
SAT-Solving: From Davis-
Putnam to Zchaff and Beyond

Day 1: SAT Basics

Lintao Zhang

Lintao Zhang

Automated Reasoning:
Motivations

As a curiosity of mathematicians and inventers
Demonstrator, Charles Stanhope, 1777
Logic Machine, William Stanley Jevons, 1869

Artificial Intelligence and foundation of mathematics
Mechanical theorem proving
Reasoning on knowledge base

Electronic Design Automation
ATPG
Logic synthesis

Verification of digital systems
Equivalence checking
Model checking
Safety of programs, concurrent processes

Lintao Zhang

How to Perform Automatic
Reasoning?

Modeling: Abstract the problem into logic
Boolean propositional logic
Temporal logic
Set theory
First order logic

Proof: Use automatic decision procedures to determine the
correctness (validity) of the resulting logic

SAT Solvers and BDDs
Model Checker
Theorem Provers

Lintao Zhang

Propositional Logic
Variable Domain: True/False or 1/0
Logic operations: and ∧ ⋅, or ∨ +, not ¬ ’

It’s also easy to express Imply →, equivalence ↔
If a and b are Boolean, then these are propositional formulas:

a ⋅ b + a’ ⋅ c
1⋅a = 0
1+a = 1

These are not propositional logic:
3 + x = x + 3; -- Integer domain
∀ a ∃ b (a+b)(a’+b’) -- Quantifiers
If a = b then f(a)=f(b) -- Uninterpreted function

It is the basis of all other logics.

Lintao Zhang

What is SAT?
Boolean Satisfiability (SAT).
Operates on Boolean Propositional Logic
Check if a complex logical relationship can ever be true (or
satisfiable)

x OR y is true when x is true or y is true (satisfiable)
x AND (NOT x) can never be true (unsatisfiable)

Tautology Checking
Looks easy, but gets hard very quickly as the size of the problem
increases

Size measured in terms of:
Number of variables
Number of operations

Lintao Zhang

Why is SAT Important?
Theoretical importance

It’s the first NP-Complete problem discovered by Cook in 1971
It’s everywhere

Automatic Test Pattern Generation
Combinational Equivalence Checking
Bounded Model Checking
AI Planning
Theorem Proving
Software modeling and verification
... ...

We have powerful SAT solvers that can solve practical problems
SAT solving has been well studied for at least 40 years.
Recent breakthroughs make SAT solver highly efficient

Can handle over a million variables and operations
Seen wide use in the industry

Can we do better?

Lintao Zhang

Course Schedule
3-day mini-course

Today: Basics of SAT solving
Tomorrow: Efficient Implementation of SAT solvers
Wednesday: Recent Developments in SAT research

Emphasis on Engineering, not math or just algorithms
Lectures in the morning, projects and discussion in the
afternoon
Main course project: Implementing an SAT solver

Require some knowledge of C/C++ and STL

Lintao Zhang

Boolean n-Space

B0

B3 B4

B2 = BxB
00 01

10 11

B1

0 1

B = {0,1}

Lintao Zhang

Boolean Functions
f(x): Bn →B B={0,1} x = {x1, x2, …xn}

x1, x2,…xn are variables
Each vertex of Bn is mapped to either 0 or 1
The on-set of f is {x|f(x) = 1} = f1 = f-1(1)
The off-set of f is {x|f(x) = 0} = f0 = f-1(0)
If f1 = Bn, f is a tautology
If f0 = Bn, i.e. f = φ, f is not satisfiable
If f(x) = g(x) for all x ε Bn, then f and g are equivalent
Also referred to as logic functions
How many logic functions are there?

Lintao Zhang

Representation of Boolean
Functions

The truth table for a function f: Bn ->B is a tabular representation of its
value at each of the 2n vertices of Bn.
Example:
a b c f
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 1
1 0 1 0
1 1 0 0
1 1 1 1
Intractable for large n (but canonical).
Canonical means that if two functions are equivalent, then their
canonical representations are isomorphic.

a
b

c

f = b c + a b’ c’

Lintao Zhang

Boolean Satisfiability
Is there a any satisfying assignment for the function, i.e. is
there at least one point in the ON-set of the function?
How hard is this?

