Proposal & Area Exam

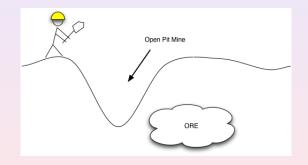
Conor Meagher

January 12, 2009

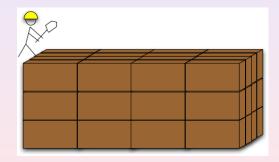
◆□▶ ◆□▶ ◆ □▶ ◆ □▶ 亘 のへぐ

-Existing Methods of Mine Design

An open pit mine.



The ground is broken up into sections

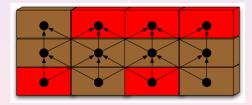


◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

 Using estimation or simulation techniques from drill hole data, economic values are produced for each block

- Ore blocks can return a profit when mined
- Waste blocks cost money to remove

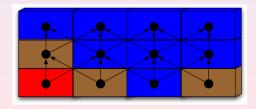
- Each block is considered as a node of a graph
- Arcs are added to represent slope requirements



▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

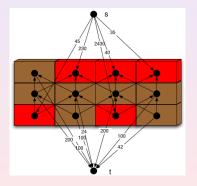
Graph Closure

- A graph closure is a subset S of nodes such that no arcs leave S
- A maximum weight graph closure is known as "the ultimate pit"



Maximum Network Flow

- source node s with arcs to each ore node
- sink node t with arcs from each waste node



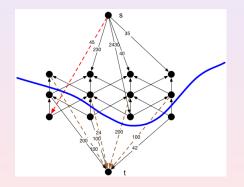
Capacities on the arcs are the absolute value of the blocks

Slope arcs have infinite capacity

- Existing Methods of Mine Design

Minimum Cut

The minimum cut represents the maximum weight graph closure

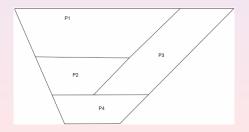


Minimize the waste inside and the ore outside the pit

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ●

Pushbacks

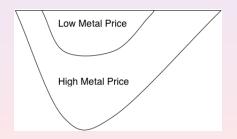
- The ultimate pit is much to large to produce short term schedules on
- The pit is broken up into smaller more manageable pieces called pushbacks



・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Pushback Design

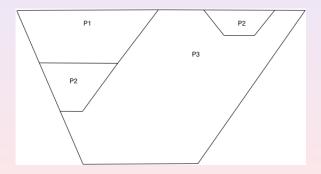
- There are a number of techniques used to produce pushbacks
- The most popular is to scale some factor affecting the economic block model and run an ultimate pit algorithm



With an artificially low price of metal - a small pit will be produced

Problems with Existing Pushback Design Methods

This process is somewhat add-hoc and successive pits may have drastically different sizes and not connected



Such problems are termed "gap" problems in mining literature

- Existing Methods of Mine Design

Partially ordered knapsack

 One would like a way to produce a pit with a given knapsack constraint

$$\begin{array}{ll} \max & \sum_{i=1}^{n} w_{i} x_{i} \\ s.t. & x_{i} \leq x_{j} \quad \textit{for block i above j} \\ & \sum_{i=1}^{n} c_{i} x_{i} \leq b \\ & x_{i} \in \{0,1\} \forall i \end{array} \tag{1}$$

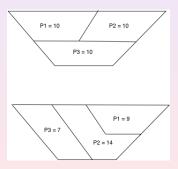
- Constraint (1) ruins total unimodularity
- No natural way to add a knapsack constraint to the min cut formulation

-Existing Methods of Mine Design

Discounting

Another problem with existing methods is that they are greedy and don't consider economic discounting

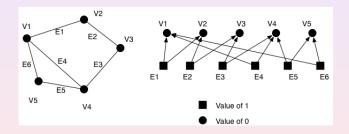
Discount rate of 10%



- NPV of Design 1 = 27.36
- NPV of Design 2 = 27.51

Complexity of POK

The POK problem can be shown to be NP-complete from a reduction from maximum clique



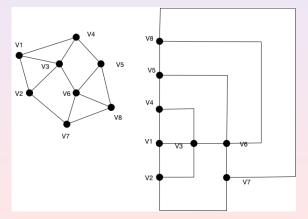
The graph has a clique of size s if and only if the directed graph has a graph closure of weight ^(s)₂ with at most b = ^(s)₂ + s nodes

Complexity of connectivity

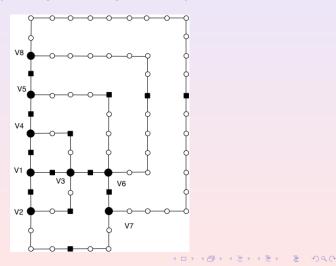
- This reduction needs doesn't work in the context of the open it problem, the nodes have bounded degree.
- Requiring the blocks removed to be physically connected make the problem NP-complete even for one level (relates to underground).
- Reduction from "Connected node cover in planar graphs of maximum degree 4" (Garey and Johnson)
 - a node cover is a subset of nodes such that each edge has at least one endpoint in the subset
 - a node cover is connected if the graph it induces is connected

