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Diet Problem (example of a Linear Program, from Vašek Chvátal’s Linear Programming) 
 

Food Serving Size Energy 
(Calories) 

Protein 
(grams) 

Calcium 
(milligrams)

Price per serving 
(cents) 

Oatmeal 28 g 110 4 2 3 
Chicken 100 g 205 32 12 24 

Eggs 2 large 160 13 54 13 
Whole milk 237 ml 160 8 285 9 
Cherry pie 170 g 420 4 22 20 

Pork with beans 260 g 260 14 80 19 
 
Define: 
 x1: Daily portions of oatmeal 
 … 
 x6: Daily portions of pork with beans 
 
Add these constraints: 
We need at least 2000 calories: 

 110x1 + 205x2 + 160x3 + 160x4 + 420x5 + 260x6 ≥ 2000 
 
We need at least 55 grams of protein: 

 4x1 + 32x2 + 13x3 + 8x4 + 4x5 + 14x6 ≥ 55 
 
We need at least 800 milligrams of calcium: 

 2x1 + 12x2 + 54x3 + 285x4 + 22x5 + 80x6 ≥ 800 
 
Limits on servings per day: 
 At most 4 servings of oatmeal per day 0 ≤ x1 ≤ 4 
 At most 3 servings of chicken per day 0 ≤ x2 ≤ 3 
 At most 2 servings of eggs per day 0 ≤ x3 ≤ 2 
 At most 8 servings of milk per day 0 ≤ x4 ≤ 8 
 At most 2 servings of cherry pie per day 0 ≤ x5 ≤ 2 
 At most 2 servings of pork with beans per day 0 ≤ x6 ≤ 2 
 
We want to minimize the total daily cost of the diet. 
⇒ Minimize this objective function:  

 3x1 + 24x2 + 13x3 + 9x4 + 20x5 + 19x6 
 



Lot sizing (example of an Integer Linear Program, from David Avis) 
 
We own a factory that manufactures some product.  We have to decide on a production 
schedule over the next 3 periods (say periods are weeks).  We have specific demands in 
each period.  We can produce and store units in prevision of helping meet demand in one 
of the later periods, but this will add storage costs to our total costs.  Our objective is to 
minimize total cost. 

 
 
Define: 
 di: demand in week i 
 wij: production at week i used to supply part of dj (i ≤ j) 
 
Then we need constraints to make sure that demands are exactly met in each week: 
 Demand is met in the first week: w11    = d1 
 Demand is met in the second week: w12 + w22  = d2 
 Demand is met in the third week: w13 + w23 + w33 = d3 
 
We also need the obvious constraints that state that all variables representing produced 
quantities need to be non negative: 
 wij ≥ 0 (for 1 ≤ i ≤ j ≤ 3) 
 
Define: 
 pi: cost of producing one unit in week i 
 hi: cost of keeping one unit in storage during week i 
 
Then we can define cij, the cost of producing a unit in week i and storing it until week j:  
 cij = pi + hi + hi+1 + … + hj 
 
We want to minimize the following objective function, which represents total cost: 
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Or more explicitly: 
c11w11 + c12w12 + c13w13 + c22w22 + c23w23 + c33w33 

d1 d2 d3

w33w11 
w23 



To be more realistic, we could also decide that producing in a certain week i implies a 
fixed cost fi.  This fixed cost is not charged if no units at all are produced in week i.  How 
do we incorporate this into our problem? 
 
We need more variables: 
 yi = 1 if we produce in week i, or 0 if we don’t 
 
Then it’s easy to incorporate the fixed costs into our objective function, which becomes 
 c11w11 + c12w12 + c13w13 + c22w22 + c23w23 + c33w33 + y1f1 + y2f2 + y3f3 
 
To summarize, here is the complete formulation of this integer programming problem: 
 

Minimize  
  c11w11 + c12w12 + c13w13 + c22w22 + c23w23 + c33w33 + y1f1 + y2f2 + y3f3 
 

Subject to : 
  w11 = d1 
  w12 + w2 = d2 
  w13 + w23 + w33 = d3 
  w11, w12, w13, w22, w23, w33 ≥ 0, and integer 
  y1, y2, y3 ≥ 0, ≤ 1, and integer 
 
where the c’s and f’s are either known quantities or can be precomputed from known 
quantities. 
 