Depends on how the function is represented.
Boolean n-cube, truth table

Easy once we have the representation
But representation size is exponential in n

How about other representation?
Boolean Formula
BDD
Circuit

Lintao Zhang

Literals
A literal is a variable or its negation.

x1, x1’ (also represented as ¬x1)
Literal x1 represents a logic function f where f1 = {x|x1=1}
Literal x1

’ represents a logic function g where g1 = {x|x1=0}

f = x1 g = x1
'

x1

Lintao Zhang

Boolean Formulas
Boolean functions can be represented as formulas defined as catenations of:

Parenthesis (,)
Literals x1, x1’
Boolean operators + (OR), x or . (AND), NOT
NOT (Negation) : f’ = h such that h1 = f0
AND (Conjunction): (f AND g) = h such that h1 = {x|f(x) = 1 and g(x) = 1}
OR (Disjunction) : (f OR g) = h such that h1 = {x|f(x) = 1 or g(x) = 1}

Usually replace x with catenation
e.g. x1 x x2 with x1 x2

How many formulas can we have with n variables?
Examples:

f = x1 x2’ + x1’ x2
= (x1 + x2) (x1’ + x2’)

h = x1 + x2 x3
= (x1’ (x2’ + x3’))’

Lintao Zhang

Boolean Satisfiability (SAT)
Given a Boolean propositional formula, determine whether there
exists a variable assignment that makes the formula evaluate to
true.

Formulas are often expressed in Conjunctive Normal Form (CNF)

(a+b+c)(a’+b’+c)(a’+b+c’)(a+b’+c’)

Variables ClausesLiterals

Lintao Zhang

Boolean Satisfiability (SAT)
Given a Boolean propositional formula, determine whether there
exists a variable assignment that makes the formula evaluate to
true.

Formulas are often expressed in Conjunctive Normal Form (CNF)

(a+b+c)(a’+b’+c)(a’+b+c’)(a+b’+c’)

Lintao Zhang

Boolean Satisfiability (SAT)
Given a Boolean propositional formula, determine whether there
exists a variable assignment that makes the formula evaluate to
true.

Formulas are often expressed in Conjunctive Normal Form (CNF)

(a+b+c)(a’+b’+c)(a’+b+c’)(a+b’+c’)

(a+b)(a’+b)(a+b’)(a’+b’)

Lintao Zhang

Convert a Boolean Circuit into
CNF

Example: Combinational Equivalence Checking

Lintao Zhang

Combinational Equivalence
Checking

Miter Circuit

Lintao Zhang

Modeling of Combinational
Gates

a
b c

a
b c

a
b c

(a + c’)(b + c’)(a’ + b’ + c)

(a’ + c)(b’ + c)(a + b + c’)

(a’ + b’ + c’)(a + b + c’)(a + b’ + c)(a’ + b + c)

Lintao Zhang

From Combinational Equivalence
Checking to SAT

a
b

? =1

c

d

e

f g

(a’ + b’ + c’)(a + b + c’)(a + b’ + c)(a’ + b + c)
(a + d)(b’ + d)(a’ + b + d’)
(a’ + e)(b + e)(a + b’ + e’)
(d + f’)(e + f’)(d’ + e’ + f)
(c’ + f + g’)(c + f’ + g’)(c + f + g)(c’ + f’ + g)
(g)

Lintao Zhang

From Combinational Equivalence
Checking to SAT

a
b

? =1

c

d

e

f g

(a’ + b’ + c’)(a + b + c’)(a + b’ + c)(a’ + b + c)
(a’ + d)(b’ + d)(a + b + d’)
(a’ + e)(b + e)(a + b’ + e’)
(d + f’)(e + f’)(d’ + e’ + f)
(c’ + f + g’)(c + f’ + g’)(c + f + g)(c’ + f’ + g)
(g)

Lintao Zhang

Convert an Arbitrary Boolean
Formula into CNF

It is possible to convert an arbitrary function into CNF
Without introducing new variables, the size of the resulting formula will
grow exponentially

Not practical
By introducing intermediate variables, the size of the resulting formula
can grow linearly

How?
Number of intermediate variable equal to the number of Boolean
operations
The resulting formula will have the same satisfiability as the original one

It’s sufficient for a SAT solver to solve problems in CNF
Almost all modern SAT solver operates on CNF

Lintao Zhang

Complexity of SAT
A CNF formula is said to belong to k-SAT if each clause of the formula
contains no more than k literals.

