
Scheduling Independent Tasks

Setup: We are given n tasks, numbered 1, 2, ..., n, with running times t1, t2, ..., tn respectively, and
m processors. We would like to schedule all n task on the m processors so as to minimize the
finish time of the last job.

We will see two heuristics methods for solving this problem.

1. List Schedule

A simple strategy is to assign the jobs sequentially, each job going to the processor that has the
smallest load at that time.

e.g. Suppose we have 6 tasks with running times 10, 5, 4, 11, 3, 5, and 2 processors. Using to the
list schedule heuristic, we get:

1 t1 = 10 t5 = 3 t6 = 5

2 t2 = 5 t3 = 4 t4 = 11

Using list scheduling, we get 2 units of idle time on processor 1.
Note that the optimal schduling is

1 t1 = 10 t2 = 5 t3 = 4

2 t4 = 11 t5 = 3 t6 = 5

The optimal scheduling leaves no idle time on either processor, and finishes one time unit
earlier. We look at performance by considering the ratio between the schedule finish time of
the list schedule and the optimal schedule.
Let tLIST denote the length of the list schedule (where the length is the finish time of the last
job).
Let tOPT denote the length of the optimum schedule.
Then,

tLIST

tOPT

=20
19

Now, suppose we were given the tasks in a different order, say 10, 5, 5, 4, 3, 11. Using the
list schedule heuristic, we now get

1 t1 = 10 t4 = 4

2 t2 = 5 t3 = 5 t5 = 3 t6 = 11

Processor 1 now has 10 units of idle time, and the finish time of the last job is 24 units of
time. For this particular sequence, the performance compared to the optimal is

tLIST

tOPT

=24
19

We would like to know something about how well list schedule performs in general.

Theorem 1
For an independent task scheduling problem with m processors, the length tLIST of the schedule
obtained by the list schedule heuristic satisfies

tLIST

tOPT

2− 1
m

Proof
Let t be the running time of the last job to finish in the list schedule. Before time tLIST – t, all
processors must be busy, otherwise the job would have been scheduled earlier. So, up until time
tLIST – t, none of the processors were idle at any time. So,

∑
i=1

n

t i−t ≥ mtLIST−t (1)

Also, the optimum scheduling can never be better than the total time taken by all the tasks,
divided by the number of processors available. That is,

tOPT ≥ 1
m∑i=1

n

t i

⇔m⋅tOPT ≥ ∑
i=1

n

t i

Plugging into (1), we get
mtLIST−t ≤ m⋅tOPT−t

⇔ m⋅tLIST ≤ m⋅tOPT−tmt

⇔ tLIST ≤ tOPT
m−1

m
t 2

We also know that the length of any schedule, including the optimum, must be at least as long as
the length of any task, so

tOPT ≥ t
Plugging into (2), we get that

tLIST ≤ tOPT
m−1

m
t

⇔ tLIST ≤ tOPT
m−1

m
tOPT

⇔
tLIST

tOPT

≤ 1m−1
m

⇔
tLIST

tOPT

≤ 2− 1
m

This bound is actually a tight upper bound. Consider the case with m = 6 processors and 11 tasks
with running times 5, 5, 5, 5, 5, 1, 1, 1, 1, 1, 6, given in that order.

Then list schedule will give us
1 5 6

2 5

3 5

4 5

5 5

6 1 1 1 1 1

Clearly the optimum schedule has length 6, and so we get that
tLIST

tOPT

=11
6
=2−1

6

2. List Decreasing

We can note looking at examples above that we seem to get poorer results when we finish on very
long jobs. In the last example, the fact that we kept 6 for last caused our solution to be rather
suboptimal.
This observation leads to the list decreasing heuristic: given n tasks with running times t1, t2, ..., tn,
we sort the tasks by decreasing runtime to get t1 t2 ... tn, and then apply the list schedule
heuristic as described above.

Lemma

If tn
tOPT

3
then the list decreasing heuristic finds the optimum schedule, i.e. tLIST=tOPT

Proof
Exercise.

Theorem 2
For an independent task scheduling problem with m processors, the length tLIST of the schedule
obtained by the list schedule heuristic satisfies

tLIST

tOPT

 4
3
− 1

3m
Proof
First, we will assume that job n finishes last. We have two cases

• tn
tOPT

3

By the lemma above, we know that tLIST=tOPT
tOPT

3

• tn
tOPT

3
(3)

As shown in the proof of theorem 1, in equation (2), we have

L tOPT
m−1

m
t

where t is the last job to finish, in this case tn. Plugging in (3), we get

L tOPT
m−1

m
⋅

tOPT

3

⇔ L
tOPT

 1m−1
3 m

⇔ L
tOPT

 4
3
 1

3 m

Note that if it is not the case that tn finsihed last, then we may remove it from the list without
changing the finish time of the list schedule. We continue to remove jobs until the last job in the
list does finish last, and then apply the same proof detailed above.

