CASE STUDY 1 - Matrix Chain Multiplication

See also Cormen chpt 16. (chpt 15 in the 2nd edition). Let A and B be two matrices.

- The product AB is defined only if the number of columns of A equals the number of rows of B.
- If A has dimensions $p \times q$ and B has dimensions $q \times r$ then AB has dimensions $p \times r$, and it takes pqr scalar multiplications to compute AB.
- Given three matrices A,B,C (with compatible dimensions)

$$((AB)C) = (A(BC))$$

- Even though (AB)C and A(BC), they can take quite different times to compute.
- e.g. if A is 100×10 , B is 10×50 , C is 50×5 then computing (AB)C takes $100 \cdot 10 \cdot 50 + 100 \cdot 50 \cdot 5 = 75000$ operations while computing A(BC) takes $10 \cdot 50 \cdot 5 + 100 \cdot 10 \cdot 5 = 7500$ operations.

Matrix-chain muliplication problem

We are given matrices $A_1A_2 \cdots A_n$. Matrix A_i has dimensions $p_{i-1} \times p_i$.

Problem: What is the minimum number of scalar multiplications needed to evaluate $A_1A_2A_3\cdots A_n$?

Subproblem:

For each i, j such that $1 \le i \le j \le n$: What is the minimum number of scalar multiplications needed to evaluate $A_i A_{i+1} A_{i+2} \cdots A_j$?

Note: the matrix $A_iA_{i+1}\cdots A_j$ has p_{i-1} rows and p_j columns.

Looking for the recursion

Let m[i,j] denote the number of scalar multiplications needed to evaluate $A_iA_{i+1}\cdots A_j$.

If i = j then m[i,j] = 0 since we just have to get the matrix A_i .

If $k \geq i$ and k < j then the minimum number of scalar multiplications needed to evaluate

$$(A_iA_{i+1}\ldots A_k)(A_{k+1}\cdots A_i)$$

is

(the min. number needed to compute $A_i A_{i+1} \dots A_j$)

+(the min. number needed to compute $A_iA_{i+1}...A_j$)

+(the operations needed to multiply the two matrices)

That is,

$$m[i,k] + m[k+1,j] + p_{i-1}p_kp_j$$

In order to find the minimum, we choose the k that minimizes this expression.

Recursion and algorithm

- If i = j then m[i, j] = 0.
- If i < j then

$$m[i,j] = \min_{i \le k < j} \{ m[i,k] + m[k+1,j] + p_{i-1}p_k p_j \}$$

We can evaluate this using memoization.

- 1. $m[i,j] \leftarrow -1$ for all $1 \le i \le j \le n$.
- 2. Output MCR(1,n)

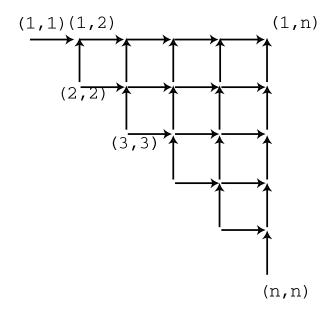
```
MCR(i,j).
3. if m[i,j] \ge 0 then
4. return m[i,j]
5. else
6. if i = j then
7. m[i,j] = 0.
8. else
9. m[i,j] \leftarrow \min_{i \le k < j} \{MCR[i,k] + MCR[k+1,j] + p_{i-1}p_kp_j\}
10. return m[i,j].
```

This takes $O(n^3)$ time.

Recursion-free version

The subproblem for (i,j) depends on subproblem (i,k) and also on subproblem (k+1,j) for all $i \le k \le j$.

Dependency graph looks like:



So a loop like:

for
$$i \leftarrow 1$$
 to n
for $j \leftarrow 1$ to n
Compute $m[i, j]$

won't work. Instead we need something like:

for
$$l \leftarrow 1$$
 to n
for all i, j such that $j = i + l - 1$
Compute $m[i, j]$

Recursion free dynamic programming solution

```
MatrixChainOrder(p_1, p_2, \dots, p_n).
1. for l \leftarrow 1 to n do
2. for i \leftarrow 1 to n - l + 1 do
3. j \leftarrow i + l - 1 [so [i,j] contains l elements]
4. if i = j then
5. m[i,j] \leftarrow 0
6. else
7. m[i,j] \leftarrow \min_{i \le k < j} \{m[i,k] + m[k+1,j] + p_{i-1}p_kp_j\}
```

Multiplying the matrices

We have computed the minimum number of multiplications required. How do we go about multiplying the matrices.

We assume that there is a library function MatrixMultiply(A, B) that multiplies A and B.

The following returns the product of $A_iA_{i+1}...A_j$.

```
Multiply(i,j)
```

- 1. if i = j then
- 2. return A_i .
- 3. **else**
- 4. find k such that $m[i,j] = m[i,k] + m[k+1,j] + p_{i-1}p_kp_j$.
- 5. $A_L \leftarrow Multiply(i,k)$
- 6. $A_R \leftarrow Multiply(k+1,j)$
- 7. **return** $MatrixMultiply(A_L, A_R)$.