Classic Result:
Cook 1971: 3-SAT problem is NP-Complete.
NP complete: Class of problems for which no known solutions exists that
takes less than O(2n) steps. However, it has not been proved that the
problem needs at least an exponential number of steps. The common
conjecture is that it does.
k-SAT is NP-complete for k ≥ 3.

The obvious lower bound for a SAT problem with n variables is 2n.

Currently, the best lower bound for a SAT problem with n variables is
due to Paturi etc., E.g. for satisfiable 3-SAT, the complexity for finding a
solution is O(20.448n).

Lintao Zhang

SAT Problems with Polynomial
Complexity

Some special SAT classes can be solved in polynomial time.
If a problem is solvable in polynomial time, we can use special
algorithms to solve them efficiently.
Part of the original problem may belong to a polynomial solvable class, it
is possible to exploit this property during the solving process. (e.g.
Larrabee).
During the solution process, a problem state may evolve to one that has
a polynomial solution. We can exploit heuristics that are likely to reduce
a problem to one that is solvable in polynomial time quickly (e.g. SATO).

2-SAT problems can be solved in linear time wrt the size of the problem
(Aspvall, Plass and Tarjan, 1979).
A Horn formula can be solved in linear time wrt the size of the formula.

Lintao Zhang

Horn Formulas
Horn sentences are often generated from knowledge base reasoning:

rules: if x, y, z are true, then r is true
xyz → r
a → b

If a is true, then b must be true to make the formula true
if a is false, then the formula is true
(a’ + b)

xyz → r : (x’ + y’ + z’ + r)

A CNF formula is Horn if every clause has at most one positive literal
What does it mean if a clause contains no positive literal?
What does it mean if a clause contains only one positive literal and no negative literal?

A Horn formula can be solved in linear time wrt the size of the formula.
Do unit implication until no unit clause exists
If conflict, the formula is unsatisfiable
Else the formula can be satisfied by assigning all the unassigned variables with value 0

Lintao Zhang

Problem Hardness
and Phase Transition

Not all SAT problems are hard
Many practical SAT instances can be solved very efficiently
The theory of NP-completeness is based on worst-case
complexity.
To explain the behavior of algorithms in practice, the theory of
average-case complexity is more appropriate.

Use random generated SAT instances to explore the
hardness distribution

Very different characteristics from the instances generated from
real world applications
But are of great theoretical interests

Lintao Zhang

Fixed-clause length model
Generated by selecting clauses uniformly at random from the set of
all possible (non-trivial) clauses of a given length, random k-SAT.

Three parameters: the number of variables N, the number of literals
per clause K, and the number of clauses L.

Formulas with few clauses: under-constrained (usually satisfiable),
Formulas with many clauses: over-constrained (usually unsatisfiable)
Both under-constrained and over-constrained problems are much easier
than problems of medium length

Lintao Zhang

Phase transition behavior
Problems which are very over-constrained are unsatisfiable and it is usually
easy to determine this. Problems which are very under-constrained are
satisfiable and it is usually easy to guess one of the many solutions.

A phase transition tends to occur in between when problems are critically
constrained, and it is difficult to determine if they are satisfiable or not.

For random 2-SAT, the phase transition has been proven to occur at L/N=1.

For random 3-SAT, the phase transition has been experimentally show to
occur around L/N = 4.3

Lintao Zhang

Hardness of 3SAT

0
2 3 4 5

Ratio of Clauses-to-Variables
6 7 8

1000

3000

D
P

C
al

ls

2000

4000

50 var
40 var
20 var

Lintao Zhang

The 4.3 Point

0.0
2 3 4 5

Ratio of Clauses-to-Variables
6 7 8

0.2

0.6

Pr
ob

ab
ili

ty
D

P
C

al
ls

0.4

50 var
40 var
20 var

50% sat

Mitchell, Selman, and Levesque 1991

0.8

1.0

0

1000

3000

2000

4000

Lintao Zhang

Phase transition 2-, 3-, 4-, 5-,
and 6-SAT

Lintao Zhang

Threshold phenomena
Threshold conjecture: for each k, there is some c* such that for each
fixed value of c<c*, random k-SAT with n variables and cn clauses is
satisfiable with probability tending to 1 as , and when c>c*,
unsatisfiable with probability tending to 1.
For the case of random 2-SAT, the conjecture has been shown true,
and c*=1.
Current status:

