is defined for any

ILOG Concert Technology array of elements if the output operator is defined for the
elements.

The functions named populateby* are purely about modeling and are completely
decoupled from the algorithm 11ocplex. Infact, they don't usethe cplex object, whichis
created only after executing one of these functions.

Modeling by Rows

The function populatebyrow creates the variables and adds them to the array x. Then the
objective function and the constraints are created using expressions over the variables stored
in x. The range constraints are also added to the array of constraints c. The objective and the
constraints are added to the model.

Modeling by Columns

Function populatebycolumn can be viewed as the transpose of populatebyrow. While
for simple examples like this one population by rows may seem the most straightforward
and natural approach, there are some model s where modeling by column isamore natural or
more efficient approach.

When modeling by columns, range objects are created with their lower and upper bound
only. No expression is given—which isimpossible since the variables are not yet created.
Similarly, the objective function is created with only its intended optimization sense, and
without any expression. Next the variables are created and installed in the already existing
ranges and objective.

The description of how the newly created variables are to be installed in the ranges and
objective is by means of column expressions, which are represented by the class
IloNumColumn. Column expressions consist of objects of class 11oaddNumvar linked
together with operator +. These 11oaddNumvar objects are created using operator () of the
classes I11o0bjective and T1oRange. They define how to install anew variable to the
invoking objective or range objects. For example, obj (1.0) createsan I1oAddNumvar

ILOG CPLEX 10.0 — GETTING STARTED 79

capable of adding a new modeling variable with alinear coefficient of 1.0 to the expression
in ob3j. Column expressions can be built in loops using operator +=.

Column expressions (objects of class 11oNumColumn) are handle objects, like most other
Concert Technology objects. The method end must therefore be called to delete the
associated implementation object when it is no longer needed. However, for implicit column
expressions, where no 11oNumColumn object isexplicitly created, such as the ones used in
this example, the method end should not be called.

The column expression is passed as a parameter to the constructor of class 11oNumvar. For
examplethe constructor 11oNumvar (obj (1.0) + c[0] (-1.0) + c[1](1.0), 0.0,
40.0) creates anew modeling variable with lower bound 0.0, upper bound 40.0 and, by
default, type 1L.OFLOAT, and adds it to the objective obj with alinear coefficient of 1.0, to
therange c [0] with alinear coefficient of -1.0 andto c [1] with alinear coefficient of 1.0.
Column expressions can be used directly to construct numerical variables with default
bounds [0, IloInfinity] andtype ILOFLOAT, asin the following statement:

x.add(obj (2.0) + c[0](1.0) + c[1](-3.0));

where 11oNumvar does not need to be explicitly written. Here, the C++ compiler recognizes
that an I1oNumvar object heedsto be passed to the add method and therefore automatically
calls the constructor I11oNumvar (I1oNumColumn) inorder to create the variable from the
column expression.

Modeling by Nonzero Elements

Thelast of the three functions that can be used to build the model ispopulatebynonzero.
It creates objects for the objective and the ranges without expressions, and variables without
columns. The methods I1o0bjective: : setLinearCoef, setLinearCoefs, and
IloRange: :setLinearCoef, setLinearCoefs areusedto set individual nonzero values
in the expression of the objective and the range constraints. As usual, the objective and
ranges must be added to the model.

Complete Program

You can view the complete program online in the standard distribution of the product at
yourCPLEXinstallation/examples/src/ilolpexl.cpp.

Writing and Reading Models and Files

Inexample ilolpex1.cpp, onelineis still unexplained:

cplex.exportModel ("lpexl.1lp") ;

80 ILOG CPLEX 10.0 — GETTING STARTED

This statement causes cplex to write the model it has currently extracted to the file called
lpex1.1lp. Inthis case, the file will bewrittenin LP format. (Use of that format is
documented in the reference manual ILOG CPLEX File Formats.) Other formats supported
for writing problems to afile are MPS and SAV (aso documented in the reference manual
ILOG CPLEX File Formats). 1loCplex decideswhich file format to write based on the
extension of the file name.

I1loCplex also supportsreading of filesthrough one of its importModel methods. A call
tocplex. importModel (model, "file.lp") causes|LOG CPLEX toread aproblem
fromthefilefile.1p and add al the datain it to model as new objects. (Again, MPS and
SAV format files are also supported.) In particular, ILOG CPLEX creates an instance of

IloObjective for the objective function foundin file.1p,

IloNumVar for each variable found in file. 1p, except

IloSemiContVar for each semi-continuous or semi-integer variablefound in file. 1p,
IloRange for eachrow found in file.1p,

I1oS0S1 for each SOS of type 1 found in £ile.1p, and

I10S0S2 for each SOS of type2 foundin file.1lp.

If you also need access to the modeling objects created by importModel, two additional
sighatures are provided:

void IloCplex: :importModel (I1oModel& m,
const char* filename,
IloObjectives& obj,
IloNumVarArray vars,
IloRangeArray rngs) const;

and

void IloCplex::importModel (I1loModel& m,
const char* filename,
IloObjectives& obj,
IloNumVarArray vars,
IloRangeArray rngs,
IloSOSlArray sosl,
IloSOS2Array sos2) const;

They provide additional parameters so that the newly created modeling objects will be
returned to the caller. Example program ilolpex2 . cpp gives an example of how to use
method importModel.

Selecting an Optimizer

IloCplex treatsall problemsit solves as Mixed Integer Programming (MIP) problems.
The algorithm used by T1ocplex for solving MIP isknown as branch & cut (referred toin

ILOG CPLEX 10.0 — GETTING STARTED 81

some contexts as branch & bound) and is documented in more detail in the ILOG CPLEX
User’'sManual. For thistutorid, it is sufficient to know that this algorithm consists of
solving a sequence of LPs, QPs, or QCPsthat are generated in the course of the algorithm.
Thefirst LR, QP, or QCP to be solved is known as the root, while all the others are referred
to as nodes and are derived from the root or from other nodes. If the model extracted to the
cplex objectisapure LP, QP, or QCP (no integer variables), then it will be fully solved at
theroot.

As mentioned in Optimizer Options on page 12, various optimizer options are provided for
solving LPs, QPs, and QCPs. Whie the default optimizer works well for awide variety of
models, T1oCplex alowsyou to control which option to use for solving the root and for
solving the nodes, respectively, by the following methods:

void IloCplex: :setParam(IloCplex::RootAlg, alg)
void IloCplex::setParam(IloCplex::NodeAlg, alg)

where T1oCplex: :Algorithm iSan enumeration type. It defines the following symbols
with their meaning:

IloCplex: :AutoAlg allow ILOG CPLEX to choose the algorithm

IloCplex: :Dual use the dual simplex agorithm

IloCplex: :Primal use the primal simplex algorithm

IloCplex::Barrier use the barrier algorithm

IloCplex: :Network use the network simplex algorithm for the embedded
network

IloCplex::Sifting use the sifting algorithm

IloCplex: :Concurrent allow ILOG CPLEX to use multiple algorithms on

multiple computer processors

For QP models, only the autoalg, Dual, Primal, Barrier, and Network algorithms are
applicable.

The optimizer option used for solving pure LPs and QPsis controlled by setting the root
algorithm parameter. This is demonstrated next, in example i1olpex2 . cpp.

Reading a Problem from a File: Example ilolpex2.cpp

82

This example shows how to read an optimization problem from afile, and solve it with a
specified optimizer option. It prints solution information, including a Simplex basis, if
available. Finally it prints the maximum infeasibility of any variable of the solution.

Thefile to read and the optimizer choice are passed to the program via command line
parameters. For example, this command:

ilolpex2 example.mps d

ILOG CPLEX 10.0 — GETTING STARTED

readsthefile example . mps and solves the problem with the dual simplex optimizer.
Example ilolpex2 demonstrates:

[Reading the Model from aFile

[—Felecting the Optimizer

[Accessing Basis Information

[Querying Quality Measures

The general structure of thisexampleisthe same asfor example i 1olpex1 . cpp. It startsby
creating the environment and terminates with destroying it by calling the end method. The
code in between isenclosed in try/catch statements for error handling.

Reading the Model from a File

The model is created by reading it from thefile specified as the first command line argument
argv [1]. Thisisdone using the method importModel of an I1oCplex Object. Here the
IloCplex object isused asamodel reader rather than an optimizer. Calling importModel
does not extract the model to the invoking cplex object. This must be done later by acall to
cplex.extract (model). The objects obj, var, and rng are passed t0 importModel SO
that later on when results are queried the variables will be accessible.

Selecting the Optimizer

The selection of the optimizer option is done in the switch statement controlled by the
second command line parameter. A call to setParam (IloCplex: :RootAlg, alg)
selectsthedesired I1oCplex: : Algorithm option.

Accessing Basis Information

After solving the model by calling the method so1ve, the results are accessed in the same
way asin ilolpex1.cpp, With the exception of basisinformation for the variables. It is
important to understand that not all optimizer options compute basisinformation, and thusit
cannot be queried in all cases. In particular, basis information is not avail able when the
model is solved using the barrier optimizer (11oCplex: :Barrier) without crossover
(parameter 11oCplex: :BarCrossAlg Sett0 I1loCplex: :NoAlg).

Querying Quality Measures

Finally, the program prints the maximum primal infeasibility or bound violation of the
solution. To cope with the finite precision of the numerical computations done on the
computer, I1loCplex alows some tolerances by which (for instance) optimality conditions
may beviolated. A long list of other quality measuresis available.

ILOG CPLEX 10.0 — GETTING STARTED 83

Complete Program

You can view the complete program online in the standard distribution of the product at
yourCPLEXinstallation/examples/src/ilolpex2.cpp.

Modifying and Reoptimizing

In many situations, the solution to amodel is only the first step. One of the important
features of Concert Technology is the ability to modify and then re-solve the model even
after it has been extracted and solved one or more times.

A look back to examples ilolpex1.cpp and ilolpex2 . cpp revealsthat models have
been modified all along. Each time an extractable is added to amodel, it changes the model.
However, those examples made all such changes before the model was extracted to

ILOG CPLEX.

Concert Technology maintains alink between the model and al 11ocplex objectsthat may
have extracted it. Thislink is known as notification. Each time a modification of the model
or one of its extractables occurs, the change is notified to the 11ocplex objects that
extracted the model. They then track the modification in their internal representations.

Moreover, I1oCplex triesto maintain as much information from a previous solution asis
possible and reasonable, when the model is modified, in order to have a better start when
solving the modified model. In particular, when solving L Ps or QPs with a simplex method,
IloCplex attemptsto maintain a basis which will be used the next time the method solve
isinvoked, with the aim of making subsequent solves go faster.

Modifying an Optimization Problem: Example ilolpex3.cpp

84

This example demonstrates.
[—Fetting ILOG CPLEX Parameters on page 85
[Modifying an Optimization Problem on page 86
[—Harting from a Previous Basis on page 86

Here isthe problem example i 1o1pex3 solves:

Minimize cNTX
subject to Hx=d
Ax=Db
I<x<u
ILOG CPLEX 10.0 — GETTING STARTED

where H= (-10101000) d= (-3)

(1-1010000) (1)
(01-1001-10) (4)
(000-10-101) (3)
(0000-101-1) (-5)
A= (21-2-1 2-1-2-3) b= (4)
(1-323-1211) (-2)
c= (9142-82812)
| = (00000000)
us= (50 50 50 50 50 50 50 50)

The constraints Hx=d represent the flow conservation of a pure network flow. The example
solvesthis problem in two steps:

1. ThelLOG CPLEX Network Optimizer is used to solve

Minimize cNTX
subject to Hx =d
I<x<u

2. The constraints Ax=b are added to the problem, and the dual simplex optimizer isused to
solve the full problem, starting from the optimal basis of the network problem. The dual
simplex method ishighly effective in such a case because this basis remains dua feasible
after the slacks (artificial variables) of the added constraints are initialized as basic.

