Proposal \& Area Exam

Conor Meagher

January 12, 2009

Existing Methods of Mine Design

An open pit mine.

$L_{\text {Existing Methods of Mine Design }}$

- The ground is broken up into sections

- Using estimation or simulation techniques from drill hole data, economic values are produced for each block

- Ore blocks can return a profit when mined
- Waste blocks cost money to remove
- Each block is considered as a node of a graph
- Arcs are added to represent slope requirements

Graph Closure

- A graph closure is a subset S of nodes such that no arcs leave S
- A maximum weight graph closure is known as "the ultimate pit"

Maximum Network Flow

- source node s with arcs to each ore node
- sink node t with arcs from each waste node

- Capacities on the arcs are the absolute value of the blocks
- Slope arcs have infinite capacity

Minimum Cut

The minimum cut represents the maximum weight graph closure

- Minimize the waste inside and the ore outside the pit

Pushbacks

- The ultimate pit is much to large to produce short term schedules on
- The pit is broken up into smaller more manageable pieces called pushbacks

Pushback Design

- There are a number of techniques used to produce pushbacks
- The most popular is to scale some factor affecting the economic block model and run an ultimate pit algorithm

- With an artificially low price of metal - a small pit will be produced

Problems with Existing Pushback Design Methods

- This process is somewhat add-hoc and successive pits may have drastically different sizes and not connected

- Such problems are termed "gap" problems in mining literature

Partially ordered knapsack

- One would like a way to produce a pit with a given knapsack constraint

$$
\begin{array}{ll}
\max & \sum_{i=1}^{n} w_{i} x_{i} \\
\text { s.t. } & x_{i} \leq x_{j} \quad \text { for block } i \text { above } j \\
& \sum_{i=1}^{n} c_{i} x_{i} \leq b \tag{1}\\
& x_{i} \in\{0,1\} \forall i
\end{array}
$$

- Constraint (1) ruins total unimodularity
- No natural way to add a knapsack constraint to the min cut formulation

Discounting

Another problem with existing methods is that they are greedy and don't consider economic discounting

- Discount rate of 10%

- NPV of Design $1=27.36$
- NPV of Design $2=27.51$

Complexity of POK

- The POK problem can be shown to be NP-complete from a reduction from maximum clique

- The graph has a clique of size s if and only if the directed graph has a graph closure of weight $\binom{s}{2}$ with at most $b=\binom{s}{2}+s$ nodes

Complexity of connectivity

- This reduction needs doesn't work in the context of the open it problem, the nodes have bounded degree.
- Requiring the blocks removed to be physically connected make the problem NP-complete even for one level (relates to underground).
- Reduction from "Connected node cover in planar graphs of maximum degree 4" (Garey and Johnson)
- a node cover is a subset of nodes such that each edge has at least one endpoint in the subset
- a node cover is connected if the graph it induces is connected
- Given a planar graph of maximum degree 4, Tamassia and Tollis gave an algorithm to embed the graph in a grid of size $O\left(n^{2}\right)$ in linear time

- Bisect the edges to form grid nodes, and identify a special node corresponding to the edge in each path

- The maximum valued subset of connected blocks defines the minimum connected node cover

Pipage Rounding - IP formulation

$$
\begin{array}{ll}
\max & \sum_{i=1}^{n} w_{i} x_{i}+\sum_{j=1}^{n} p_{j} y_{j} \\
\text { s.t. } & x_{j} \leq 1-y_{i} \quad \forall i \in \operatorname{DownCone}(j) \\
& \sum_{i=1}^{n} c_{j} y_{j} \leq b \\
& x_{i}, y_{j} \in\{0,1\} \quad \forall i, j
\end{array}
$$

- $x_{i}=1$ if block i is left in the ground
- $y_{i}=1$ if block i is sent to the mill
- c_{i}, p_{i} and w_{i} are respectively the knapsack size, profit and cost associated with block i

We can relax the IP and rewrite it as:

$$
\begin{array}{ll}
\max & \sum_{i=1}^{n} w_{i}\left(1-\max \left\{y_{j}: j \in \operatorname{Cone}(i)\right\}\right)+\sum_{j=1}^{n} p_{j} y_{j} \\
\text { s.t. } & \sum_{i=1}^{n} c_{i} y_{i} \leq b \\
& 0 \leq y_{i} \leq 1
\end{array}
$$

Let $F(x)=\sum_{i=1}^{n} w_{i}\left(\prod_{k \in \operatorname{Cone}(i)}\left(1-y_{i}\right)\right)+\sum_{j=1}^{n} p_{j} y_{j}$

- $F(x)$ equals the objective function at integral vectors (strictly below elsewhere).
- Solve the LP relaxation, to obtain a fractional solution y^{*}.
- Choose two indices, i^{\prime} and $i^{\prime \prime}$, such that $0<y_{i^{\prime}}^{*}, y_{i^{\prime \prime}}^{*}<1$.
- Set $y_{i^{\prime}}^{*}+\epsilon$ and $y_{i^{\prime \prime}}^{*}-\epsilon \frac{c_{i^{\prime}}}{c_{i^{\prime \prime}}}$ where ϵ is an endpoint of the interval:

$$
\left[-\min \left\{y_{i^{\prime}},\left(1-y_{i^{\prime \prime}}\right) \frac{c_{i^{\prime \prime}}}{c_{i^{\prime}}}\right\}, \min \left\{1-y_{i^{\prime}}, y_{i^{\prime \prime}} \frac{c_{i^{\prime \prime}}}{c_{i^{\prime}}}\right\}\right]
$$

- Choose the endpoint such that $F(y(\epsilon)) \geq F\left(y^{*}\right)$

This algorithm performed well on a real data set (within 6.9\% of optimal).