3SAT threshold lies between 3.42 ~ 4.51

∞→n

Lintao Zhang

The 2+p-SAT model
Mixtures of problem classes, e.g., 2-SAT and 3-SAT
(“moving between P and NP”)

Mixture of binary and ternary clauses

p = fraction ternary

p = 0.0 --- 2-SAT / p = 1.0 --- 3-SAT

Lintao Zhang

Phase Transition for 2+p-SAT

Lintao Zhang

Computational Cost

Lintao Zhang

2+P Model
p < ~ 0.41 --- model essentially behaves as 2-SAT

search proc. “sees” only binary constraints

smooth, continuous phase transition

p > ~ 0.41 --- behaves as 3-SAT (exponential scaling)
abrupt, discontinuous scaling

Lintao Zhang

SAT Algorithm: An Overview
Davis, Putnam, 1960

Explicit resolution based
May explode in memory

Davis, Logemann, Loveland, 1962
Search based.
Most successful, basis for almost all modern SAT solvers
Learning and non-chronological backtracking, 1996

Stålmarcks algorithm, 1980s
Proprietary algorithm. Patented.
Commercial versions available

Stochastic Methods, 1992
Unable to prove unsatisfiability, but may find solutions for a satisfying
problem quickly.
Local search and hill climbing

Lintao Zhang

SAT Algorithm: An Overview
Davis, Putnam, 1960

Explicit resolution based
May explode in memory

Davis, Logemann, Loveland, 1962
Search based.
Most successful, basis for almost all modern SAT solvers
Learning and non-chronological backtracking, 1996

Stålmarcks algorithm, 1980s
Proprietary algorithm. Patented.
Commercial versions available

Stochastic Methods, 1992
Unable to prove unsatisfiability, but may find solutions for a satisfying
problem quickly.
Local search and hill climbing

Lintao Zhang

Resolution

a + b + g + h’ + fa + b + g + h’

Resolution of a pair of clauses with exactly ONE
incompatible variable

Two clauses are said to have distance 1
(a+b)(a’+c) = (a+b)(a’+c)(b+c)

a + b + c’ + f g + h’ + c + f

Lintao Zhang

Davis Putnam Algorithm

(a + b) (a + b’) (a’ + c) (a’ + c’)(a + b + c)(b + c’ + f’)(b’ + e)

(a + c + e)(c’ + e + f’)

(a + e +
f’)

(a’ + c) (a’ + c’)

(c) (c’)

()SAT
UNSAT

(a)

Potential memory explosion problem!

M .Davis, H. Putnam, “A computing procedure for quantification theory", J. of
ACM, Vol. 7, pp. 201-214, 1960
Iteratively select a variable for resolution till no more variables are left.
Can discard all original clauses after each iteration.

Lintao Zhang

SAT Algorithm: An Overview
Davis, Putnam, 1960

Explicit resolution based
May explode in memory

Davis, Logemann, Loveland, 1962
Search based.
Most successful, basis for almost all modern SAT solvers
Learning and non-chronological backtracking, 1996

Stålmarcks algorithm, 1980s
Proprietary algorithm. Patented.
Commercial versions available

Stochastic Methods, 1992
Unable to prove unsatisfiability, but may find solutions for a satisfying
problem quickly.
Local search and hill climbing

Lintao Zhang

Search Tree of SAT Problem
Unknown

True (1)

False(0)
x1=1 x1=0

x2=1

x3=1

x2=0 x2=1 x2=0

x3=0 x3=1 x3=0 x3=1 x3=0 x3=1 x3=0

x4=1

(x1’ + x2’)
(x1’ + x2 + x3’)
(x1’ + x3 + x4’)
(x1 + x4)

Lintao Zhang

Deduction Rules for SAT
Unit Literal Rule: If an unsatisfied clause has all but one of its
literals evaluate to 0, then the free literal must be implied to be
1.

(a + b + c)(d’ + e)(a + b + c’ + d)

Conflicting Rule: If all literals in a clause evaluate to 0, then
the formula is unsatisfiable in this branch.