Notice that the o valuesin the data are omitted in the example program. ILOG CPLEX
makes extensive use of sparse matrix methods and, although ILOG CPLEX correctly
handles any explicit zero coefficients given to it, most programs solving models of more
than modest size benefit (in terms of both storage space and speed) if the natural sparsity of
the model is exploited from the very start.

Before the model is solved, the network optimizer is selected by setting the Rootalg
parameter to the value I1oCplex: :Network, asshownin example ilolpex2.cpp. The
simplex display parameter T1oCplex: : SimDisplay iS Set so that the simplex algorithm
issues logging information as it executes.

Setting ILOG CPLEX Parameters

IloCplex provides avariety of parameters that allow you to control the solution process.
They can be categorized as Boolean, integer, numerical, and string parameters and are

ILOG CPLEX 10.0 — GETTING STARTED 85

86

represented by the enumeration types I11oCplex: :BoolParam, IloCplex: : IntParam,
IloCplex: :NumParam, and IloCplex: : StringParam, respectively.

Modifying an Optimization Problem

After the simple model is solved and the resulting objective value is passed to the output
channel cplex.out, the remaining constraints are created and added to the model. At this
time the model has already been extracted to cplex. Asaconseguence, whenever the model
ismodified by adding a constraint, thisaddition isimmediately reflected in the cplex object
vianotification.

Starting from a Previous Basis

Before solving the modified problem, example i1olpex3 . cpp Setsthe optimizer option to
IloCplex: :Dual, asthisisthe agorithm that can generally take best advantage of the
optimal basis from the previous solve after the addition of constraints.

Complete Program

You can view the complete program online in the standard distribution of the product at
yourCPLEXinstallation/examples/src/ilolpex3.cpp.

ILOG CPLEX 10.0 — GETTING STARTED

Concert Technology Tutorial for
Java Users

This chapter isan introduction to using ILOG CPLEX through ILOG Concert Technology in
the Java programming language. It gives you an overview of atypical application program,
and highlights procedures for:

[Creating a model

[—3olving that model

[Querying results after solving

[—Handling error conditions

ILOG Concert Technology alows your application to call ILOG CPLEX directly, through
the JavaNative Interface (INI). This Javainterface supplies arich meansfor you to use Java
objects to build your optimization model.

The class 11oCplex implementsthe ILOG Concert Technology interface for creating
variables and constraints. It also provides functionality for solving Mathematical
Programing (M P) problems and accessing solution information.

ILOG CPLEX 10.0 — GETTING STARTED 87

Compiling ILOG CPLEX Applications in ILOG Concert Technology

When compiling a Java application that uses ILOG Concert Technology, you need to inform
the Java compiler whereto find the file cplex. jar containing the ILOG CPLEX Concert
Technology classlibrary. To do this, you add the cplex. jar fileto your classpath. Thisis
most easily done by passing the command-line option

-classpath <path to cplex.jars>

to the Java compiler javac. If you need to include other Java classlibraries, you should add
the corresponding jar files to the classpath as well. Ordinarily, you should also include the
current directory (.) to be part of the Java classpath.

At execution time, the same classpath setting is needed. Additionaly, since ILOG CPLEX is
implemented via JNI, you need to instruct the Java Virtual Machine (JVM) whereto find the
shared library (or dynamic link library) containing the native code to be called from Java.
You indicate this location with the command line option:

-Djava.library.path=<path to shared library>
to the java command. Note that, unlike the cplex. jar file, the shared library is

system-dependent; thus the exact pathname of the location for the library to be used may
differ depending on the platform you are using.

Pre-configured compilation and runtime commands are provided in the standard
distribution, through the UNIX makefiles and Windows javamake file for Nmake.
However, these scripts presume a certain relative location for the files already mentioned;
for application development, most users will have their source files in some other location.

Here are suggestions for establishing build procedures for your application.

1. First check the readme . html file in the standard distribution, under the Supported
Platforms heading to locate the machine and 1ibformat entry for your UNIX
platform, or the compiler and library-format combination for Windows.

2. Goto the subdirectory in the examples directory where ILOG CPLEX isinstalled on
your machine. On UNIX, thiswill be machine/1ibformat, and on Windowsit will be
compiler\libformat. Thissubdirectory will contain amakefile Of javamake
appropriate for your platform.

3. Then usethisfile to compile the examples that came in the standard distribution by
caling make execute java (UNIX) Of nmake -f javamake execute (Windows).

4. Carefully note the locations of the needed files, both during compilation and at run time,
and convert the relative path names to absol ute path names for use in your own working
environment.

88 ILOG CPLEX 10.0 — GETTING STARTED

In Case Problems Arise

If a problem occurs in the compilation phase, make sure your java compiler is correctly set
up and that your classpath includesthe cplex.jar file

If compilation is successful and the problem occurs when executing your application, there
arethree likely causes:

1.

If you get amessage like java.lang.NoClassDefFoundError Your classpath is not
correctly set up. Make sureyou use -classpath <path to _cplex.jars> inyour
java command.

If you get amessagelike java.lang.UnsatisfiedLinkError, you need to set up the
path correctly so that the VM can locate the ILOG CPLEX shared library. Make sure
you use the following option in your java command:

-Djava.library.path=<path to shared library>

If you get amessage like i1m: CPLEX: no license found for this product Of
ilm: CPLEX: invalid encrypted key "MNJVUXTDJV82" in
"/usr/ilog/ilm/ access.ilm" run ilmcheck, thenthereisa problem withyour
licenseto use ILOG CPLEX. Review the ILOG License Manager User’s Guide and
Reference to see whether you can correct the problem. If you have verified your system
and license setup but continue to experience problems, contact ILOG Technical Support
and report the error messages.

ILOG CPLEX 10.0 — GETTING STARTED 89

The Design of ILOG CPLEX in ILOG Concert Technology

User-Written Application

lloCplex

|
|
| Concert Technology |
| modeling interfaces |
|
|

CPLEX internals

Figure5.1 A View of ILOG CPLEX in ILOG Concert Technology

Figure 5.1 illustrates the design of ILOG Concert Technology and how a user-application
usesit. ILOG Concert Technology defines a set of interfaces for modeling objects. Such
interfaces do not actually consume memory. (For this reason, the box in the figure has a
dotted outline.) When a user creates an ILOG Concert Technology modeling object using
ILOG CPLEX, an object iscreated in ILOG CPLEX to implement the interface defined by
ILOG Concert Technology. However, a user application never accesses such objects directly
but only communicates with them through the interfaces defined by ILOG Concert
Technology.

For more detail about these ideas, see the ILOG CPLEX User’'s Manual, especiadly ILOG
Concert Technology for Java Users on page 67

The Anatomy of an ILOG Concert Technology Application

To use the ILOG CPLEX Javainterfaces, you need to import the appropriate packages into
your application. Thisis done with the lines:

90 ILOG CPLEX 10.0 — GETTING STARTED

import ilog.concert.*;
import ilog.cplex.*;

Asfor every Javaapplication, an ILOG CPLEX application isimplemented as a method of a
class. In this discussion, the method will be the static main method. Thefirst task isto create
an T1oCplex Object. It isused to create al the modeling objects needed to represent the
model. For example, an integer variable with bounds 0 and 10 is created by calling
cplex.intVvar (0, 10),wherecplex isthe 11oCplex object.

Since Javaerror handling in ILOG CPLEX uses exceptions, you should include the
ILOG Concert Technology part of an application in a try/catch statement. All the
exceptions thrown by any ILOG Concert Technology method are derived from
I1loException. Thus I1oException should be caught in the catch statement.

In summary, here is the structure of a Java application that calls ILOG CPLEX:

import ilog.concert.*;
import ilog.cplex.*;
static public class Application
static public main(String[] args)
try {
IloCplex cplex = new IloCplex() ;
// create model and solve it
} catch (IloException e)
System.err.println("Concert exception caught: " + e);
}
}
}

Create the Model

The 11oCplex object provides the functionality to create an optimization model that can be
solved with T1oCplex. Theclass 11oCplex implementsthe ILOG Concert Technology
interface I1oModeler and its extensions I1oMPModeler and IloCplexModeler. These
interfaces define the constructors for modeling objects of the following types, which can be
used with T1oCplex:

IloNumVar lﬂoddingvanaues

IloRange ranged constraints of the type Ib <= expr <= ub
IloObjective optimization objective

I1oNumEXpr expression using variables

Modeling variables are represented by objects implementing the 11oNumvar interface
defined by ILOG Concert Technology. Here is how to create three continuous variables, all
with bounds o and 100:

IloNumVar[] x = cplex.numVarArray (3, 0.0, 100.0);

ILOG CPLEX 10.0 — GETTING STARTED 91

92

There isawealth of other methods for creating arrays or individual modeling variables. The
documentation for I1loModeler, IloCplexModeler, and I1oMPModeler Will giveyou
the complete list.

Modeling variables build expressions, of type 11oNumexpr, for use in constraints or the
objective function of an optimization model. For example, the expression:

x[0] + 2*x[1] + 3*x[2]
can be created like this:

IloNumExpr expr = cplex.sum(x[0],
cplex.prod (2.0, x[1]),
cplex.prod (3.0, x[2]));
Another way of creating an object representing the same expression isto use an expression
of T1loLinearNumExpr. Hereis how:
IloLinearNumEXpr expr = cplex.linearNumExpr () ;
expr.addTerm (1.0, x[0]);
expr.addTerm(2.0, x[1]);
expr.addTerm(3.0, x[2]);

The advantage of using IloLinearNumExpr over thefirst way isthat you can more easily
build up your linear expression in aloop, which iswhat istypically heeded in more complex
applications. Interface I1oLinearNumExpr iSan extension of I11oNumexpr, and thus can
be used anywhere an expression can be used.

As mentioned before, expressions can be used to create constraints or an objective function

for amodel. Here is how to create a minimization objective for that expression:
IloObjective obj = cplex.minimize (expr) ;

In addition to your creating an objective, you must also instruct I1oCplex to use that

objective in the model it solves. To do so, add the objectiveto 11oCplex like this:
cplex.add (obj) ;

Every modeling object that is to be used in amodel must be added to the T1oCplex object.
The variables need not be explicitly added as they are treated implicitly when used in the
expression of the objective. More generally, every modeling object that is referenced by
another modeling object which itself has been added to 11ocplex, isimplicitly added to
IloCplex aswell.

There isashortcut notation for creating and adding the objectiveto I1ocplex:

cplex.addMinimize (expr) ;

Since the objectiveis not otherwise accessed, it does not need to be stored in the variable
obj.

Adding constraints to the model isjust as easy. For example, the constraint

ILOG CPLEX 10.0 — GETTING STARTED

-x[0] + x[1] + x[2] <= 20.0
can be added by calling:

cplex.addLe (cplex.sum(cplex.negative (x[0]), x[1], x[2]), 20);
Again, many methods are provided for adding other constraint types, including equality
congtraints, greater than or equal to constraints, and ranged constraints. Internally, they are
all represented as 11oRrRange objects with appropriate choices of bounds, which iswhy all

these methods return 11oRange objects. Also, note that the expressions above could have
been created in many different ways, including the use of 11oLinearNumExpr.

Solve the Model

So far you have seen some methods of 11oCplex for creating models. All such methods are
defined in the interfaces 11oModeler and its extension I1oMpModeler and
IloCplexModeler. However, I1oCplex hot only implements these interfaces but also
provides additional methods for solving a model and querying its results.

After you have created amodel as explained in Create the Model on page 91, the T1oCplex
object cplex isready to solve the problem, which consists of the model and all the
modeling objects that have been added to it. Invoking the optimizer then isas simple as
calling the method solve.

The method solve returns a Boolean value indicating whether the optimization succeeded
in finding a solution. If no solution was found, £alse isreturned. If true isreturned, then
ILOG CPLEX found afeasible solution, though it is not necessarily an optimal solution.
More precise information about the outcome of the last call to the method solve can be
obtained by calling I1oCplex.getStatus.

The returned value tells you what ILOG CPLEX found out about the model: whether it
found the optimal solution or only afeasible solution, whether it proved the model to be
unbounded or infeasible, or whether nothing at all has been determined at this point. Even
more detailed information about the termination of the optimizer cal isavailable through the
method I1loCplex.getCplexStatus.