Proposa	& Area	I Exam
---------	--------	--------

 Given a planar graph of maximum degree 4, Tamassia and Tollis gave an algorithm to embed the graph in a grid of size O(n²) in linear time

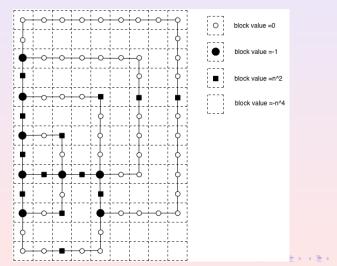


 Bisect the edges to form grid nodes, and identify a special node corresponding to the edge in each path



- Complexity

The maximum valued subset of connected blocks defines the minimum connected node cover



ъ

- Pipage Rounding

Pipage Rounding - IP formulation

$$egin{aligned} \max & & \sum_{i=1}^n w_i x_i + \sum_{j=1}^n p_j y_j \ s.t. & & x_j \leq 1-y_i \quad orall i \in \textit{DownCone}(j) \ & & \sum_{i=1}^n c_j y_j \leq b \ & & x_i, y_i \in \{0,1\} \quad orall i, j \end{aligned}$$

- $x_i = 1$ if block *i* is left in the ground
- $y_i = 1$ if block *i* is sent to the mill
- c_i, p_i and w_i are respectively the knapsack size, profit and cost associated with block i

- Pipage Rounding

We can relax the IP and rewrite it as:

$$\max \sum_{i=1}^{n} w_i (1 - \max\{y_j : j \in Cone(i)\}) + \sum_{j=1}^{n} p_j y_j$$

s.t.
$$\sum_{i=1}^{n} c_i y_i \le b$$
$$0 \le y_i \le 1$$

Let $F(x) = \sum_{i=1}^{n} w_i(\prod_{k \in Cone(i)} (1 - y_i)) + \sum_{j=1}^{n} p_j y_j$

 F(x) equals the objective function at integral vectors (strictly below elsewhere).

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

– Pipage Rounding

- Solve the LP relaxation, to obtain a fractional solution y*.
- Choose two indices, *i*' and *i*'', such that $0 < y_{i'}^*, y_{i''}^* < 1$.
- Set y^{*}_{i'} + ϵ and y^{*}_{i''} ϵ ^{c_{i'}}_{c_{i''} where ϵ is an endpoint of the interval:}

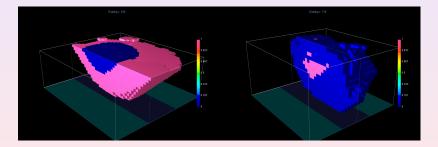
$$[-\min\{y_{i'}, (1-y_{i''})\frac{c_{i''}}{c_{i'}}\}, \min\{1-y_{i'}, y_{i''}\frac{c_{i''}}{c_{i'}}\}]$$

(日) (日) (日) (日) (日) (日) (日)

• Choose the endpoint such that $F(y(\epsilon)) \ge F(y^*)$

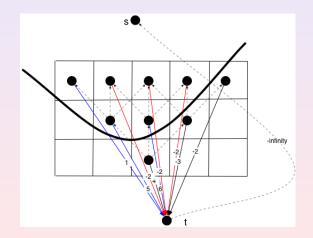
- Pipage Rounding

This algorithm performed well on a real data set (within 6.9% of optimal).

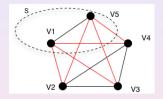


◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

The POK problem can be formulated naturally as a maximum directed cut problem with a knapsack constraint.



Maximum Cut Polytope



The cut vector for S is:

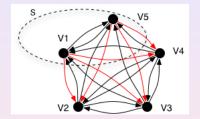
$$\delta(S) = (x_{12}, x_{13}, x_{14}, x_{1,5}, x_{23}, x_{24}, x_{25}, x_{34}, x_{35}, x_{45})$$

= (1, 1, 1, 0, 0, 1, 0, 1, 1)

The cut polytope, CUT_n^{\Box} , is the convex hull of all cut vectors for K_n .

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Maximum Directed Cut Polytope



The directed cut vector for S is:

$$\delta^{+}(S) = (x_{(1,2)}, x_{(1,3)}, \dots, x_{(5,3)}, x_{(5,4)})$$

= (1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1)

The directed cut polytope, $DCUT_n^{\Box}$ is the convex hull of all directed cut vectors of the complete directed graph.