(a + b + c)(d’ + e)(a + b + c’ + d)

Lintao Zhang

Search Tree of SAT Problem
Unknown

True (1)

False(0)
x1=1 x1=0

x2=1

x3=1

x2=0 x2=1 x2=0

x3=0 x3=1 x3=0 x3=1 x3=0 x3=1 x3=0

x4=1

(x1’ + x2’)
(x1’ + x2 + x3’)
(x1’ + x3 + x4’)
(x1 + x4)

Lintao Zhang

Search Tree of SAT Problem

x1=1 x1=0

x2=1

x3=1

x2=0 x2=1 x2=0

x3=0 x3=1 x3=0 x3=1 x3=0 x3=1 x3=0

x4=1

Unknown

True (1)

False(0)

(x1’ + x2’)
(x1’ + x2 + x3’)
(x1’ + x3 + x4’)
(x1 + x4)

Lintao Zhang

Search Tree of SAT Problem

x1=1 x1=0

x2=1

x3=1

x2=0 x2=1 x2=0

x3=0 x3=1 x3=0 x3=1 x3=0 x3=1 x3=0

x4=1

Unknown

True (1)

False(0)

(x1’ + x2’)
(x1’ + x2 + x3’)
(x1’ + x3 + x4’)
(x1 + x4)

Lintao Zhang

Search Tree of SAT Problem

x1=1 x1=0

x2=1

x3=1

x2=0 x2=1 x2=0

x3=0 x3=1 x3=0 x3=1 x3=0 x3=1 x3=0

x4=1

Unknown

True (1)

False(0)

(x1’ + x2’)
(x1’ + x2 + x3’)
(x1’ + x3 + x4’)
(x1 + x4)

Lintao Zhang

Search Tree of SAT Problem

x1=1 x1=0

x2=1

x3=1

x2=0 x2=1 x2=0

x3=0 x3=1 x3=0 x3=1 x3=0 x3=1 x3=0

x4=1

Unknown

True (1)

False(0)

(x1’ + x2’)
(x1’ + x2 + x3’)
(x1’ + x3 + x4’)
(x1 + x4)

Lintao Zhang

DLL Algorithm

M. Davis, G. Logemann and D. Loveland, “A Machine Program for
Theorem-Proving", Communications of ACM, Vol. 5, No. 7, pp. 394-397,
1962
Basic framework for many modern SAT solvers
Also known as DPLL for historical reasons

Lintao Zhang

Basic DLL Procedure - DFS

(a + c + d)
(a + c + d’)
(a + c’ + d)
(a + c’ + d’)

(a’ + b + c)

(b’ + c’ + d)
(a’ + b + c’)
(a’ + b’ + c)

Lintao Zhang

Basic DLL Procedure - DFS

(a + c + d)
(a + c + d’)
(a + c’ + d)
(a + c’ + d’)

(a’ + b + c)

(b’ + c’ + d)
(a’ + b + c’)
(a’ + b’ + c)

a

Lintao Zhang

Basic DLL Procedure - DFS
a

0
(a + c + d)
(a + c + d’)
(a + c’ + d)
(a + c’ + d’)

(a’ + b + c)

(b’ + c’ + d)
(a’ + b + c’)
(a’ + b’ + c)

⇐ Decision

Lintao Zhang

Basic DLL Procedure - DFS
a

0
(a + c + d)
(a + c + d’)
(a + c’ + d)
(a + c’ + d’)

(a’ + b + c)

(b’ + c’ + d)
(a’ + b + c’)
(a’ + b’ + c)

b
0 ⇐ Decision

Lintao Zhang

Basic DLL Procedure - DFS
a

0
(a + c + d)
(a + c + d’)
(a + c’ + d)
(a + c’ + d’)

(a’ + b + c)

(b’ + c’ + d)
(a’ + b + c’)
(a’ + b’ + c)

b
0

c
0 ⇐ Decision

Lintao Zhang

Basic DLL Procedure - DFS
a

0
(a + c + d)
(a + c + d’)
(a + c’ + d)
(a + c’ + d’)

(a’ + b + c)

(b’ + c’ + d)
(a’ + b + c’)
(a’ + b’ + c)

b
0

c
0

d=1

c=0

(a + c + d)
a=0

d=0
(a + c + d’)