Query the Results

If the solve method succeeded in finding a solution, you will then want to access that
solution. The objective value of that solution can be queried using a statement like this:

double objval = cplex.getObjValue() ;
Similarly, solution values for all the variables in the array x can be queried by calling:

double[] xval = cplex.getValues (x) ;

More solution information can be queried from T1ocplex, including slacks and, depending
on the algorithm that was applied for solving the model, duals, reduced cost information,
and basis information.

ILOG CPLEX 10.0 — GETTING STARTED 93

Building and Solving a Small LP Model in Java

94

The example Lrex1 . java, part of the standard distribution of ILOG CPLEX, isaprogram
that builds a specific small LP model and then solvesit. This example follows the general
structure found in many ILOG CPLEX Concert Technology applications, and demonstrates
three main ways to construct a model:

[Modeling by Rows on page 95;
[Modeling by Columns on page 95;
[Modeling by Nonzeros on page 97.

Example Lrex1 . java isan extension of the example presented in Entering the Example
Problem on page 38:

Maximize X + 2X; + 3X3
subject to Xy + X, + X3 <20

Xy — 3X, + X3 £30
with these bounds 0<x,<40

0 < Xp S oo

0<X3<+oo

After aninitia check that avalid option string was provided as a calling argument, the
program begins by enclosing all executable statements that follow inatry/catch pair of
statements. In case of an error ILOG CPLEX Concert Technology will throw an exception
of type I1oException, which the catch statement then processes. In this simple example,
an exception triggers the printing of aline stating Concert exception ‘e’ caught,
where e is the specific exception.

First, create the model object cp1ex by executing the following statement:
IloCplex cplex = new IloCplex();

At this point, the cplex object represents an empty model, that is, amodel with no variables,
congtraints, or other content. The model is then populated in one of several ways depending
on the command line argument. The possible choices are implemented in the methods

« populateByRow
« populateByColumn

« populateByNonzero
All these methods pass the same three arguments. The first argument isthe cplex object to
be populated. The second and third arguments correspond to the variables (var) and range
congtraints (rng) respectively; the methods will writeto var [0] and rng [0] an array of all
the variables and constraints in the model, for later access.

ILOG CPLEX 10.0 — GETTING STARTED

After the model has been created in the cplex object, it isready to be solved by acall to
cplex.solve. The solution log will be output to the screen; thisis because 11oCplex
prints al logging information to the outputStream cplex.output, which by defaultis
initialized to system. out. You can change this by calling the method cplex.setout. In
particular, you can turn off logging by setting the output stream to nu11, that is, by calling
cplex.setOut (null). Similarly, I1loCplex iSsueswarning messages to
cplex.warning, and cplex.setWarning can be used to change (or turn off) the
OoutputStream that will be used.

If the solve method finds afeasible solution for the active model, it returns t rue. The next
section of code accesses the solution. The method cplex.getvValues (var[0]) returnsan
array of primal solution valuesfor all thevariables. Thisarray isstored asdouble [] x. The
valuesin x are ordered such that x [§1 isthe primal solution value for variable var [0] [5].
Similarly, the reduced costs, duals, and slack values are queried and stored in arrays dj, pi,
and s1lack, respectively. Finaly, the solution status of the active model and the objective
value of the solution are queried with the methods I1ocplex.getStatus and
IloCplex.getObjValue, respectively. The program then concludes by printing the values
that have been obtained in the previous steps, and terminates after calling cplex. end to
free the memory used by the model object; the catch method of T1oException provides
screen output in case of any error conditions along the way.

The remainder of the example source code is devoted to the details of populating the model
object and the following three sections provide details on how the methods work.

Modeling by Rows

The method populateByRow creates the model by adding the finished constraints and
objective function to the active model, one by one. It does so by first creating the variables
withthe method cplex.numvararray. Then the minimization objective functionis created
and added to the active model with the method 11oCplex.addMinimize. The expression
that definesthe objective functionis created by amethod, I11oCplex.scalProd, that forms
ascalar product using an array of objective coefficients timesthe array of variables. Finaly,
each of the two constraints of the model are created and added to the active model with the
method 11oCplex.addLe. For building the constraint expression, the methods
IloCplex.sumand IloCplex.prod are used, asacontrast to the approach used in
constructing the objective function.

Modeling by Columns

While for many examples population by rows may seem most straightforward and natural,
there are some models where population by columns is a more natural or more efficient
approach to implement. For example, problems with network structure typically lend
themselves well to modeling by column. Readers familiar with matrix algebra may view the
method populateByColumn as producing the transpose of what is produced by the method
populateByRow. In contrast to modeling by rows, modeling by columns means that the

ILOG CPLEX 10.0 — GETTING STARTED 95

96

coefficients of the constraint matrix are given in a column-wise way. As each column
represents the constraint coefficients for a given variable in the linear program, this
modeling approach is most natural where it is easy to access the matrix coefficients by
iterating through all the variables, such asin network flow problems.

Range objects are created for modeling by column with only their lower and upper bound.
No expressions are given; building them at this point would be impossible since the
variables have not been created yet. Similarly, the objective function is created only with its
intended optimization sense, and without any expression.

Next the variables are created and installed in the existing ranges and objective. These newly
created variables are introduced into the ranges and the objective by means of column
objects, which are implemented in the class 110Column. Objects of this class are created
with the methods 11oCplex. column, and can be linked together with the method
IloColumn.and to form aggregate I1oColumn objects.

Aninstance of I1loColumn created with the method I1oCplex.column contains
information about how to use this column to introduce a new variable into an existing
modeling object. For example, if obj is aninstance of a class that implements the interface
IloObjective, then cplex.column (obj, 2.0) createsaninstance of I1oColumn
containing the information to install a new variable in the expression of the 1100bjective
object obj with alinear coefficient of 2. 0. Similarly, for rng, aconstraint that is an instance
of aclass that implements the interface 11orange, the invocation of the method
cplex.column(rng, -1.0) CreateSan IloColumn Object containing theinformation to
install a new variable into the expression of rng, asalinear term with coefficient -1. 0.

When you use the approach of modeling by column, new columns are created and installed
asvariablesin al existing modeling objects where they are needed. To do this with

ILOG Concert Technology, you create an T11oColumn object for every modeling object in
which you want to install a new variable, and link them together with the method
IloColumn.and. For example, thefirst variablein populateByColumn iscreated like
this.

var [0] [0] = model.numVar (model.column (obj, 1.0) .and(
model .column (ro0, -1.0) .and(
model.column(rl, 1.0))),
0.0, 40.0);

The three methods model . column create I1oColumn objects for installing a new variable
in the objective obj and in the constraints ro and r1, with linear coefficients 1.0, -1. 0,
and 1. o, respectively. They areall linked to an aggregate column object by the method and.
This aggregate column object is passed as the first argument to the method numvar, along
with thebounds 0. 0 and 40 . 0 asthe other two arguments. The method numvar now creates
anew variable and immediately installsit in the modeling objects ob3j, ro, and r1 as
defined by the aggregate column object. After it has been installed, the new variableis
returned and stored invar [0] [0].

ILOG CPLEX 10.0 — GETTING STARTED

Modeling by Nonzeros

Thelast of the three functions for building the model ispopulateByNonzero. This
function creates the variables with only their bounds, and the empty constraints, that is,
ranged constraints with only lower and upper bound but with no expression. Only after that
are the expressions constructed over these existing variables, in amanner similar to the ones
already described; they areinstalled in the existing constraints with the method

IloRange.setExpr.

Complete Program

You can view the complete program online in the standard distribution of the product at
yourCPLEXinstallation/examples/src/LPexl.java.

ILOG CPLEX 10.0 — GETTING STARTED 97

98

ILOG CPLEX 10.0

GETTING STARTED

Concert Technology Tutorial for
NET Users

This chapter introduces ILOG CPLEX through ILOG Concert Technology in the .NET
framework. It gives you an overview of atypical application, and highlights procedures for:

[Creating a model

[—Populating the model with data, either by rows, by columns, or by nonzeros
[—3olving that model

[Displaying results after solving

This chapter concentrates on an example using C#.NET. There are also examples of
VB.NET (Visua Basicinthe .NET framework) delivered with ILOG CPLEX in
yourCPLEXhome\examples\src\vb. Because of their .NET framework, those VB.NET
examples differ from the traditional Visual Basic examples that may already be familiar to
some ILOG CPLEX users.

ILOG CPLEX 10.0 — GETTING STARTED 99

Note: Thischapter consists of a tutorial based on a procedure-based |earning strategy. The
tutorial is built around a sample problem, availablein a file that can be opened in an
integrated devel opment environment, such as Microsoft Visual Sudio. As you follow the
stepsin the tutorial, you can examine the code and apply concepts explained in the
tutorials. Then you compile and execute the code to analyze the results. Ideally, as you
work through the tutorial, you are sitting in front of your computer with ILOG Concert
Technology for .NET users and ILOG CPLEX already installed and available in your
integrated development environment.

What You Need to Know: Prerequisites

100

This tutorial requires aworking knowledge of C#.NET.

If you are experienced in mathematical programming or operations research, you are
probably already familiar with many concepts used in this tutorial. However, little or no
experience in mathematical programming or operations research is required to follow this
tutorial.

You should have ILOG CPLEX and ILOG Concert Technology for .NET usersinstalled in
your development environment before starting this tutorial. In your integrated devel opment
environment, you should be able to compile, link, and execute a sample application
provided with ILOG CPLEX and ILOG Concert Technology for .NET users before starting
the tutorial.

To check your installation before starting the tutorial, open
yourCPLEXhome\examples\platform\format\examples.net.sln

in your integrated development environment, where yourcpLEXhome indicates the place
you installed ILOG CPLEX on your platform, and format indicates one of these
possibilities: stat_mda, stat_mta, OF stat_sta. Anintegrated development
environment, such as Microsoft Visual Studio, will then check for the DLLSs of

ILOG CPLEX and ILOG Concert Technology for .NET users and warn you if they are not
availabletoit.

Another way to check your installation isto load the project for one of the samples delivered
with your product. For example, you might load the following project into Microsoft Visual
Studio to check a C# example of the diet problem:

yourCPLEXhome\examples\platform\format\Diet.csproj

ILOG CPLEX 10.0 — GETTING STARTED

What You Will Be Doing

ILOG CPLEX can work together with ILOG Concert Technology for .NET users, a.NET
library that allows you to model optimization problems independently of the algorithms used
to solve the problem. It provides an extensible modeling layer adapted to avariety of
algorithmsready to use off the shelf. This modeling layer enables you to change your model,
without completely rewriting your application.

To find a solution to a problem by means of ILOG CPLEX with ILOG Concert Technology
for .NET users, you use a three-stage method: describe, model, and solve.

Thefirst stage isto describe the problem in natural language.

The second stage is to use the classes and interfaces of ILOG Concert Technology for .NET
users to model the problem. The model is composed of data, decision variables, and
constraints. Decision variables are the unknown information in a problem. Each decision
variable has a domain of possible values. The constraints are limits or restrictions on
combinations of values for these decision variables. The model may also contain an
objective, an expression that can be maximized or minimized.

The third stageisto use the classes of ILOG Concert Technology for .NET usersto solve the
problem. Solving the problem consists of finding a value for each decision variable while
simultaneoudly satisfying the constraints and maximizing or minimizing an objective, if one
isincluded in the model.

In these tutorials, you will describe, model, and solve a simple problem that also appears
elsewherein C, C++, and Java chapters of this manual:

. Building and Solving a Small LP Model in C on page 119
. Building and Solving a Small LP Model in C++ on page 78
. Building and Solving a Small LP Model in Java on page 94

Describe

Thefirst step isfor you to describe the problem in natural language and answer basic
questions about the problem.

[What is the known information in this problem? That is, what data is available?

[What is the unknown information in this problem? That is, what are the decision
variables?

[What are the limitations in the problem? That is, what are the constraints on the decision
variables?

