COMP566 Homework 2

Discrete Optimization I
 Due: Tuesday, October 5, 2004

Page numbers refer to Linear Programming, V. Chvatal

1. Consider the following series of LPs for $\mathrm{n}=1,2,3, \ldots$

$$
\begin{gathered}
z_{n}^{*}=\min \sum_{j=1}^{n} x_{j} \\
\sum_{i=1}^{t-1} x_{i}+n x_{t} \geq 1 \quad t=1,2,3, \ldots, n
\end{gathered}
$$

Prove that $z_{n}^{*}=1-(1-1 / n)^{n}$. Hint: Solve the dual.
2. Consider any dictionary for an LP in standard form, with basic solution $x=\left(x_{1}, x_{2}, \cdots, x_{n+m}\right)$. Let $\bar{c}_{j}, j=1,2, \ldots, n+m$ be the coefficients in the row for the objective function in the dictionary. Define $y_{i}=-\bar{c}_{n+i}, i=1,2, \ldots, m$ and $y_{m+j}=-\bar{c}_{j}, j=1, \ldots, n$. Show the complementary slackness conditions hold:

$$
x_{j} y_{m+j}=0, j=1, \ldots, n \quad x_{n+i} y_{i}=0, i=1, \ldots, m
$$

Note that this is true whether or not x is feasible.
3. First formulate and solve problem 1.6 p. 10 using lp_solve or other software. Then do problem 5.6, p. 70.
4. Solve question 2 of homework 1 using the revised simplex method. Directly verify that the complementary slackness conditions hold for the optimal solution.