 
Quiz from section 1.3 of Komei Fukuda’s notes 
 
1. Max 2x + 4y 

Subject to 
 x – 3y = 5 
 y ≤ 0 
 
This is a valid LP. 

 
2. Max 2x + 4y 

Subject to 
 x – 3y = 5 

 x ≥ 0 or y ≤ 0 
 
 This is not a valid LP, because there is no way to represent this kind of OR with 
linear constraints. 
 
3. Max x + y + z 

Subject to 
 x + xyz ≤ 5 



 x – 5y ≥ 3 
This is not a valid LP, because the first constraint is not linear. 

 
4. Min x2 + 4y2 + 4xy 

Subject to  
 x + 2y ≤ 4 
 x – 5y ≥ 3 
 x ≥ 0, y ≥ 0 
 
This is not a valid LP, because the objective function is not linear. 

 
5. Min x1 + 2x2 – x3 

Subject to  
 x1 ≥ 0, x2 ≥ 0 
 x1 + 4x2 ≤ 4 
 x2 + x3 ≤ 4 
 x1, x2, x3 are integers 
 
This is a valid LP.  In particular, it’s an ILP (Integer Linear Program) because all its 
variables are required to be integer. 

 
6. Min 2x1x2 – x3 

Subject to  
 x1 + 4x2 ≤ 4 
 x2 + x3 ≤ 4 
 x1 ≥ 0, x2 ≥ 0 
 x1 is integer 

  
This is not a valid LP, because the objective function is not linear. 

 
7. Min x1 + 2x2 – x3 

Subject to  
 x1 ≥ 0, x2 ≥ 0 
 x1 + 4x2 ≤ 4 
 x2 + x3 ≤ 4 
 x1, x2, x3 are either 0 or 1. 
 
This is a valid LP.  The difference between this OR and the one in exercise 1 is that 
this one can be represented as follows: 
 x1 ≥ 0, x2 ≥ 0, x3 ≥ 0 
 x1 ≤ 1, x2 ≤ 1, x3 ≤ 1 
 x1, x2, x3 are integers 
 
We see that this is actually an ILP because all its variables are required to be integer.   
 



Proving unboundedness using a certificate 
 
Primal problem: Max x1 + x2 
   Subject to 

(1) x1 ≥ 0 
(2) x2 ≥ 0 
(3) x1 – x2 ≤ 1 
(4) 2x1 – x2 ≤ 4 

Graphically: 

 
 
Dual problem:  Min y1 + 4y2 
   Subject to 

(1) y1 ≥ 0 
(2) y2 ≥ 0 
(3) y1 + 2y2 ≥ 1 
(4) -y1 – y2 ≥ 1 

Graphically: 

 
 
 



Graphically it becomes obvious that the primal is unbounded, and that the dual is 
infeasible.  We prove this more formally using a certificate.  Here is Theorem 2.5 from 
Komei Fukuda’s notes: 
 
Max cTx subject to Ax ≤ b  and x ≥ 0 
is unbounded iff 
 1) it has a feasible solution x 
 2) there exists a direction z such that z ≥ 0, Az ≤ 0, and cTz > 0 
 
Let x = (0, 0): this is a valid feasible solution to our primal problem, so 1 is satisfied. 
 
Now to verify 2, we need to find some z = (z1, z2) such that 

z1 ≥ 0, z2 ≥ 0 
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Check that z = (1, 2) satisfies the above.  Therefore our pair (x, z) is a certificate for the 
unboundedness of the primal problem. 
 
 
 
A note about unconstrained variables in lp_solve 
 
lp_solve requires all variables to be non negative.  So how do we model a variable x that 
may assume negative values? 
 
We introduce two more variables y and z, and everywhere x appears in our objective 
function or in our constraints, we replace x by (y-z). 