[What is the purpose of solving this problem? That is, what is the objective function?

ILOG CPLEX 10.0 — GETTING STARTED 101

Note: Though the Describe step of the process may seemtrivial in a simple problem like
this one, you will find that taking the time to fully describe a more complex problemis vital
for creating a successful application. You will be able to code your application more
quickly and effectively if you take the time to describe the model, isolating the decision
variables, constraints, and objective.

Model

The second stage is for you to use the classes of ILOG Concert Technology for .NET users
to build amodel of the problem. The model is composed of decision variables and
constraints on those variables. The model of this problem also contains an objective.

Solve

Thethird stageisfor you to use an instance of the class cplex to search for asolution and to
solve the problem. Solving the problem consists of finding avalue for each variable while
simultaneoudly satisfying the constraints and minimizing the objective.

Describe

102

Theaim in thistutorial isto see three different waysto build amodel: by rows, by columns,
or by nonzeros. After building the model of the problem in one of those ways, the
application optimizes the problem and displays the solution.

Describe the Problem
Write a natural language description of the problem and answer these questions:
[What is known about the problem?
[What are the unknown pieces of information (the decision variables) in this problem?
[What are the limitations (the constraints) on the decision variables?

[What is the purpose (the objective) of solving this problem?

ILOG CPLEX 10.0 — GETTING STARTED

Building a Small LP Problem in C#
Hereis a conventiona formulation of the problem that the example optimizes:

X1 + 2%, + 3X;3

Maximize
subject to —X; + Xy + X3 £20
Xy — 3X, + X3 £30
with these bounds 0<x,<40
0 < Xp S oo
0<Xg3<+oo

[What are the decision variablesin this problem?
X1, X2, X3

[What are the constraints?
20

X1 + Xo + X3
30

X1 — 3X2 + X3

IN A

0<x;<40
OSX2S+°°
OSX3S+°O

[What is the objective?

Maximize Xq + 2Xp + 3X3

GETTING STARTED 103

ILOG CPLEX 10.0

Model

104

After you have written a description of the problem, you can use classes of ILOG Concert
Technology for .NET userswith ILOG CPLEX to build a model.

Open the file

Open thefile yourcpPrL.EXhome\examples\src\tutorials\LPexllesson.cs inyour
integrated development environment, such as Microsoft Visual Studio.

Create the model object

Go to the comment Step 3 in that file, and add this statement to create the cplex model for
your application.

Cplex cplex = new Cplex();

That statement creates an empty instance of the class cplex. In the next steps, you will add
methods that make it possible for your application populate the model with data, either by
rows, by columns, or by nonzeros.

Populate the model by rows

Now go to the comment Step 4 in that file, and add these lines to create amethod to populate
the empty model with data by rows.

internal static void PopulateByRow (IMPModeler model,
INumvVar([] [] wvar,

IRange[] [] rng) {

double[] 1b

double[] ub

{o.0, 0.0, 0.0};

{40.0,

System.Double.MaxValue,
System.Double.MaxValue} ;
INumVar [] x = model.NumVarArray (3, lb, ub);
var[0] = x;

double[] objvals = {1.0, 2.0, 3.0};
model .AddMaximize (model.ScalProd (x, objvals)) ;

rng[0] = new IRange[2];

rng[0] [0] = model.AddLe (model.Sum(model.Prod(-1.0, x[0]),
model .Prod(1.0, x[1]),
model .Prod(1.0, x[2])), 20.0);
rng[0] [1] = model.AddLe (model.Sum(model.Prod(1.0, x[0]),
model.Prod(-3.0, x[1]),
model.Prod(1.0, x[2])), 30.0);

ILOG CPLEX 10.0 — GETTING STARTED

Those lines popul ate the model with data specific to this particular example. However, you

can seefromits use of theinterface 1MPModeler how to add ranged constraintsto amodel.
IMPModeler isthe Concert Technology interface typically used to build math programming
(MP) matrix models. You will seeitsuse againin Step 5 and Step 6.

Populate the model by columns

Go to the comment Step 5 in thefile, and add these lines to create a method to populate the
empty model with data by columns.

internal static void PopulateByColumn (IMPModeler model,
INumVar([] [] var,
IRange[] [1 rng) {
IObjective obj = model.AddMaximize () ;

rng[0] = new IRange([2];

rng [0] [0] = model.AddRange (-System.Double.MaxValue, 20.0);

rng [0] [1] = model.AddRange (-System.Double.MaxValue, 30.0) ;

IRange r0 = rngl[0] [0];

IRange rl = rng[0] [1];

var [0] = new INumVar [3];

var [0] [0] = model.NumVar (model.Column (obj, 1.0).And(
model.Column (r0, -1.0).And(
model.Column (rl, 1.0))),
0.0, 40.0);

var [0] [1] = model.NumVar (model.Column (obj, 2.0).And(
model.Column (x0, 1.0) .And(
model.Column(rl, -3.0))),
0.0, System.Double.MaxValue) ;

var [0] [2] = model.NumVar (model.Column (obj, 3.0).And(
model.Column (x0, 1.0) .And(
model .Column (rl, 1.0))),

0.0, System.Double.MaxValue) ;

Again, those lines popul ate the model with data specific to this problem. From them you can
see how to use the interface IMPModeler to add columnsto an empty model.

While for many examples population by rows may seem most straightforward and natural,
there are some models where population by columns is a more natural or more efficient
approach to implement. For example, problems with network structure typically lend
themselves well to modeling by column. Readers familiar with matrix algebra may view the
method populateByColumn as the transpose of populateByRow.

In this approach, range objects are created for modeling by column with only their lower and
upper bound. No expressions over variables are given because building them at this point
would be impossible since the variables have not been created yet. Similarly, the objective
function is created only with itsintended optimization sense, and without any expression.

ILOG CPLEX 10.0 — GETTING STARTED 105

106

Next the variables are created and installed in the existing ranges and objective. These newly
created variables are introduced into the ranges and the objective by means of column
objects, which are implemented in the class 1column. Objects of this class are created with
the methods cplex. Column, and can be linked together with the method 1Column.and to
form aggregate 1column objects.

An IColumn object created with the method 1¢cplex. Column containsinformation about
how to use this column to introduce a new variable into an existing modeling object. For
exampleif obj isan I0bjective oObject, cplex.Column (obj, 2.0) Createsan
IColumn Object containing the information to install a new variable in the expression of the
IObjective object obj with alinear coefficient of 2. 0. Similarly, for an 1Range
congtraint rng, the method call cplex.Column (rng, -1.0) createsan IColumn object
containing the information to install a new variable into the expression of rng, asalinear
term with coefficient -1. 0.

In short, when you use a modeling-by-column approach, new columns are created and
installed as variablesin all existing modeling objects where they are needed. To do thiswith
ILOG Concert Technology, you create an T1column object for every modeling object in
which you want to install a new variable, and link them together with the method
IColumn.And.

Populate the model by nonzeros

Go to the comment Step 6 in thefile, and add these lines to create a method to populate the
empty model with data by nonzeros.

internal static void PopulateByNonzero (IMPModeler model,

INumVar([] [] var,
IRange[] [1 rng) {
double[] 1b = {0.0, 0.0, 0.0};
double[] ub = {40.0, System.Double.MaxValue, System.Double.MaxValue};
INumVar [] x = model.NumVarArray (3, lb, ub);
var [0] = X;

double[] objvals = {1.0, 2.0, 3.0};
model .Add (model .Maximize (model.ScalProd(x, objvals)));

rng [0] = new IRange([2];

rng [0] [0] = model.AddRange (-System.Double.MaxValue, 20.0);
rng [0] [1] = model.AddRange (-System.Double.MaxValue, 30.0);
rng [0] [0] .Expr = model.Sum(model.Prod(-1.0, x[0]),
model.Prod(1.0, x[1]),
model.Prod(1.0, xI[2]1));
rng [0] [1] .Expr = model.Sum(model.Prod(1.0, x[0]),
model.Prod(-3.0, x[1]),
model.Prod(1.0, x[2]));
1
ILOG CPLEX 10.0 — GETTING STARTED

In those lines, you can see how to popul ate an empty model with data indicating the
nonzeros of the constraint matrix. Those linesfirst create objects for the objective and the
ranges without expressions. They also create variables without columns; that is, variables
with only their bounds. Then those lines create expressions over the objective, ranges, and
variables and add the expressions to the model.

Add an interface

Go to the comment Step 7 in thefile, and add these lines to create a method that tells a user
how to invoke this application.

internal static void Usage() ({
System.Console.WriteLine (“usage: LPex1l <option>") ;
System.Console.WriteLine (“options: -r build model row by row”) ;
System.Console.WriteLine (“options: -c build model column by column”) ;
System.Console.WriteLine (“options: -n build model nonzero by nonzero”) ;

Add a command evaluator

Go to the comment Step 8 in thefile, and add these lines to create a switch statement that
evaluates the command that a user of your application might enter.

switch (args[0].ToCharArray() [1])

case ‘r’: PopulateByRow(cplex, var, rng);
break;

case ‘c’: PopulateByColumn (cplex, var, rng);
break;

case '‘n’: PopulateByNonzero (cplex, var, rng);
break;

default: Usage();
return;

}

ILOG CPLEX 10.0 — GETTING STARTED 107

Solve

After you have declared the decision variables and added the constraints and objective
function to the model, your application is ready to search for a solution.

Search for a solution
Goto Sep 9 inthefile, and add this line to make your application search for a solution.

if (cplex.Solve()) {

Display the solution

Go to the comment Step 10 in the file, and add these lines to enable your application to
display any solution found in Step 9.

double[] x = cplex.GetValues (var[0]) ;
double[] dj = cplex.GetReducedCosts (var[0]) ;
double[] pi = cplex.GetDuals (rng[0]) ;
double[] slack = cplex.GetSlacks (rng([0]) ;

cplex.Output () .WriteLine (“Solution status = “
+ cplex.GetStatus()) ;

cplex.Output () .WriteLine (“Solution value = “
+ cplex.ObjValue) ;

int ncols = cplex.Ncols;
for (int j = 0; j < ncols; ++3) {
cplex.Output () .WriteLine (“Column: “
+ 3
+” Value =
+ x[j]
+” Reduced cost = "
+ dj[31);

}

int nrows = cplex.Nrows;
for (int i = 0; i < nrows; ++i) {
cplex.Output () .WriteLine (“Row "

+ 1
+” Slack = “
+ slack[i]
+" Pi = »
+ pili]);

108 ILOG CPLEX 10.0 — GETTING STARTED

Save the model to a file

If you want to save your model to afilein LP format, go to the comment Step 11 in your
application file, and add thisline.

cplex.ExportModel (“lpexl.1p”) ;

If you have followed the stepsin this tutorial interactively, you now have a complete
application that you can compile and execute.

Complete Program

You can view the complete program online in the standard distribution of the product at
yourCPLEXinstallation\examples\src\LPexl.cs.

ILOG CPLEX 10.0 — GETTING STARTED 109

110 ILOG CPLEX 10.0 — GETTING STARTED

Callable Library Tutorial

This tutorial shows how to write programs that use the ILOG CPLEX Callable Library. In
this chapter you will learn about:

[The Design of the ILOG CPLEX Callable Library on page 111

[Compiling and Linking Callable Library Applications on page 112
[How ILOG CPLEX Works on page 114

[Creating a Successful Callable Library Application on page 116
[Building and Solving a Small LP Model in C on page 119

[Reading a Problem from a File: Example Ipex2.c on page 121
[Adding Rows to a Problem: Example Ipex3.c on page 123
[Performing Sensitivity Analysis on page 125

The Design of the ILOG CPLEX Callable Library
Figure 7.1 shows a picture of the ILOG CPLEX world. The ILOG CPLEX Callable Library

together with the ILOG CPLEX internals make up the ILOG CPLEX core. The core
becomes associated with your application through Callable Library routines. The

ILOG CPLEX 10.0 — GETTING STARTED 111

ILOG CPLEX environment and all problem-defining data are established inside the
ILOG CPLEX core.