Conflict!Implication Graph

Lintao Zhang

Basic DLL Procedure - DFS
a

0
(a + c + d)
(a + c + d’)
(a + c’ + d)
(a + c’ + d’)

(a’ + b + c)

(b’ + c’ + d)
(a’ + b + c’)
(a’ + b’ + c)

b
0

c
0

d=1

c=0

(a + c + d)
a=0

d=0
(a + c + d’)

Conflict!Implication Graph

Lintao Zhang

Basic DLL Procedure - DFS
a

0
(a + c + d)
(a + c + d’)
(a + c’ + d)
(a + c’ + d’)

(a’ + b + c)

(b’ + c’ + d)
(a’ + b + c’)
(a’ + b’ + c)

b
0

c
0

⇐ Backtrack

Lintao Zhang

Basic DLL Procedure - DFS
a

0
(a + c + d)
(a + c + d’)
(a + c’ + d)
(a + c’ + d’)

(a’ + b + c)

(b’ + c’ + d)
(a’ + b + c’)
(a’ + b’ + c)

b
0

c
0

d=1

c=1

(a + c’ + d)
a=0

d=0
(a + c’ + d’)

Conflict!

1 ⇐ Forced Decision

Lintao Zhang

Basic DLL Procedure - DFS
a

0
(a + c + d)
(a + c + d’)
(a + c’ + d)
(a + c’ + d’)

(a’ + b + c)

(b’ + c’ + d)
(a’ + b + c’)
(a’ + b’ + c)

b
0

c
0 1

⇐ Backtrack

Lintao Zhang

Basic DLL Procedure - DFS
a

0
(a + c + d)
(a + c + d’)
(a + c’ + d)
(a + c’ + d’)

(a’ + b + c)

(b’ + c’ + d)
(a’ + b + c’)
(a’ + b’ + c)

b
0

c
0 1

1 ⇐ Forced Decision

Lintao Zhang

Basic DLL Procedure - DFS
a

0
(a + c + d)
(a + c + d’)
(a + c’ + d)
(a + c’ + d’)

(a’ + b + c)

(b’ + c’ + d)
(a’ + b + c’)
(a’ + b’ + c)

b
0

c
0

d=1

c=0

(a + c’ + d)
a=0

d=0
(a + c’ + d’)

Conflict!

1

c
0

1

⇐ Decision

Lintao Zhang

Basic DLL Procedure - DFS
a

0
(a + c + d)
(a + c + d’)
(a + c’ + d)
(a + c’ + d’)

(a’ + b + c)

(b’ + c’ + d)
(a’ + b + c’)
(a’ + b’ + c)

b
0

c
0 1

c
0

1

⇐ Backtrack

Lintao Zhang

Basic DLL Procedure - DFS
a

0
(a + c + d)
(a + c + d’)
(a + c’ + d)
(a + c’ + d’)

(a’ + b + c)

(b’ + c’ + d)
(a’ + b + c’)
(a’ + b’ + c)

b
0

c
0

d=1

c=1

(a + c’ + d)
a=0

d=0
(a + c’ + d’)

Conflict!

1

c
0 1

1

⇐ Forced Decision

Lintao Zhang

Basic DLL Procedure - DFS
a

0
(a + c + d)
(a + c + d’)
(a + c’ + d)
(a + c’ + d’)

(a’ + b + c)

(b’ + c’ + d)
(a’ + b + c’)
(a’ + b’ + c)

b
0

c
0 1

c
0 1

1

⇐ Backtrack

Lintao Zhang

Basic DLL Procedure - DFS
a

0
(a + c + d)
(a + c + d’)
(a + c’ + d)
(a + c’ + d’)

(a’ + b + c)

(b’ + c’ + d)
(a’ + b + c’)
(a’ + b’ + c)

b
0

c
0 1

c
0 1

1

1 ⇐ Forced Decision

Lintao Zhang

Basic DLL Procedure - DFS
a

0
(a + c + d)
(a + c + d’)
(a + c’ + d)
(a + c’ + d’)

(a’ + b + c)

(b’ + c’ + d)
(a’ + b + c’)
(a’ + b’ + c)

b
0

c
0 1

c
0 1

1

1

b
0 ⇐ Decision

Lintao Zhang

Basic DLL Procedure - DFS
a

0
(a + c + d)
(a + c + d’)
(a + c’ + d)
(a + c’ + d’)

(a’ + b + c)

(b’ + c’ + d)
(a’ + b + c’)
(a’ + b’ + c)

b
0

c
0 1

c
0 1

1

1

b
0

c=1

b=0

(a’ + b + c)
a=1

c=0
(a’ + b + c’)

Conflict!

