COMP566 Discrete Optimization I
 Homework 4

Due: Tuesday November 20, 2007 in class.

Typo correction to 1(a) below, made Nov 17

1. Let A be an m by n integer matrix, c be an integer n-vector and b be an integer m-vector. We saw in class that for an LP

$$
\max c^{T} x, A x \leq b, x \geq 0
$$

and any m-vector $y \geq 0$ the inequality

$$
\left\lfloor y^{T} A\right\rfloor x \leq\left\lfloor y^{T} b\right\rfloor
$$

is valid for all the feasible integer solutions. It is a cutting plane if it is violated by the optimal solution of the LP.
(a) Show that if the optimum objective value for the LP is fractional then the dual variables y give a cutting plane if $y^{T} A$ is an integer vector.
(b) Illustrate this on the telephone switchboard problem on $\mathrm{pp} 11-1$ to 11-3 of the handout. Do this by solving the LP (using lp_solve or CPLEX) and getting the dual variables. Derive the cutting plane (3), p. 11-3. Incorporate this in your LP and see if you now get an integer solution.
2. Suppose A is a totally unimodular square matrix. Which of the following three matrices are totally unimodular (proof or counterexample):

$$
A^{T}, \quad(A, A), \quad\left(A, A^{T}\right) ?
$$

(The notation (A,B) means just place the m by m matrices A and B side by side creating a new matrix of dimension $2 m$ by m).
3. In the handout p. 11-16 Vasek states that the fifth cut, given in the middle of 11-15, is equivalent to

$$
x_{1} \leq 1 .
$$

Verify this statement. (Hint: you may use any of the other four cuts as stated, without proof.)