Triangle Inequalities

It's known that for any three nodes i, j, k of K_n the following inequalities are facet inducing for CUT_n^{\Box} :

$$x_{ik} - x_{ij} - x_{jk} \leq 0 \tag{2}$$

$$x_{ij} + x_{jk} + x_{ki} \leq 2 \tag{3}$$

These inequalities for every triple define what is known as the semi-metric polytope MET_n^{\Box} . Inequalities (2) define the semi-metric cone MET_n .

We can prove similar results in the directed case:

are facet inducing for $DCUT_n^{\Box}$.

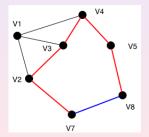
• We define the directed semi-metric polytope, $DMET_n^{\Box}$, by the triangle inequalities and:

$$X_{(i,j)} + X_{(j,k)} + X_{(k,i)} = X_{(j,i)} + X_{(k,j)} + X_{(i,k)}.$$

(日) (日) (日) (日) (日) (日) (日)

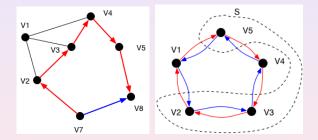
Projecting the Triangle Inequalities

For general graph *G*, a linear description of the projection of MET_n^{\Box} and MET_n onto E(G) is well understood.



 $\mathsf{MET}(G) = \{x \in \mathbb{R}_+^{\mathsf{E}} | x_e - x(C \setminus \{e\}) \le 0 \text{ for } C \text{ cycle of } G, e \in C\}$

We have a similar characterization for the projection of $DMET_n$ onto the A(G) for an arbitrary digraph.



 $\begin{aligned} x_{(7,8)} &\leq x_{(7,2)} + x_{(2,3)} + x_{(3,4)} + x_{(4,5)} + x_{(5,8)} \\ x_{(1,2)} + x_{(2,3)} + \dots + x_{(5,1)} = x_{(2,1)} + x_{(3,2)} + \dots + x_{(1,5)} \end{aligned}$

Since we can optimize over $DMET_n^{\Box}$ in polynomial time, we can assign an objective function value of 0 to edges not appearing in *G* and optimize over DMET(G).

$$\begin{array}{ll} \max & \sum\limits_{(i,j)\in \mathcal{A}(G)} c_{(i,j)} x_{(i,j)} \\ s.t. & x \in \mathsf{DMET}_n^\square \\ & \sum\limits_{(i,j)\in \mathcal{A}(G)} w_{(i,j)} x_{(i,j)} \leq b \end{array}$$

(日) (日) (日) (日) (日) (日) (日)

Natural relaxation of the POK problem.

Other results related to the directed cut polytope.

- ▶ The dimension of the DMET[□]_n and DCUT[□]_n is $\binom{n}{2} + n 1$.
- Other facet inducing inequalities: directed versions of hypermetric inequalities (pure, pentagonal,...).
- Bijection between the convex hull of two cut polytopes and the directed cut polytope.

(日) (日) (日) (日) (日) (日) (日)

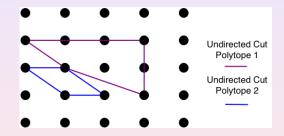
 Switching, permutation and lifting operations for valid inequalities.

Further Work

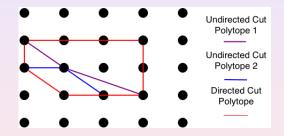
- Study the structure of DMET[□](G) intersected with a knapsack constraint.
- ► Characterization of when DMET[□](G) =DCUT[□](G), for undirected graphs MET[□](G) =CUT[□](G) if G is K₅-minor free.
- Complete the linear description of $DMET^{\square}(G)$.
- ► Combinatorial algorithm for finding violated projected inequalities for DMET(G) and DMET[□](G).

(日) (日) (日) (日) (日) (日) (日)

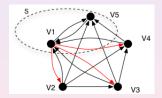
- Directed Cut Polytope



- Directed Cut Polytope



The dimension of the DCUT^{\Box} is $\binom{n}{2} + n - 1$



◆□▶ ◆□▶ ◆ □▶ ◆ □▶ 亘 のへぐ

Let $\ensuremath{\mathcal{A}}$ be the family of all cut vectors, if

$$CUT_n = \{x \in \mathbb{R}^{E_n} | v_i^T x \leq 0 \text{ for } i = 1, ..., m\}$$

then

$$CUT_n^{\square} = \{x \in \mathbb{R}^{E_n} | (v_i^{\delta(S)})^T x \leq -v_i(\delta(S)) \text{ for } i = 1, ..., m \text{ and } \delta(S) \in \mathcal{A}\}$$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

where
$$v(\delta(S)) = v^T \delta(S) = \sum_{ij \in \delta(S)} v_{ij}$$
 and $v_e^{\delta(S)} = -v_e$ if $e \in \delta(S)$ and v_e otherwise