User-Written Application

A

Y

ILOG CPLEX Callable Library

A

Y

ILOG CPLEX internals

Figure7.1 A View of the ILOG CPLEX Callable Library
The ILOG CPLEX Callable Library includes several categories of routines:

[—aptimization and result routines for defining a problem, optimizing it, and getting the
results;

[atility routines for addressing application programming matters;

[_problem modification routines to change a problem after it has been created within the
ILOG CPLEX internals;

[_problem query routines to access information about a problem after it has been created;

[file reading and writing routines to move information from the file system into your
application or out of your application to the file system;

[_parameter setting and query routines to access and modify the values of control
parameters maintained by ILOG CPLEX.

Compiling and Linking Callable Library Applications

112

Each Callable Library isdistributed asasinglelibrary file 1ibcplex.a Of cplex100.1ib.
Use of thelibrary fileis similar to that with .o or .obj files. Simply substitute the library
filein the link procedure. This procedure simplifies linking and ensures that the smallest
possible executable is generated.

ILOG CPLEX 10.0 — GETTING STARTED

The following compilation and linking instructions assume that the example source
programs and ILOG CPLEX Callable Library filesarein the directories associated with a
default installation of the software. If thisis not true, additional compile and link flags
would be required to point to the locations of theincludefile cplex.h, and Callable Library
files respectively.

Note: Theinstructions below were current at the time of publication. As compilers, linkers
and operating systems are released, different instructions may apply. Be sure to check the
Release Notes that come with your ILOG CPLEX distribution for any changes. Also check
the ILOG CPLEX web page (http://www.ilog.com/products/cplex).

Building Callable Library Applications on UNIX Platforms
To compile and execute an example (1pex1) do the following:

% cd examples/platform/format
% make lpexl # to compile and execute the first CPLEX example

In that command, p1atform indicates the name of the subdirectory corresponding to your
type of machine, and rormat indicates your particular library format, such as static, multi-
threaded, and so forth.

A list of al the examplesthat can be built thisway isto be found in the makefile by looking
for ¢_Ex (C examples), or you can view the fileslisted in examples/src.

The makefile contains recommended compiler flags and other settings for your particular
computer, which you can find by searching in it for "Compiler options' and use in your
applications that call ILOG CPLEX.

Building Callable Library Applications on Win32 Platforms

Building an ILOG CPLEX application using Microsoft Visual C++ Integrated Devel opment
Environment, or the Microsoft Visual C++ command line compiler are explained here.

Microsoft Visual C++ IDE

To make an ILOG CPLEX Callable Library application using Visual C++, first create or
open aproject in the Visual C++ Integrated Development Environment (IDE). Project files
are provided for each of the examples found in the directory or folder

examples\msvc\ format. For details about the build process, refer to the information file
msvc.html, which isfound in the top of theinstalled ILOG CPLEX directory structure.

I Note: The distributed application must be able to locate cPL.EX100.d11 at run time.

ILOG CPLEX 10.0 — GETTING STARTED 113

Microsoft Visual C++ Command Line Compiler

If the Visual C++ command line compiler is used outside of the IDE, the command should
resembl e the following example. The example command assumes that the file
cplex100.1ib isinthe current directory with the sourcefile 1pex1 . c, and that thelinein
thesourcefile"#include <ilcplex/cplex.h>" correctly pointsto the location of the
include file or else has been modified to do so (or that the directories containing these files
have been added to the environment variables LB and INCLUDE respectively).

cl lpexl.c cplex100.1lib
This command will create the executable file 1pex1 . exe.

Using Dynamic Loading

Some projects require more precise control over the loading and unloading of DLLs. For
information on loading and unloading DL Ls without using static linking, please refer to the
compiler documentation or to a book such as Advanced Windows by Jeffrey Richter from
Microsoft Press. If thisis not a requirement, the static link implementations mentioned
above are easier to use.

Building Applications that Use the ILOG CPLEX Parallel Optimizers

When you are compiling and linking programs that use the ILOG CPLEX Parallel
Optimizers, it is especially important to review the relevant flags for the compiler and linker.
Thesearefound in themakefile provided with UNIX distributions or in the sample project
files provided with Windows distributions. It is also a good idea to review the section on
Using Parallel Optimizersin the ILOG CPLEX User’s Manual for important details
pertaining to each specific parallel optimizer.

How ILOG CPLEX Works

114

When your application uses routines of the ILOG CPLEX Callable Library, it must first
open the ILOG CPLEX environment, then create and populate a problem object before it
solves a problem. Before it exits, the application must also free the problem object and
release the ILOG CPLEX environment. The following sections explain those steps.

Opening the ILOG CPLEX Environment

ILOG CPLEX requires a number of internal data structuresin order to execute properly.
These data structures must be initialized before any call to the ILOG CPLEX Callable
Library. Thefirst call to the ILOG CPLEX Callable Library is always to the function
CPxXopenCPLEX. Thisroutine checks for avalid ILOG CPLEX license and returns a pointer
tothe ILOG CPLEX environment. This pointer is then passed to every ILOG CPLEX

ILOG CPLEX 10.0 — GETTING STARTED

Callable Library routine, except those, such as cpxmsg, which do not require an
environment.

The application devel oper must make an independent decision as to whether the variable
containing the environment pointer isaglobal or local variable. Multiple environments are
allowed, but extensive opening and closing of environments may create significant overhead
on the licensor and degrade performance; typical applications make use of only one
environment for the entire execution, since a single environment may hold as many problem
objects as the user wishes. After all callsto the Callable Library are complete, the
environment isreleased by the routine cpxcloseCPLEX. Thisroutine indicates to

ILOG CPLEX that al callsto the Callable Library are complete, any memory allocated by
ILOG CPLEX isreturned to the operating system, and the use of the ILOG CPLEX license
is ended for thisrun.

Instantiating the Problem Object

A problemobject isinstantiated (created and initialized) by ILOG CPLEX when you call the
routine cpPxcreateprob. It is destroyed when you call cpxfreeprob. ILOG CPLEX
allows you to create more than one problem object, although typical applications will use
only one. Each problem object is referenced by a pointer returned by cpXcreateprob and
represents one specific problem instance. Most Callable Library functions (except parameter
setting functions and message handling functions) require a pointer to a problem object.

Populating the Problem Object

The problem object instantiated by cpxcreateprob represents an empty problem that
contains no data; it has zero constraints, zero variables, and an empty constraint matrix. This
empty problem object must be populated with data. This step can be carried out in several
ways.

[_The problem object can be populated by assembling arrays of data and then calling
CPxcopylp to copy the datainto the problem object. (For example, see Building and
Solving a Small LP Model in C on page 119.)

[Alternatively, you can populate the problem object by sequences of callsto the routines
CPXnewcols, CPXnewrows, CPXaddcols, CPXaddrows, and CPXchgcoeflist; these
routines may be called in any order that is convenient. (For example, see Adding Rowsto
a Problem: Example Ipex3.c on page 123.)

[_If the data already exist in afile using MPS format or LP format, you can use
cpxreadcopyprob to read the file and copy the data into the problem object. (For
example, see Reading a Problem from a File: Example Ipex2.c on page 121.)

ILOG CPLEX 10.0 — GETTING STARTED 115

Changing the Problem Object

A major consideration in the design of ILOG CPLEX isthe need to efficiently re-optimize
modified linear programs. In order to accomplish that, ILOG CPLEX must be aware of
changes that have been made to alinear program since it was last optimized. Problem
modification routines are available in the Callable Library.

Do not change the problem by changing the original problem data arrays and then making a
call to cpxcopylp. Instead, change the problem using the problem modification routines,
allowing ILOG CPLEX to make use of as much solution information as possible from the
solution of the problem before the modifications took place.

For example, suppose that a problem has been solved, and that the user has changed the
upper bound on a variable through an appropriate call to the ILOG CPLEX Callable Library.
A re-optimization would then begin from the previous optimal basis, and if that old basis
were still optimal, then that information would be returned without even the need to refactor
theold basis.

Creating a Successful Callable Library Application

116

Callable Library applications are created to solve awide variety of problems. Each
application shares certain common characteristics, regardless of its apparent uniqueness.
The following steps can help you minimize devel opment time and get maximum
performance from your programs:

1. Prototype the Model

2. ldentify the Routines to be Called

3. Test Proceduresin the Application

4. Assemblethe Data

5. Choose an Optimizer

6. Observe Good Programming Practices
7. Debug Your Program

8. Test Your Application

9. Usethe Examples

Prototype the Model

Create asmall model of the problem to be solved. An algebraic modeling languageis
sometimes helpful during this step.

ILOG CPLEX 10.0 — GETTING STARTED

Identify the Routines to be Called

By separating the application into smaller parts, you can easily identify the tools needed to
complete the application. Part of this process consists of identifying the Callable Library
routines that will be called.

In some applications, the Callable Library isasmall part of alarger program. In that case,
theonly ILOG CPLEX routines needed may be for:

[_problem creation;
[aptimizing;
[obtaining results.

In other cases the Callable Library is used extensively in the application. If so, Callable
Library routines may also be needed to:

modify the problem;

et parameters;

[_determine input and output messages and files;
[query problem data.

Test Procedures in the Application

It is often possible to test the procedures of an application in the ILOG CPLEX Interactive
Optimizer with asmall prototype of the model. Doing so will help identify the Callable
Library routines required. The test may also uncover any flawsin procedure logic before
you invest significant development effort.

Trying the ILOG CPLEX Interactive Optimizer is an easy way to determine the best
optimization procedure and parameter settings.

Assemble the Data

You must decide which approach to populating the problem object is best for your
application. Reading an MPS or LP file may reduce the coding effort but can increase the
run-time and disk-space requirements of the program. Building the problem in memory and
then calling cpxcopylp avoids time consuming disk-file reading. Using the routines
CPXnewcols, CPXnewrows, CPXaddcols, CPXaddrows, ahd CPXchgcoeflist canlead
to modular code that may be more easily maintained than if you assemble al model datain
one step.

Another consideration is that if the Callable Library application reads an MPS or LP
formatted file, usually another application isrequired to generate that file. Particularly inthe
case of MPSfiles, the data structures used to generate the file could almost certainly be used

ILOG CPLEX 10.0 — GETTING STARTED 117

118

to build the problem-defining arrays for cpxcopylp directly. The result would be less
coding and a faster, more efficient application. These observations suggest that formatted
files may be useful when prototyping your application, while assembling the arraysin
memory may be a useful enhancement for a production application.

Choose an Optimizer

After a problem object has been instantiated and populated, it can be solved using one of the
optimizers provided by the ILOG CPLEX Callable Library. The choice of optimizer
depends on the problem type.

[P and QP problems can be solved by:
. the primal simplex optimizer;
. thedual simplex optimizer; and
. the barrier optimizer;
[P problems can also be solved by:
. thesifting optimizer; and
. the concurrent optimizer.

L P problems with a substantial network, can also be solved by a special network
optimizer.

[_IF the problem includes integer variables, branch & cut must be used.
There are also many different possible parameter settings for each optimizer. The default

values will usually be the best for linear programs. Integer programming problems are more
sensitive to specific settings, so additional experimentation will often be useful.

Choosing the best way to solve the problem can dramatically improve performance. For
more information, refer to the sections about tuning LP performance and trouble-shooting
MIP performancein the ILOG CPLEX User’s Manual.

Observe Good Programming Practices

Using good programming practices will save development time and make the program
easier to understand and modify. A list of good programming practices is provided in the
ILOG CPLEX User’s Manual, in Developing CPLEX Applications on page 127.

Debug Your Program

Your program may not run properly thefirst time you build it. Learn to use asymbolic
debugger and other widely available tools that support the creation of error-free code. Use

ILOG CPLEX 10.0 — GETTING STARTED

thelist of debugging tips provided in the ILOG CPLEX User’s Manual to find and correct
problemsin your Callable Library application.

