Review

- Recursive formula gives recursive algorithm but algorithm often takes exponential time.
- 'Memoization' used to speed up algorithms.
- Store values already computed. At each call we check to see if value already computed.
- Optimal solution to problem gives optimal solution to subproblems.
- Dynamic programming used to optimize.
- DAGs and topological sorts.

Topological sort

A **topological sort** of a digraph is an ordering v_1, v_2, \ldots, v_n of the vertex such that if (v_i, v_j) is an edge then i < j.

We can use induction and the previous lemma to prove:

Lemma

Every DAG has a topological sort

Example 2.1:

Topological sort: e, h, d, g, f, i, b, a, c. There are others.

Representing directed graphs

We use an **adjacency list** representation. For each vertex u we list the vertices v such that $(u,v) \in E$.

e.g. for Example 2.1:

v	Adj[v]	Pred[v]
\overline{a}		
b		
c		
d	a, g	
e	b, h, i	
f	a, b, c	
g	f	
h	d,g,i	
i	c, f	

From this, we can easily compute a **predecessor table**. For each v, find the list of vertices u such that $(u, v) \in E$.

FindPreds(G)

- 1. Initialise $Prev[v] \leftarrow \emptyset$ for all $v \in V$.
- 2. for all $u \in V$ do
- 3. **for** all $v \in Adj[u]$ **do**
- 4. Add u to the end of the list Pred[v].

Project scheduling

We wish to complete a project/computation in the shortest amount of time possible. We can perform tasks in parallel, but there are some tasks that we have to finish before we can begin others.

Input:

- Set of tasks t_1, \ldots, t_n .
- Set P of constraints (t_i, t_j) . The pair (t_i, t_j) means that task t_i must be completed before task t_j can begin.
- Task t_i takes $f(t_i)$ time to run.

Question: If we are allowed unlimited parallel processors, how long does it take to complete all of the tasks?

Example

task	time	must be done after:
\overline{A}	3	B
B	3	
C	5	

We start with B and C and run A after B has finished. Total time is 6.

Solution - recursion

Let $g(t_i)$ denote the first possible time that t_i could finish.

- If there are no precedent constraints on t_i then we can run t_i straight away, and $g(t_i) = f(t_i)$.
- ullet If there are precedent constraints, then we have to wait until they have all finished before we can run t_i . Hence

$$g(t_i) = \max\{g(t_j) : (t_j, t_i) \in P\} + f(t_i)$$

- 1. Construct G with vertices $\{t_1,\ldots,t_n\}$ and edge set E=P.
- 2. Construct the Pred tables for G.
- 3. Initialise $g[t_i] \leftarrow -1$ for all i.
- 4. Call $FinishTime(t_i)$ for each t_i .
- 5. Return the maximum of $g[t_i]$ for i = 1, 2, ..., n.

```
FinishTime(t_i)
```

- 1. If $g[t_i] \geq 0$ then
- 2. return $g[t_i]$
- 3. **else**
- 4. **if** $Pred[t_i]$ is empty **then**
- 5. $g[t_i] \leftarrow f[t_i]$
- 6. **else**
- 7. $g[t_i] \leftarrow \max \left\{ FinishTime(t_j) : t_j \in Pred[t_i] \right\} + f(t_i)$
- 8. return $g[t_i]$

Longest path

How long is the longest path in a DAG? This is a hard problem in a regular digraph, but can be easily solved in a DAG.

Similar to project scheduling. Let l(v) denote the longest path ending in vertex v. Then

- l(v) = 0 if v is a source.
- Otherwise $l(v) = \max\{l(u) : u \in Pred[v]\} + 1$
- 1. Initialise $L[v] \leftarrow -1$ for all v.
- 2. Construct the Pred tables for G.
- 4. Call LongPath(v) for each v.
- 5. Return the maximum of L[v] for i = 1, 2, ..., n.

LongPath(v)

- 1. If $L[v] \geq 0$ then
- 2. return L[v]
- 3. **else**
- 4. **if** Pred[v] is empty **then**
- 5. $L[v] \leftarrow 0$
- 6. **else**
- 7. $L[v] \leftarrow 1 + \max\{LongPath(u) : u \in Pred[v]\}$
- 8. return L[v].

Features of Dynamic Programming

- Problem divided into overlapping sub-problems. (Compare divide and conquer, where subproblems are independent)
- The solution of a subproblem generally depends on solutions of further subproblems.
- A straight recursive solution leads to an exponential time algorithm.
- Solutions of subproblems are stored, as they are often used multiple times during computation.

We can denote dependencies between subproblems using a directed graph. Each subproblem corresponds to one vertex. An edge from subproblem u to subproblem v if we use the solution of u in the solution of v.

Dynamic programming works if and only if this directed graph is acyclic.

General problems in Dynamic Programming

- 1) How to avoid recursion? (function calls generally take a lot of time).
- 2) How to extract an optimal solution? (e.g. highest scoring path, longest path).
- 3) How to handle multiple optimals? (e.g. counting the number of optimal solutions).

Avoiding recursion

Suppose that vertices in G are labelled v_1, v_2, \ldots, v_n . A "simpler" alternative to LongPath might be:

WrongLongPath(G)

- 1. for $i \leftarrow 1$ to n do
- 2. **if** v_i is a source **then**
- 3. $L[v_i] \leftarrow 0$
- 4. else
- 5. $L[v_i] \leftarrow 1 + \max\{L[v_j] : v_j \in Pred[v_i]\}.$

Problem: In step 5 we have no guarantee that the values $L[v_j]$ have already been initialised and computed.

Solution: First construct a topological sort v_1, v_2, \ldots, v_n of the vertices. Then $v_j \in Pred[v_i]$ will imply that $(v_j, v_i) \in E$, so v_j comes before v_i in the ordering.

Principle:

If you are using loops with Dynamic Programming, make sure that subproblems are solved in a topological order, with respect to the dependency graph.

Example: flag collecting

Subproblems: one for each (i,j). The subproblem is "What is the maximum score of a path from (0,0) to (i,j) that always goes downwards or to the right"

To solve the problem for (i,j) we need to have solved (i-1,j) and (i,j-1).

The dependency digraph is a directed version of the grid, with edges directed downwards and rightways.

One "topological sort" of this graph is given by the loops

for
$$i \leftarrow 0$$
 to n do
for $j \leftarrow 0$ to m do
Compute $G[i, j]$

Recursion free algorithm for flag collecting

```
GoodPaths2
```

```
1. for i \leftarrow 0 to n do
2.
     for j \leftarrow 0 to m do
3.
       if i = 0 and j = 0 then
         G[i,j] \leftarrow 0
4.
       else if i > 0 and j = 0 then
5.
         G[i,j] \leftarrow G[i-1,0] + H[i,0]
6.
       else if i = 0 and j > 0 then
7.
         G[i,j] \leftarrow G[0,j-1] + V[i,0]
8.
9.
       else
         G[i,j] \leftarrow \max\{G[i-1,j] + H[i,j], G[i,j-1] + V[i,j]\}
10.
11.return G[n,m]
```

Note: whenever we look-up G[x,y] we know its already been computed.