Lintao Zhang

Basic DLL Procedure - DFS
a

0
(a + c + d)
(a + c + d’)
(a + c’ + d)
(a + c’ + d’)

(a’ + b + c)

(b’ + c’ + d)
(a’ + b + c’)
(a’ + b’ + c)

b
0

c
0 1

c
0 1

1

1

b
0

⇐ Backtrack

Lintao Zhang

Basic DLL Procedure - DFS
a

0
(a + c + d)
(a + c + d’)
(a + c’ + d)
(a + c’ + d’)

(a’ + b + c)

(b’ + c’ + d)
(a’ + b + c’)
(a’ + b’ + c)

b
0

c
0 1

c
0 1

1

1

b
0 1

a=1

b=1

c=1
(a’ + b’ + c)

⇐ Forced Decision

Lintao Zhang

Basic DLL Procedure - DFS
a

(a + c + d)
(a + c + d’)
(a + c’ + d)
(a + c’ + d’)

(a’ + b + c)

(b’ + c’ + d)
(a’ + b + c’)
(a’ + b’ + c)

b
0

c
0 1

c
0 1

1

1

b
0 1

a=1

b=1

c=1
(a’ + b’ + c) (b’ + c’ + d)

d=1

0

Lintao Zhang

Basic DLL Procedure - DFS
a

(a + c + d)
(a + c + d’)
(a + c’ + d)
(a + c’ + d’)

(a’ + b + c)

(b’ + c’ + d)
(a’ + b + c’)
(a’ + b’ + c)

b
0

c
0 1

c
0 1

1

1

b
0 1

a=1

b=1

c=1
(a’ + b’ + c) (b’ + c’ + d)

d=1

⇐ SAT

0

Lintao Zhang

Satisfied Literal

Unsatisfied Literal

Unassigned Literal
(a +b’+ c)(b + c’)(a’ + c’)
a = T, b = T, c is unassigned

Implication
A variable is forced to be assigned to be True or False based on
previous assignments.

Unit clause rule (rule for elimination of one literal clauses)
An unsatisfied clause is a unit clause if it has exactly one unassigned
literal.

The unassigned literal is implied because of the unit clause.
Boolean Constraint Propagation (BCP)

Iteratively apply the unit clause rule until there is no unit clause available.
Workhorse of DLL based algorithms.

Implications and Boolean
Constraint Propagation

Lintao Zhang

Features of DLL
Eliminates the exponential memory requirements of DP
Exponential time is still a problem
Limited practical applicability – largest use seen in automatic
theorem proving
The original DLL algorithm has seen a lot of success for solving
random generated instances.

Lintao Zhang

Some Notes
There are another rules proposed by the original DLL paper,
which is seldom used in practice

Pure literal rule: if a variable only occur in one phase in the
clause database, then the literal can be simply assigned with the
value true

The original DP paper also included the unit implication rule to
simplify the clauses generated from resolution

Still may result in memory explosion
DLL and DP algorithms are tightly related

Fundamentally, both are based on the resolution operation

Lintao Zhang

SAT Algorithm: An Overview
Davis, Putnam, 1960

Explicit resolution based
May explode in memory

Davis, Logemann, Loveland, 1962
Search based.
Most successful, basis for almost all modern SAT solvers
Learning and non-chronological backtracking, 1996

Stålmarcks algorithm, 1980s
Proprietary algorithm. Patented.
Commercial versions available

Stochastic Methods, 1992
Unable to prove unsatisfiability, but may find solutions for a satisfying
problem quickly.
Local search and hill climbing

Lintao Zhang

Stålmarck’s Algorithm
M. Sheeran and G. Stålmarck “A tutorial on Stålmarck’s proof procedure”,
Proc. FMCAD, 1998
Algorithm:

Using triplets to represent formula
Closer to a circuit representation

Branch on variable relationships besides on variables
Ability to add new variables on the fly

Breadth first search over all possible trees in increasing depth

Lintao Zhang

Stålmarck’s algorithm (A
Vastly Simplified Version)

Try both sides of a branch to find forced decisions (relationships
between variables)

(a + b) (a’ + c) (a’ + b) (a + d)

Lintao Zhang

Stålmarck’s algorithm (A
Vastly Simplified Version)

Try both sides of a branch to find forced decisions

(a + b) (a’ + c) (a’ + b) (a + d)

a=0
b=1

d=1

a=0 ⇒b=1,d=1

Lintao Zhang

Stålmarck’s algorithm (A
Vastly Simplified Version)

Try both side of a branch to find forced decisions

(a + b) (a’ + c) (a’ + b) (a + d)

a=1
c=1

b=1

a=0 ⇒b=1,d=1

a=1 ⇒b=1,c=1

Lintao Zhang

Stålmarck’s algorithm (A
Vastly Simplified Version)

Try both sides of a branch to find forced decisions

Repeat for all variables
Repeat for all pairs, triples,… till either SAT or UNSAT is proved

(a + b) (a’ + c) (a’ + b) (a + d)

a=0 ⇒b=1,d=1

a=1 ⇒b=1,c=1
⇒ b=1

Lintao Zhang

SAT Algorithm: An Overview
Davis, Putnam, 1960

Explicit resolution based
May explode in memory

Davis, Logemann, Loveland, 1962
Search based.
Most successful, basis for almost all modern SAT solvers
Learning and non-chronological backtracking, 1996

Stålmarcks algorithm, 1980s
Proprietary algorithm. Patented.
Commercial versions available

Stochastic Methods, 1992
Unable to prove unsatisfiability, but may find solutions for a satisfying
problem quickly.
Local search and hill climbing

Lintao Zhang

Local Search (GSAT, WSAT)
B. Selman, H. Levesque, and D. Mitchell. “A new method for solving hard
satisfiability problems”. Proc. AAAI, 1992.
View the solution space as a set of points connected to each other
There is cost function which needs to be minimized that can be
computed for each point.
Local search involves starting at some point in the solution space, and
moving to adjacent points in an attempt to lower the cost function.
The search is said to be greedy if it does not ever increase the cost
function.

Cost

Solution Space

Global
minimum

Local Minima

Lintao Zhang

Local Search for Max-SAT
MAX-SAT:

Find an assignment that satisfies the most number of clauses
Cost function for a given assignment: number of unsatisfied
clauses

Local search has been shown to work well for MAX-SAT
Cost function for SAT?

Can continue to use number of unsatisfied clauses
However, only points with a cost function of 0 are of interest

Lintao Zhang

Algorithm of GSAT
Procedure GSAT
for i:= 1 to MAX-TRIES

T:= a randomly genrated truth assignment
for j:= 1 to MAX-FLIPS

if T satisfies α then return T
flip the variable that results in the greatest decrease in the
number of unsatisfied clauses (decrease ≥ 0)

end for
end for
return “No satisfying assignment found”

decrease = 0 is referred to as a “sideways” move
sequence of sideways moves is a “plateau”
success depends on ability to move between successively lower
plateaus

Lintao Zhang

Properties of GSAT
Seems to work well on randomly generated 3-CNF problems
Can get stuck in a local minima
Not guaranteed to be complete

Lintao Zhang

Getting out of Local Minima
Random Walk Strategy
with probability p, pick a variable occuring in some unsatisfied clause and

flip its assignment;
with probability (1-p), follow the standard GSAT scheme, i.e make the best

possible local move
Random Noise Strategy

similar to random walk, except that do not restrict the variable to be
flipped to be in an unsatisfied clause

Simulated Annealing
make random flips
probabilistically accept “bad moves”

Lintao Zhang

Conclusions about Local
Search

Many local search algorithms exists
GSAT, WalkSAT, DLM etc.
Differs on how to get out of local minimum

Incomplete, unable to prove unsatisfiability
How to make local search complete is still an open question

Can be vastly superior than systematic search based
algorithms on certain satisfiable formulas
Has some application in AI planning, limited use in EDA or
formal verification

