Online: http://www.math.mcgill.ca/ “bryant

How many direct paths from A to B?

We consider only paths that go left to right and top to
bottom.

Ao 1 2 i n
0
1
J ®
m
B

Define f(i,7) to be number of paths from A to (¢,7). A
path from A to (4,j) either takes the edge to the left of
(7,7) or takes the edge above (7,5), but not both.

Recursive solution

f(0,0) = 1
f(:,0) = f(:—1,0) forall >0
f(0,7) = f(0,7—1) forall >0

fQG,j) = fl—-1,5)+ f(,5-1) for all 4,5 >0

We can turn this directly into a recursive algorithm.

NumPaths(i,7)
1. ifez=0and 3 =0
then return 1
else if: >0and =0
return NumPaths(i — 1,0)
elseif:=0and 5 >0
return NumPaths(0,7 — 1)
else
return NumPaths(i — 1,7) + NumPaths(z,5 — 1)

NXNG A WN

This works, but it takes exponential time!

The problem with recursion

How many times does Num/Paths(i,j) get called?

- O-D-O0-D-0-O

-
—C
-
-

(1)

-
-
—C
—C

The number of times called follows Pascal’s Triangle.
So, for example, NumPaths(1,1) gets called (") times!

—C
—C
—C
—C

>
D@
O
O

)
—C
—C
—C

-
—C
—C
—C

O U U U

If n = m = 100 then this is around 10°°.

Fix: dynamic programming

The trick is to remember when we have already com-
puted something, store the values, and look-up the val-
ues when we need it again.

Create an m x n table F' to store values.

First initialise table to some dummy value (indicating
that the value has not yet been calculated)

Modify NumPaths(i,7) to check whether we have al-
ready evaluated f(7,5) by looking at entry F[i,j]. If we
have, we return the value already computed. If not, we
compute it.

End result: total time taken reduces to O(nm).

1. Construct an m x n table F' [global variable]
2. Initialise each entry of F' to —1.
3. return FastNumPaths(i,7)

FastNumPaths(i,7)
if F[i,j] > 0 then
return F[i, j]
else
if : =0 and 5 = 0 then
Fli,g] <1
else if : > 0 and 5 = 0 then
F[i,j] +— FastNumPaths(i — 1,0)
else if : =0 and 5 > 0 then
: Fi, j] < FastNumPaths(0,7 — 1)
10. else
11. FJi,j] <« FastNumPaths(i — 1,5) + FastNumPaths(i,7 — 1
12. return Fi,j]

CONOOTHA W=

For each 14,7, FastNumPaths(i,j) called at most three
times, though goes through lines 3-12 at most once.

Collecting flags

Suppose that along each edge of the grid there are a
different number of flags. Goal is to find a path from
A to B that goes left to right and top to bottom, and
collects as many flags as possible (the score equals the
number of flags).

Ao 1 2 i n
0

VIi,j]

|

m
/ B
HI[1,j]

Suppose that the horizontal edge entering (¢,7) has
H|i, 7] flags and the vertical edge V[, j] flags.

Finding a recursion

Suppose that a path P has the highest score of any
path from A to (4,7), and that P enters (¢,5) along the
horizontal edge. Let P’ denote the part of P going from
Ato (i—1,7). Then

e The score of P equals the score of P’ plus H[i,j].

e P’ will have the highest score of any path going
from Ato (1 —1,5).

Carrying on the same idea we derive a recursion. Let
g(i,7) be the highest score of a path from A to (4,75).

g(0,0) = 0
g(1,0) = g¢g(t—1,0)+ HJ[,0] for all i >0

When 4,5 > 0, g(4,7) is the maximum of

and

1. Construct an m x n table G [global variable[
2. Initialise each entry of G to —1.
3. return GoodPaths(i,7)

GoodPaths(i,7)
if G[i,7] > 0 then
return Gz, j]
else
if:=0 and 3y =0 then
Gli,j] < O
else if : > 0 and 5 = 0 then
GJi, j] < GoodPaths(i — 1,0) + HJi, 0]
else if : =0 and 5 > 0 then
GJi, j] <+ GoodPaths(0,5 — 1) 4+ V'[i, 0]
else
G, j] «— max{GoodPaths(i — 1,35) + H|4i, j],
GoodPaths(i,j — 1) + Vi, j]}

RFPRPOO~NOODWNHR
!_l.o- a = = = = = . -

(o
N

return GJi, j]

