Review

e Recursive formula gives recursive algorithm - but
algorithm often takes exponential time.

e ‘Memoization’ used to speed up algorithms.

e Store values already computed. At each call we
check to see if value already computed.

e Optimal solution to problem gives optimal solution
to subproblems.

e Dynamic programming used to optimize.
e DAGs and topological sorts.

Topological sort

A topological sort of a digraph is an ordering vi, v, ..., v,
of the vertex such that if (v;,v;) is an edge then ¢ < j.

We can use induction and the previous lemma to prove:

Lemma
Every DAG has a topological sort

Example 2.1:

g

Topological sort: e, h,d, g, f,7,b,a,c. There are others.

Representing directed graphs

We use an adjacency list representation. For each ver-
tex u we list the vertices v such that (u,v) € E.

e.g. for Example 2.1:

v | Adj[v] | Pred[v]
a

b

c

d| a,g

el| b h,1

fl ab,c

g| f

h| d, g,

1 c, f

From this, we can easily compute a predecessor table.
For each v, find the list of vertices u such that (u,v) € FE.

FindPreds(G)

1. Initialise Prev[v] <« 0 for all v € V.

2. for all w e V do

3. for all v e Adj[u] do

4. Add u to the end of the list Pred[v].

Project scheduling

We wish to complete a project/computation in the short-
est amount of time possible. We can perform tasks in
parallel, but there are some tasks that we have to finish
before we can begin others.

Input:

e Set of tasks t1,...,t,.

e Set P of constraints (¢;,t;). The pair (¢,t;) means
that task t; must be completed before task t; can
begin.

e Task t; takes f(t;) time to run.

Question: If we are allowed unlimited parallel processors,
how long does it take to complete all of the tasks?

Example

task time | must be done after:
A 3 B
B 3
C 5

We start with B and C and run A after B has finished.
Total time is 6.

Solution - recursion

Let g(t;) denote the first possible time that ¢; could
finish.

e If there are no precedent constraints on t; then we can
run t; straight away, and g(t;) = f(¢;).

e If there are precedent constraints, then we have to
wait until they have all finished before we can run t;.
Hence

g(ti) = max{g(t;) : (t;,t:) € P} + f(&)

Construct G with vertices {t1,...,t,} and edge set £ = P.
Construct the Pred tables for G.

Initialise g[t;] <— —1 for all <.

Call FinishTime(t;) for each t;.

Return the maximum of g[t;] fori =1,2,...,n.

RN

FinishTime(t;)
If g[t;] > O then
return g[t;]
else
If Pred[t;] is empty then
glt:] — flt:]
else
g[t;] < max {FinishTime(tj) Lty € P’red[ti]} + f(t;)
return g[t;]

X N

Longest path

How long is the longest path in a DAG? This is a hard
problem in a regular digraph, but can be easily solved in
a DAG.

Similar to project scheduling. Let [(v) denote the longest
path ending in vertex v. Then

e [(v) =0 if v is a source.

e Otherwise I(v) = max{l(u) : u € Pred[v]} + 1

Initialise L[v] «— —1 for all v.

Construct the Pred tables for G.

Call LongPath(v) for each v.

Return the maximum of L[v] for i =1,2,...,n.

RN

LongPath(v)
. If L[v] > 0 then
return L[v]
else
if Pred[v] is empty then
L[v] < 0
else
L[v] < 1 4+ max{LongPath(u) : u € Pred[v]}
return L[v].

DN AWM

Features of Dynamic Programming

e Problem divided into overlapping sub-problems. (Com-
pare divide and conquer, where subproblems are in-
dependent)

e T he solution of a subproblem generally depends on
solutions of further subproblems.

e A straight recursive solution leads to an exponential
time algorithm.

e Solutions of subproblems are stored, as they are
often used multiple times during computation.

We can denote dependencies between subproblems us-
ing a directed graph. Each subproblem corresponds to
one vertex. An edge from subproblem u to subproblem
v if we use the solution of u in the solution of wv.

Dynamic programming works if and only if this directed

graph is acyclic.

General problems in Dynamic Programming

1) How to avoid recursion? (function calls generally
take a lot of time).

2) How to extract an optimal solution? (e.g. highest
scoring path, longest path).

3) How to handle multiple optimals? (e.g. counting the
number of optimal solutions).

Avoiding recursion

Suppose that vertices in G are labelled vy,vo,...,v,. A
"simpler’ alternative to LongPath might be:

WrongLongPath(G)
for:— 1 ton do
. if v; is a source then
Llv;] < O
else
Llvi] < 1 4+ max{L[v;] : v; € Pred[v;]}.

R Wh e

Problem: In step 5 we have no guarantee that the val-
ues L[v;] have already been initialised and computed.

Solution: First construct a topological sort vi,vo,...,v,
of the vertices. Then v; € Pred[v;] will imply that
(vj,vq;) € E, so vj comes before v; in the ordering.

Principle:

If you are using loops with Dynamic Programming,
make sure that subproblems are solved in a topo-
logical order, with respect to the dependency graph.

Example: flag collecting

Subproblems: one for each (¢,7). The subproblem is
“What is the maximum score of a path from (0,0) to
(7,7) that always goes downwards or to the right”

To solve the problem for (7,5) we need to have solved
(¢—1,7) and (4,57 — 1).

The dependency digraph is a directed version of the grid,
with edges directed downwards and rightways.

Ao 1 2 i n

3
>

(@]
Y
Y
Y
Y

1 A \ 4 \ 4 \ 4 \ 4 4 A
3 3 3 > 3
7> 7> > >

Y

Y
Y
Y
Y
Y

\
\ P
\ P
\ P

\
Y,
A
A

A 4

\
\
\
\

One *"topological sort” of this graph is given by the
loops

for : — 0 to n do
for j — 0 to m do
Compute G[i, j]

Recursion free algorithm for flag collecting

GoodPaths?2
1. for i — 0 to n do
for j — 0 to m do

if : =0 and 5 = 0 then

Gli,j] <O

else if : > 0 and 5 = 0 then

else if : =0 and 5 > 0 then
: else
10. Gli,j] — max{G[i — 1,51 + H[i,5],G[i,j — 1] + V'[i, 5]}
11.return G[n,m]

CONOOAWN

Note: whenever we look-up G[xz,y] we know its already

been computed.