Test Your Application

After an application works correctly, it still may have errors or features that inhibit execution
speed. To get the most out of your application, be sureto test its performance as well asits

correctness. Again, the ILOG CPLEX Interactive Optimizer can help. Since the Interactive
Optimizer uses the same routines as the Callable Library, it should take the same amount of
time to solve a problem as a Callable Library application.

Usethe cpxwriteprob routine with the SAV format to create a binary representation of the
problem abject, then read it in and solve it with the Interactive Optimizer. If the application
sets optimization parameters, use the same settings with the Interactive Optimizer. If your
application takes significantly longer than the Interactive Optimizer, performance within
your application can probably be improved. In such a case, possible performance inhibitors
include fragmentation of memory, unnecessary compiler and linker options, and coding
approaches that slow the program without causing it to give incorrect results.

Use the Examples

The ILOG CPLEX Callable Library is distributed with a variety of examplesthat illustrate
the flexibility of the Callable Library. The C source of all examplesis provided in the
standard distribution. For explanations about the examples of quadratic programming
problems (QPs), mixed integer programming problems (MIPs) and network flows, see the
ILOG CPLEX User’s Manual. Explanations of the following examples of LPs appear in this
manual:

lpexl.c illustrates various ways of generating a problem object.

lpex2.c demonstrates how to read a problem from afile, optimizeit viaa
choice of several means, and obtain the solution.

lpex3.c demonstrates how to add rows to a problem object and reoptimize.

It isagood ideato compile, link, and run all of the examples provided in the standard
distribution.

Building and Solving a Small LP Model in C
The example 1pex1 . c shows you how to use problem modification routines from the

ILOG CPLEX Callable Library in three different ways to build a model. The application in
the exampl e takes a single command line argument that indicates whether to build the

ILOG CPLEX 10.0 — GETTING STARTED 119

120

constraint matrix by rows, columns, or nonzeros. After building the problem, the application
optimizes it and displays the solution. Here is the problem that the example optimizes:

Maximize X + 2X; + 3X3
subject to Xy + X, + X3 <20

Xy — 3X, + X3 £30
with these bounds 0<x,<40

0 < Xp S oo

0<X3<+oo

Before any ILOG CPLEX Callable Library routine can be called, your application must call
the routine cPxopenCPLEX to get a pointer (called env) to the ILOG CPLEX environment.
Your application will then pass this pointer to every Callable Library routine. If this routine
fails, it returns an error code. This error code can be translated to a string by the routine
CPXgeterrorstring.

After the ILOG CPLEX environment isinitialized, the ILOG CPLEX screen indicator
parameter (CPX_PARAM SCRIND) isturned on by theroutine cPxsetintparam. This
causes all default ILOG CPLEX output to appear on the screen. If this parameter is not set,
then ILOG CPLEX will generate no viewable output on the screen or in afile.

At this point, the routine cpPxcreateprob is called to create an empty problem object.
Based on the problem-building method selected by the command-line argument, the
application then calls aroutine to build the matrix by rows, by columns, or by nonzeros. The
routine populatebyrow first calls cPxnewcols to specify the column-based problem data,
such as the objective, bounds, and variables names. The routine cpxaddrows isthen called
to supply the constraints. The routine populatebycolumn first calls cPxnewrows to
specify the row-based problem data, such as the righthand side values and sense of
congtraints. The routine cpxaddcols isthen called to supply the columns of the matrix and
the associated column bounds, names, and objective coefficients. The routine
populatebynonzero calls both cPxnewrows and cPxnewcols to supply al the problem
data except the actual constraint matrix. At this point, the rows and columns are well
defined, but the constraint matrix remains empty. The routine cPxchgcoeflist isthen
called tofill in the nonzero entries in the matrix.

After the problem has been specified, the application optimizes it by calling the routine
CPX1lpopt. Itsdefault behavior isto use the ILOG CPLEX Dua Simplex Optimizer. If this
routine returns a nonzero result, then an error occurred. If no error occurred, the application
allocates arrays for solution values of the primal variables, dual variables, slack variables,
and reduced costs; then it obtains the solution information by calling the routine
Cpxsolution. Thisroutine returns the status of the problem (whether optimal, infeasible,
or unbounded, and whether atime limit or iteration limit was reached), the objective value
and the solution vectors. The application then displays this information on the screen.

ILOG CPLEX 10.0 — GETTING STARTED

As adebugging aid, the application writes the problem to a ILOG CPLEX LP file (named
lpex1.1p) by calling the routine cpxwriteprob. Thisfile can be examined to determine
whether any errors occurred in the routines creating the problem. cpxwriteprob can be
called a any time after cPXcreateprob has created the 1p pointer.

Thelabel TERMINATE: isused asaplace for the program to exit if any type of failure occurs,
or if everything succeeds. In either case, the problem object represented by 1p is released by
the call to cpxfreeprob, and any memory allocated for solution arrays is freed. The
application then calls cpxcloseCPLEX; it tellsILOG CPLEX that al callsto the Callable
Library are complete. If an error occurs when thisroutineis called, then acal to
CPxgeterrorstring isneeded to determine the error message, since cPXcloseCPLEX
causes no screen output.

Complete Program

You can view the complete program online in the standard distribution of the product at
yourCPLEXinstallation/examples/src/lpexl.c.

Reading a Problem from a File: Example Ipex2.c

The previous example, 1pex1 . c, shows away to copy problem datainto a problem object
as part of an application that calls routines from the ILOG CPLEX Callable Library.
Frequently, however, afile already exists containing alinear programming problem in the
industry standard MPS format, the ILOG CPLEX LP format, or the ILOG CPLEX binary
SAV format. In example 1pex2.c, ILOG CPLEX file-reading and optimization routines
read such afile to solve the problem.

Example 1pex2 . c uses command line arguments to determine the name of theinput file and
the optimizer to call.

Usage: 1pex2 filename optimizer

Where: filename isafile with extension MPS, SAV, or LP (lower case is allowed), and
optimizer isone of thefollowing letters:

ILOG CPLEX 10.0 — GETTING STARTED 121

122

default

primal simplex

dual simplex

network with dual simplex cleanup
barrier with crossover

barrier without crossover

sifting

O W T T oS Q9 T O

concurrent

For exampl e, this command:

lpex2 example.mps d
readsthefile example . mps and solves the problem with the dual simplex optimizer.

To illustrate the ease of reading a problem, the example uses the routine
Ccpxreadcopyprob. Thisroutine detects the type of the file, reads the file, and copies the
datainto the ILOG CPLEX problem object that is created with acall to cPxcreateprob.
The user need not be concerned with the memory management of the data. Memory
management is handled transparently by cpPxreadcopyprob.

After calling cpxopencPLEX and turning on the screen indicator by setting the
CPX_PARAM SCRIND parameter to CPx_ON, the example creates an empty problem object
with a call to cpxcreateprob. Thiscal returns a pointer, 1p, to the new problem object.
Then the dataisread in by the routine cPxreadcopyprob. After the datais copied, the
appropriate optimization routine is called, based on the command line argument.

After optimization, the status of the solution is determined by acall to cpxgetstat. The
cases of infeasibility or unboundedness in the model are handled in asimple fashion here; a
more complex application program might treat these casesin more detail. With these two
cases out of the way, the program then calls cPxsolninfo to determine the nature of the
solution. After it has been determined that a solution in fact exists, then acall to
CPxgetobijval ismade, to obtain the objective function value for this solution and report it.

Next, preparations are made to print the solution value and basis status of each individual
variable, by alocating arrays of appropriate size; these sizes are determined by calls to the
routines cPxgetnumcols and CPxgetnumrows. Notethat abasisisnot guaranteed to exist,
depending on which optimizer was selected at run time, so some of these steps, including the
call to cpxgetbase, are dependent on the solution type returned by cpxsolninfo.

The primal solution values of the variables are obtained by acall to cpxgetx, and then these
values (along with the basis statuses if available) are printed, in aloop, for each variable.
After that, acall to cpxgetdblquality providesameasure of the numerical roundoff error

ILOG CPLEX 10.0 — GETTING STARTED

present in the solution, by obtaining the maximum amount by which any variable's lower or
upper bound is violated.

After the TERMINATE: label, the datafor the solution (x, cstat, and rstat) are freed.
Then the problem object is freed by cpxfreeprob. After the problem is freed, the
ILOG CPLEX environment isfreed by cPXcloseCPLEX.

Complete Program

You can view the complete program online in the standard distribution of the product at
yourCPLEXinstallation/examples/src/lpex2.c.

Adding Rows to a Problem: Example Ipex3.c

Thisexampleillustrates how to develop your own sol ution algorithms with routines from the
Callable Library. It al'so showsyou how to add rowsto a problem object. Here isthe problem
that 1pex3 solves:

Minimize cTX
subject to Hx=d
Ax=b
I<x<u
where H= (101 01000) d= (-3)
(1-1010000) (1)
(01-1001-10) (4)
(000-10-101) (3)
(0O000-101-1) (-5)
A= (21-2-12-1-2-3) b= (4)
(1-323-1211) (-2)
c= ((9142-82812)
| = (00000000)
u= (50 50 50 50 50 50 50 50)

The constraints Hx=d represent the flow conservation constraints of a pure network flow
problem. The example solves this problem in two steps:

ILOG CPLEX 10.0 — GETTING STARTED 123

124

1. ThelLOG CPLEX Network Optimizer is used to solve

Minimize cNTX
subject to Hx=d
I<x<u

2. The constraints Ax=b are added to the problem, and the dual simplex optimizer isused to
solve the new problem, starting at the optimal basis of the simpler network problem.

The data for this problem consists of the network portion (using variable names beginning
with theletter H) and the complicating constraints (using variable names beginning with the
letter A).

The example first calls cpxopenCPLEX to create the environment and then turns on the
ILOG CPLEX screen indicator (cpx_PARAM SCRIND). Next it setsthe simplex display
level (cPx_PARAM SIMDISPLAY) tO 2 to indicate iteration-by-iteration output, so that the
progress of each iteration of the optimizer can be observed. Setting this parameter to 2 is not
generally recommended; the example does so only for illustrative purposes.

The example creates a problem object by a call to cPXcreateprob. Then the network data
iscopied viaacall to cpxcopylp. After the network datais copied, the parameter
CPX_PARAM LPMETHOD iSSettoCpx ALG NET and theroutine cpPxlpopt iscalled to
solve the network part of the optimization problem using the network optimizer. The
objective value of this problem isretrieved by cpxgetobjval.

Then the extrarows are added by calling cpxaddrows. For convenience, the total number
of nonzerosin the rows being added is stored in an extra element of the array rmatbeg, and
this element is passed for the parameter nzcnt. The name arguments to CPxaddrows are
NULL, Since no variable or constraint names were defined for this problem.

After the cPxaddrows call, the parameter cPX PARAM LPMETHOD iSSet tO CPX ALG DUAL
and the routine cpx1popt is called to re-optimize the problem using the dual simplex
optimizer. After re-optimization, cPxsolution iscalled to determine the solution status,
the objective value, and the primal solution. NULL is passed for the other solution values,
since the information they provide is not needed in this example.

At the end, the problem iswritten asa SAV file by cpxwriteprob. Thisfile can then be
read into the ILOG CPLEX Interactive Optimizer to analyze whether the problem was
correctly generated. Using a SAV file is recommended over MPS and LP files, as SAV files
preserve the full numeric precision of the problem.

After the TERMINATE: label, cPxfreeprob releases the problem object, and
CPXcloseCPLEX releases the ILOG CPLEX environment.

Complete Program

You can view the complete program online in the standard distribution of the product at
yourCPLEXinstallation/examples/src/lpex3.c.

ILOG CPLEX 10.0 — GETTING STARTED

Performing Sensitivity Analysis

In Performing Sensitivity Analysis on page 51, there is a discussion of how to perform
sengitivity analysisin the Interactive Optimizer. As with most interactive features of

ILOG CPLEX, thereisadirect approach to this task from the Callable Library. This section
modifies the example 1pex1 . c in Building and Solving a Small LP Model in C on page 119
to show how to perform sensitivity analysis with routines from the Callable Library.