The POK problem can be formulated naturally as a maximum directed cut problem with a knapsack constraint.

Maximum Cut Polytope

The cut vector for S is:

$$
\begin{aligned}
\delta(S) & =\left(x_{12}, x_{13}, x_{14}, x_{1,5}, x_{23}, x_{24}, x_{25}, x_{34}, x_{35}, x_{45}\right) \\
& =(1,1,1,0,0,1,0,1,1)
\end{aligned}
$$

The cut polytope, CUT $_{n}^{\square}$, is the convex hull of all cut vectors for K_{n}.

Maximum Directed Cut Polytope

The directed cut vector for S is:

$$
\begin{aligned}
\delta^{+}(S) & =\left(x_{(1,2)}, x_{(1,3)}, \ldots, x_{(5,3)}, x_{(5,4)}\right) \\
& =(1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1)
\end{aligned}
$$

The directed cut polytope, DCUT ${ }_{n}^{\square}$ is the convex hull of all directed cut vectors of the complete directed graph.

Triangle Inequalities

It's known that for any three nodes i, j, k of K_{n} the following inequalities are facet inducing for CUT $_{n}^{\square}$:

$$
\begin{align*}
x_{i k}-x_{i j}-x_{j k} & \leq 0 \tag{2}\\
x_{i j}+x_{j k}+x_{k i} & \leq 2 \tag{3}
\end{align*}
$$

These inequalities for every triple define what is known as the semi-metric polytope $\mathrm{MET}_{n}^{\square}$. Inequalities (2) define the semi-metric cone MET n.

- We can prove similar results in the directed case:

$$
\begin{aligned}
x_{(i, k)}-x_{(i, j)}-x_{(j, k)} & \leq 0 \\
x_{(i, j)}+x_{(j, k)}+x_{(k, i)} & \leq 1
\end{aligned}
$$

are facet inducing for DCUT ${ }_{n}^{\square}$.

- We define the directed semi-metric polytope, $\mathrm{DMET}_{n}^{\square}$, by the triangle inequalities and:

$$
x_{(i, j)}+x_{(j, k)}+x_{(k, i)}=x_{(j, i)}+x_{(k, j)}+x_{(i, k)}
$$

Projecting the Triangle Inequalities

For general graph G, a linear description of the projection of $\mathrm{MET}_{n}^{\square}$ and MET_{n} onto $E(G)$ is well understood.

$\operatorname{MET}(G)=\left\{x \in \mathbb{R}_{+}^{E} \mid x_{e}-x(C \backslash\{e\}) \leq 0\right.$ for C cycle of $\left.G, e \in C\right\}$

We have a similar characterization for the projection of DMET $_{n}$ onto the $A(G)$ for an arbitrary digraph.

$$
\begin{aligned}
& x_{(7,8)} \leq x_{(7,2)}+x_{(2,3)}+x_{(3,4)}+x_{(4,5)}+x_{(5,8)} \\
& x_{(1,2)}+x_{(2,3)}+, \ldots,+x_{(5,1)}=x_{(2,1)}+x_{(3,2)}+, \ldots,+x_{(1,5)}
\end{aligned}
$$

Since we can optimize over DMET $_{n}^{\square}$ in polynomial time, we can assign an objective function value of 0 to edges not appearing in G and optimize over $\operatorname{DMET}(G)$.

$$
\begin{array}{ll}
\max & \sum_{(i, j) \in A(G)} c_{(i, j)} x_{(i, j)} \\
\text { s.t. } & x \in D M E T_{n}^{\square} \\
& \sum_{(i, j) \in A(G)} w_{(i, j)} x_{(i, j)} \leq b
\end{array}
$$

Natural relaxation of the POK problem.

Other results related to the directed cut polytope.

- The dimension of the DMET ${ }_{n}^{\square}$ and $\operatorname{DCUT}_{n}^{\square}$ is $\binom{n}{2}+n-1$.
- Other facet inducing inequalities: directed versions of hypermetric inequalities (pure, pentagonal,...).
- Bijection between the convex hull of two cut polytopes and the directed cut polytope.
- Switching, permutation and lifting operations for valid inequalities.

Further Work

- Study the structure of $\operatorname{DMET}^{\square}(G)$ intersected with a knapsack constraint.
- Characterization of when $\operatorname{DMET}^{\square}(G)=\operatorname{DCUT}^{\square}(G)$, for undirected graphs $\operatorname{MET}^{\square}(G)=\operatorname{CUT}^{\square}(G)$ if G is K_{5}-minor free.
- Complete the linear description of $\operatorname{DMET}^{\square}(G)$.
- Combinatorial algorithm for finding violated projected inequalities for $\operatorname{DMET}(G)$ and $\operatorname{DMET}^{\square}(G)$.
$L_{\text {Directed Cut Polytope }}$

$L_{\text {Directed Cut Polytope }}$

$L_{\text {Directed Cut Polytope }}$

The dimension of the $\operatorname{DCUT}_{n}^{\square}$ is $\binom{n}{2}+n-1$

Let \mathcal{A} be the family of all cut vectors, if

$$
C U T_{n}=\left\{x \in \mathbb{R}^{E_{n}} \mid v_{i}^{\top} x \leq 0 \text { for } i=1, \ldots, m\right\}
$$

then
$C U T_{n}^{\square}=\left\{x \in \mathbb{R}^{E_{n}} \mid\left(v_{i}^{\delta(S)}\right)^{T} x \leq-v_{i}(\delta(S))\right.$ for $i=1, \ldots, m$ and $\delta(S) \in \mathcal{A}$
where $v(\delta(S))=v^{\top} \delta(S)=\sum_{i j \in \delta(S)} v_{i j}$ and $v_{e}^{\delta(S)}=-v_{e}$ if
$e \in \delta(S)$ and v_{e} otherwise