To begin, make acopy of 1pex1.c, and edit this new source file. Among the declarations
(for example, immediately after the declaration for dj) insert these additional declarations:

double *lowerc
double *lowerr

NULL, *upperc
NULL, *upperr

NULL;
NULL;

At some point after the call to cpx1popt, (for example, just before the call to
CPxwriteprob), perform sensitivity analysis on the objective function and on the righthand
side coefficients by inserting this fragment of code:

upperc = (double *) malloc (cur numcols * sizeof (double)) ;
lowerc = (double *) malloc (cur _numcols * sizeof (double)) ;
status = CPXobjsa (env, lp, 0, cur numcols-1, lowerc, upperc);

if (status) {
fprintf (stderr, “Failed to obtain objective sensitivity.\n”);
goto TERMINATE;

}

printf (“\nObjective coefficient sensitivity:\n”);

for (j = 0; j < cur numcols; Jj++) {
printf (“Column %d: Lower = %$10g Upper = %10g\n”,
j, lowerc[j]l, uppercl(jl);

}

upperr (double *) malloc (cur numrows * sizeof (double)) ;
lowerr (double *) malloc (cur numrows * sizeof (double)) ;
status = CPXrhssa (env, lp, 0, cur numrows-1, lowerr, upperr);
if (status) {
fprintf (stderr, “Failed to obtain RHS sensitivity.\n”);
goto TERMINATE;

}

printf (“\nRight-hand side coefficient sensitivity:\n”);
for (i = 0; i < cur numrows; i++) {
printf (“Row %d: Lower = %$10g Upper = %$10g\n”,

i, lowerr[i], upperr[i]);

}

This sampleisfamiliarly known as “throw away” code. For production purposes, you
probably want to observe good programming practices such as freeing these allocated arrays
at the TERMINATE label in the application.

A bound value of 16*?° (cpx_INFROUND) istreated asinfinity within ILOG CPLEX, so this
isthe value printed by our sample code in cases where the upper or lower sensitivity range
on arow or column isinfinite; a more sophisticated program might print a string, such as -
inf or +inf, when negative or positive cCPx_INFBOUND iS encountered as avalue.

ILOG CPLEX 10.0 — GETTING STARTED 125

Similar code could be added to perform sensitivity analysis with respect to bounds via
CPXboundsa.

126 ILOG CPLEX 10.0 — GETTING STARTED

Part Il

Index

I N D E X
Index
A rowsto aproblem 123
addLe Concert method 95
accessing addMinimize Concert method 92, 95
basic rows and columns of solution in Interactive advanced basis
Optimizer 51 advanced start indicator 50
basis information 83 algorithm
dual valuesin Interactive Optimizer 51 automatic (Autoalg) 82
dual valuesin Interactive Optimizer (example) 51 creating object 76
objective function value in Interactive Optimizer 50 rolein application 78
quality of solution in Interactive Optimizer 50 and Concert method 96
reduced cost in Java 93 application
reduced costs in Interactive Optimizer 50 and Callable Library 11
shadow pricesin Interactive Optimizer 51 and Concert Technology 11
sack values51 compiling and linking Callable Library 112
slack valuesin Interactive Optimizer 50 compiling and linking Component Libraries 24
solution values 51 compiling and linking Concert Technology 71
solution valuesin C++ 76 development steps 116
solution values in Interactive Optimizer 50 error handling in Callable Library 118
add Interactive Optimizer command 60 error handling in Concert 77
filenameand 61
syntax 61 B
add (obj) Concert method 92
adding baropt Interactive Optimizer command 50
bounds 60 barrier optimizer
constraint to model 85 availability 50
constraints 60 selecting 82
from afile 61 BASfile format
interactively 60 reading from Interactive Optimizer 57
objective (shortcut) 92 writing from Interactive Optimizer 54
objective function to model 75 basis
ILOG CPLEX 10.0 — GETTING STARTED 129

accessing information 83
basis information 93
starting from previous 86
basisfile
reading 57
writing 54
Boolean parameter 86
Boolean variable
representing in model 74
bound
adding 60
changing 63
default values 40
displaying 46
entering in LP format 40
removing 63
sensitivity analysis 52, 126
box variable 43
branch & bound 82
branch & cut 81

C

Callable Library 111 to 126
application development steps 116
compiling and linking applications 112
conceptua design 111
CPLEX operation 114
description 11
distribution file 112
error handling 118
example model 33
opening CPLEX 114

change Interactive Optimizer command 61
bounds 63
change options 61
coefficient 64
delete 64

delete options 65
objective 64
rhs 64
sense 62
syntax 65

changing

bounds 63

130 ILOG CPLEX 10.0

coefficients 64

constraint names 62

objective in Interactive Optimizer 64
parameters 58, 85

problem 61

righthand side (rhs) in Interactive Optimizer 64
sense 62

variable names 62

choosing

optimizer 50, 82, 118

classlibrary 88
classpath 89

command line option 88

coefficient

changing 64

column

expressions 79

command

executing from operating system 66
input formats 36
Interactive Optimizer list 37

compiler

-DNDEBUG option 77

error messages 72

Microsoft Visual C++ Command Line 114
using with CPLEX 71

compiling

applications 24
Callable Library applications 112
Concert Technology applications 71

Component Libraries

defined 11
running examples 23
verifying installation 23

Concert Technology Library 69 to 86

C++ classes 72

C++ objects 70

compiling and linking applications 71
CPLEX designin 70

description 11

error handling 77

example model 30

running examples 71

constraint

adding 60, 85

GETTING STARTED

changing names 62

changing sense 62

creating 79

default names 40

deleting 64

displaying 46

displaying names 44

displaying nonzero coefficients 43

displaying number of 43

displaying type 43

entering in LP format 40

name limitations 40

naming 40

range 79

representing in model 74
congtraints

adding to a model 92
continuous variable

representing 74
CPLEX

compatible platforms 11

Component Libraries 11

description 10

directory structure 20

installing 20

licensing 22

problem types 10

quitting 66

setting up 19

starting 36

technologies 11
cplex command 36
cplex.jar (location) 88
cplex.logfile49
CPXaddcols routine 115, 117, 120
CPXaddrows routine 115, 117, 120, 124
CPXboundsa routine 126
CPXchgcoeflist routine 115, 117, 120
CPXcloseCPLEX routine 115, 121, 123, 124
CPXcopylp routine 115, 116, 117, 118, 124
CPXcreateprob routine 115, 122, 124
CPXfreeprob routine 115, 121, 123, 124
CPXgeterrorstring routine 120, 121
CPXgetobjval routine 124
CPX1popt routine 120, 124, 125

ILOG CPLEX 10.0

CPXmsg routine 115
CPXnewcols routine 115,117, 120
CPXnewrows routine 115, 117, 120
CPXopenCPLEX routine 114, 120, 122, 124
CPXreadcopyprob routine 115, 122
CPXsetintparam routine 120
CPXsolution routine 120, 124
CPXwriteprob routine 119, 121, 124, 125
creating

algorithm object 76, 78

automatic log file 49

binary problem representation 119

constraint 79

environment 124

environment object 72, 78

model (Concert Technology) 91

model (I1oModel) 73

model objects 78

objective function 79, 81

optimization model 73, 74

problem files 53

problem object 115, 124

SOs 81

variable 81

D

data
entering 41
entry options 13
deleting
constraints 64
problem options 65
variables 64
directory installation structure 20
display Interactive Optimizer command 42, 62
options 42
problem42
bounds 46
constraints 46
names 44, 45, 46
options 42
stats 43
syntax 43
sensitivity 52

— GETTING STARTED

131

syntax 53
settings 59
solution 50
syntax 51

specifying item ranges 44
syntax 47

displaying
basic rows and columns 51
bounds 46
constraint names 44
constraints 46
nonzero constraint coefficients 43
number of constraints 43
objective function 46
optimal solution 48
parameter settings 59
post-solution information 50
problem 42
problem options 42
problem part 44
problem statistics 43
sensitivity analysis 51, 125
type of constraint 43
variable names 44
variables 43

dua simplex optimizer
asdefault 48
availability 50
finding a solution 120
selecting 82

dud values
accessing (Java) 93
accessing in Interactive Optimizer 51

E

enter Interactive Optimizer command 38
bounds 40
maximize 39
minimize 39
subject to 40,60
syntax 39
entering
bounds 40
constraint names 40

132 ILOG CPLEX 10.0

constraints 40
example problem 38
item ranges 44
keyboard data 41
objective function 39, 40
objective function names 40
problem 38, 39
problem name 38
variable bounds 40
variable names 39
environment object
creating 72, 78
destroying 73
memory management and 73
equality constraints
add to amodel 93
error
invalid encrypted key 89
no license found 89
NoClassDefFoundError 89
UnsatisfiedLinkError 89
error handling
compiler 72
license manager 72
linker 72
programming errors 77
runtime errors 77
testing installation 24, 72
example
adding rowsto a problem 123
entering a problem 38
entering and optimizing aproblemin C 119
entering and optimizing aproblem in C# 103
ilolpex2.cpp 82
ilolpex3.cpp 84
lpexl.c 119
lpexl.cs 103
lpex2.c 121
lpex3.c 123
modifying an optimization problem 84
reading a problem file 121
reading a problem from afile 82
running Callable Library 113
running Component Libraries 23
running Concert Technology 71

GETTING STARTED

running from standard distribution 113
solving aproblem 48
exception handling 77
executing operating system commands 66
exportModel method
IloCplex class 80
expression
column 79

F

false returnvaueof IloCplex.solve 93
feasible solution
Concert Technology Java APl 93
file format
read options 56
write options 53
file name
extension 54, 57, 81

G

getCplexStatus 93
getCplexStatus method
IloCplex class76
getDuals method
IloCplex class79
getObjValue method
IloCplexclass77
getReducedCosts method
IloCplex class79
getSlacks method
IloCplex class79
getStatus 93
getStatus method
IloCplex class 76, 79
getValue method
IloCplex class 76
getValues method
IloCplex class79
greater than equal to constraints
add to amodel 93

ILOG CPLEX 10.0

H

handle class
definition 73
empty handle 74
handling
errors 77,118
exceptions 77
help Interactive Optimizer command 36
syntax 37
histogram 47

IloAddNumVar class 79
IloAlgorithm: :Exception class77
IloAlgorithm: : Status enumeration 79
IloColumn.and method 96
IloCplexclass

add modeling object 92

addLe method 95

addMinimize method 95

Concert Technology 70

exportModel method 80

getCplexStatus method 76

getDuals method 79

getObjValue method 77

getReducedCosts method 79

getSlacks method 79

getStatus method 76, 79

getValue method 76

getValues method 79

importModel method 81, 83

Java 87

numVarArray method 95

prod method 95

scalProd method 95

setParam method 82

setRootAlgorithm method 83

solve method 76, 79, 83, 84

solving with 76

sum method 95
IloCplex: :Algorithm enumeration 82
IloCplex: :BoolParam enumeration 86
IloCplex: :Exception class77

GETTING STARTED

133

IloCplex: : IntParam enumeration 86
IloCplex: :NumParam enumeration 86
IloCplex: :StringParam enumeration 86
IloEnv 72
I1loEnv class72

end method 73
IloException class77
IloExpr class 75
IloExtractable class74
ILOG License Manager (ILM) 22
ILOG_LICENSE_ FILE environment variable 23
IloLinearNumExpr 92
IloMinimize function 75
IloModel class

add method 74, 75

column method 96

extractable 74

numVar method 96

rolein Concert 70
IloNumArray class 79
IloNumColumn class79
I1loNumExpr 92
I1loNumExpr class91
IloNumVar class 80

columns and 80

reading files and 81

rolein Concert Technology 74

rolein model 91
IloObjective class74,79, 81

rolein model 91

setLinearCoef method 80
IloRange Class

casting operator for 79

example 75

reading from file 81

rolein Concert Technology 74

rolein model 91

setExpr method 97

setLinearCoef method 80
IloSemiContVar class81
Ilos0S1 class81
Ilos0S2 class81
importModel method

IloCplex class81, 83
infeasible

134 ILOG CPLEX 10.0

Concert Technology Java APl 93
installing CPLEX 19 to 24
testing installation 23
integer parameter 86
integer variable
optimizer used 118
representing in model 74
Interactive Optimizer 35 to 67
command formats 36
commands 37
description 11
example model 29
quitting 66
starting 36
invalid encrypted key 89
iteration log 48, 49

J

Java Native Interface (JNI) 87
JavaVirtual Machine (JVM) 88
javamake for Windows 88

L

libformat 88
licensing
CPLEX 22
linear optimization 10
linker
error messages 72
using with CPLEX 71
linking
applications 24
Callable Library applications 112
Concert Technology applications 71
Concert Technology library files 24
CPLEX library files 24
logfile
adding to 58
cplex.log 49
creating 49
iteration log 48, 49
LP
creating amodel 27

GETTING STARTED

node 82

problem format 10

root 82

solving amodel 27

solving pure 82
LPfile

format 39

reading 56

writing 54
lpexl.c

sensitivity and 125
lpexl.c example119
LPexl.java example 94
LPMETHOD parameter 48

M

makefile 88
maximization in LP problem 39
memory management
by environment object 73
minimization in LP problem 39
MIP
description 11
optimizer 50
solving 81
mipopt Interactive Optimizer command 50
model
adding constraints 85
creating 73
creating I1oModel 73
creating objectsin 78
extracting 78
modifying 84
reading from file 81, 83
solving 83
writing to file 81
modeling
by columnsin C++ 79
by columnsin Java 95
by nonzerosin C++ 80
objects 70
modeling by nonzeros 97
modeling by rows 79, 95
modeling variables 92

ILOG CPLEX 10.0

modifying

problem object 116
monitoring iteration log 48
MPSfile format 57
multiple algorithms 82

N

netopt Interactive Optimizer command 50
network
description 10
flow 85
network optimizer
availability 50
selecting 82
solving with 85
Nmake 88
no license found 89
NoClassDefFoundError 89
node LP
solving 82
nonzereos
modeling in Java 97
nonzeros
modeling in C++ 80
notation in this manua 14
notification 84
numeric parameter 86
numVarArray Concert method 95

O

objective function
accessing value in Interactive Optimizer 50
adding to model 75
changing coefficient 64
changing sense 63
creating 79, 81
default name 40
displaying 46
entering 40
entering in LP format 39
name 40
representing in model 74
sengitivity analysis 52, 125

GETTING STARTED

135

operator() 79
operator+ 79
optimal solution
Concert Technology Java APl 93
optimization model
creating 73
defining extractable objects 74
extracting 73
optimization problem
interrupting 50
reading from file 82
representing 78
solving with T1oCplex 76
optimize Interactive Optimizer command 48
re-solving 50
syntax 49
optimizer
choosing by problem type 118
choosing by switch in application 83
choosing in Interactive Optimizer 50
options 12
paralel 114
syntax for choosing in C++ 82
ordering variables 45
output Concert method 95
OutputStream 95

P

paralel
choosing optimizers for 12
linking for optimizers 114

parameter
Boolean 86
changing 58, 85
displaying settings 59
integer 86
list of settable 59
numeric 86
resetting to defaults 59
string 86
parameter specification file 60
path names 55

populateByColumn 94
populateByNonzero 94, 97

136 ILOG CPLEX 10.0

populateByRow 94
primal simplex optimizer
availability 50
selecting 82
primopt Interactive Optimizer command 50
problem
change options 62
changing 61
creating binary representation 119
data entry options 13
display options 42
displaying 42
displaying apart 44
displaying statistics 43
entering from the keyboard 38
entering in LP format 39
naming 38
reading files 121
solving 48, 120
verifying entry 42, 62
problem file
reading 55
writing 53
problem formulation
ilolpexl.cpp 78
Interactive Optimizer and 38
lpex1l.c 120
lpexl.cs 103
LPex1l.java 94
standard notation for 10
problem object
creating 115
modifying 116
problem types solved by CPLEX 10

Q

QCP
description 10
optimizer for 12
QP
applicable algorithms 82
description 10
solving pure 82
quit Interactive Optimizer command 66

GETTING STARTED

quitting
ILOG CPLEX 66
Interactive Optimizer 66

R

range constraint 79
adding to amodel 93
read Interactive Optimizer command 56, 57
avoiding prompts for options 57
basisfilesand 57
file type options 56
syntax 58
reading
file format for 56
LPfiles56
model from file 81, 83
MPSfiles 57
problem files 55, 121
reduced cost
accessing in Interactive Optimizer 50
accessing in Java 93
removing bounds 63
representing optimization problem 78
re-solving 50
righthand side (RHS)
changing coefficient 64
sensitivity analysis 52, 125
root LP
solving 82

S

SAV fileformat 124
saving
problem files 53
solution files 53
scalProd Javamethod 95
sense
changing in Interactive Optimizer 62
sensitivity analysis
performing 51, 125
set Interactive Optimizer command 58
advance 50
available parameters 59

ILOG CPLEX 10.0

defaults 59
logfile 50
simplex 48
syntax 59
setoOut Concert method 95
setRootAlgorithm method
IloCplex class83
setting
parameters 58, 85
parameters to default 59
setWarning Concert method 95
shadow price
accessing in Intereactive Optimizer 51
sifting algorithm 82
dack
accessing in Interactive Optimizer 50
accessing in Java93
accessing values 51
SOCP
description 10
optimizer for 12
solution
accessing basic rows and columnsin I nteractive Optimizer
51
accessing values 51
accessing valuesin C++ 76
accessing values in Interactive Optimizer 50
displaying 50
displaying basic rows and columns 51
outputting 79
process 48
querying results 76
reporting optimal 48
restarting 50
sengitivity analysis51, 125
solution file
writing 53
solve 93
solve Concert method 95
solve method
IloCplexclass76, 79, 83,84
solving
model 76, 83
node LP 82
problem 48, 120

GETTING STARTED 137

root LP 82
with network optimizer 85
SOS
creating 81
sparse matrix 85
starting
CPLEX 36
from previous basis 86
Interactive Optimizer 36
new problem 38
string parameter 86
structure of a CPLEX Java application 91
Supported Platforms 88
System.out 95

T

tranopt Interactive Optimizer command 50

U

unbounded
Concert Technology Java APl 93
UNIX
building Callable Library applications 113
executing commands 66
installation directory 20
installing CPLEX 20
testing CPLEX in Concert Technology 71
verifying installation 23
UnsatisfiedLinkError 89

\Y,

variable
Boolean 74
box 43
changing bounds 63
changing names 62
continuous 74
creating 81
deleting 64
displaying 43
displaying names 44
entering bounds 40

138 ILOG CPLEX 10.0

entering names 39
integer 74

modeling 92

name limitations 39
ordering 45

removing bounds 63
representing in model 74

w

warning Concert method 95
wildcard 44
displaying ranges of items 44
solution information 52
Windows
building Callable Library applications 113
dynamic loading 114
installing CPLEX 20
Microsoft Visual C++ compiler 114
Microsoft Visual C++ IDE 113
testing CPLEX in Concert Technology 71
verifying installation 24
write Interactive Optimizer command 53, 54
file type options 53
syntax 55
writing
basisfiles 54
file format for 53
LPfiles54
model to file 81
problem files 53
solution files 53

X

xecute Interactive Optimizer command 66
syntax 66

GETTING STARTED

	Introducing ILOG CPLEX
	What Is ILOG CPLEX?
	ILOG CPLEX Components
	Optimizer Options
	Data Entry Options

	What You Need to Know
	What’s in This Manual
	Notation in this Manual
	Related Documentation

	Setting Up ILOG CPLEX
	Installing ILOG CPLEX
	Setting Up Licensing
	Using the Component Libraries

	Solving an LP with ILOG CPLEX
	Problem Statement
	Using the Interactive Optimizer
	Using Concert Technology in C++
	Using Concert Technology in Java
	Using Concert Technology in .NET
	Using the Callable Library

	Interactive Optimizer Tutorial
	Starting ILOG CPLEX
	Using Help
	Entering a Problem
	Entering the Example Problem
	Using the LP Format
	Entering Data

	Displaying a Problem
	Displaying Problem Statistics
	Specifying Item Ranges
	Displaying Variable or Constraint Names
	Ordering Variables
	Displaying Constraints
	Displaying the Objective Function
	Displaying Bounds
	Displaying a Histogram of NonZero Counts

	Solving a Problem
	Solving the Example Problem
	Solution Options
	Displaying Post-Solution Information

	Performing Sensitivity Analysis
	Writing Problem and Solution Files
	Selecting a Write File Format
	Writing LP Files
	Writing Basis Files
	Using Path Names

	Reading Problem Files
	Selecting a Read File Format
	Reading LP Files
	Using File Extensions
	Reading MPS Files
	Reading Basis Files

	Setting ILOG CPLEX Parameters
	Adding Constraints and Bounds
	Changing a Problem
	Changing Constraint or Variable Names
	Changing Sense
	Changing Bounds
	Removing Bounds
	Changing Coefficients
	Deleting

	Executing Operating System Commands
	Quitting ILOG CPLEX

	Concert Technology Tutorial for C++ Users
	The Design of CPLEX in Concert Technology
	Compiling and Linking ILOG CPLEX in Concert Technology Applications
	Testing Your Installation on UNIX
	Testing Your Installation on Windows
	In Case of Problems

	The Anatomy of an ILOG Concert Technology Application
	Constructing the Environment: IloEnv
	Creating a Model: IloModel
	Solving the Model: IloCplex
	Querying Results
	Handling Errors

	Building and Solving a Small LP Model in C++
	General Structure of an ILOG CPLEX Concert Technology Application
	Modeling by Rows
	Modeling by Columns
	Modeling by Nonzero Elements
	Complete Program

	Writing and Reading Models and Files
	Selecting an Optimizer
	Reading a Problem from a File: Example ilolpex2.cpp
	Reading the Model from a File
	Selecting the Optimizer
	Accessing Basis Information
	Querying Quality Measures
	Complete Program

	Modifying and Reoptimizing
	Modifying an Optimization Problem: Example ilolpex3.cpp
	Setting ILOG CPLEX Parameters
	Modifying an Optimization Problem
	Starting from a Previous Basis
	Complete Program

	Concert Technology Tutorial for Java Users
	Compiling ILOG CPLEX Applications in ILOG Concert Technology
	In Case Problems Arise

	The Design of ILOG CPLEX in ILOG Concert Technology
	The Anatomy of an ILOG Concert Technology Application
	Create the Model
	Solve the Model
	Query the Results

	Building and Solving a Small LP Model in Java
	Modeling by Rows
	Modeling by Columns
	Modeling by Nonzeros

	Complete Program

	Concert Technology Tutorial for .NET Users
	What You Need to Know: Prerequisites
	What You Will Be Doing
	Describe
	Model
	Solve

	Describe
	Building a Small LP Problem in C#

	Model
	Solve
	Complete Program

	Callable Library Tutorial
	The Design of the ILOG CPLEX Callable Library
	Compiling and Linking Callable Library Applications
	Building Callable Library Applications on UNIX Platforms
	Building Callable Library Applications on Win32 Platforms
	Building Applications that Use the ILOG CPLEX Parallel Optimizers

	How ILOG CPLEX Works
	Opening the ILOG CPLEX Environment
	Instantiating the Problem Object
	Populating the Problem Object
	Changing the Problem Object

	Creating a Successful Callable Library Application
	Prototype the Model
	Identify the Routines to be Called
	Test Procedures in the Application
	Assemble the Data
	Choose an Optimizer
	Observe Good Programming Practices
	Debug Your Program
	Test Your Application
	Use the Examples

	Building and Solving a Small LP Model in C
	Complete Program

	Reading a Problem from a File: Example lpex2.c
	Complete Program

	Adding Rows to a Problem: Example lpex3.c
	Complete Program

	Performing Sensitivity Analysis

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

