Online: http://www.math.mcgill.ca/~bryant

How many direct paths from A to B?

We consider only paths that go left to right and top to bottom.

Define f(i,j) to be number of paths from A to (i,j). A path from A to (i,j) either takes the edge to the left of (i,j) or takes the edge above (i,j), but not both.

Recursive solution

```
f(0,0) = 1

f(i,0) = f(i-1,0) for all i > 0

f(0,j) = f(0,j-1) for all j > 0

f(i,j) = f(i-1,j) + f(i,j-1) for all i,j > 0
```

We can turn this directly into a recursive algorithm.

```
NumPaths(i,j)
1. if i=0 and j=0
2. then return 1
3. else if i>0 and j=0
4. return NumPaths(i-1,0)
5. else if i=0 and j>0
6. return NumPaths(0,j-1)
7. else
8. return NumPaths(i-1,j) + NumPaths(i,j-1)
```

This works, but it takes exponential time!

The problem with recursion

How many times does NumPaths(i, j) get called?

The number of times called follows Pascal's Triangle. So, for example, NumPaths(1,1) gets called $\binom{n+m}{n}$ times! If n=m=100 then this is around 10^{59} .

Fix: dynamic programming

The trick is to *remember* when we have already computed something, store the values, and look-up the values when we need it again.

Create an $m \times n$ table F to store values.

First *initialise* table to some dummy value (indicating that the value has not yet been calculated)

Modify NumPaths(i,j) to check whether we have already evaluated f(i,j) by looking at entry F[i,j]. If we have, we return the value already computed. If not, we compute it.

End result: total time taken reduces to O(nm).

- 1. Construct an $m \times n$ table F [global variable]
- 2. Initialise each entry of F to -1.
- 3. return FastNumPaths(i, j)

```
FastNumPaths(i, j)
1. if F[i,j] \geq 0 then
2.
     return F[i,j]
3.
   else
     if i = 0 and j = 0 then
       F[i,j] \leftarrow 1
5.
     else if i > 0 and j = 0 then
6.
7.
      F[i,j] \leftarrow FastNumPaths(i-1,0)
     else if i = 0 and j > 0 then
8.
      F[i,j] \leftarrow FastNumPaths(0,j-1)
9.
10.
     else
      F[i,j] \leftarrow FastNumPaths(i-1,j) + FastNumPaths(i,j-1)
11.
12.
     return F[i,j]
```

For each i, j, FastNumPaths(i, j) called at most three times, though goes through lines 3-12 at most once.

Collecting flags

Suppose that along each edge of the grid there are a different number of flags. Goal is to find a path from A to B that goes left to right and top to bottom, and collects as many flags as possible (the *score* equals the number of flags).

Suppose that the horizontal edge entering (i,j) has H[i,j] flags and the vertical edge V[i,j] flags.

Finding a recursion

Suppose that a path P has the highest score of any path from A to (i,j), and that P enters (i,j) along the horizontal edge. Let P' denote the part of P going from A to (i-1,j). Then

- The score of P equals the score of P' plus H[i,j].
- P' will have the highest score of any path going from A to (i-1,j).

Carrying on the same idea we derive a recursion. Let g(i,j) be the highest score of a path from A to (i,j).

$$g(0,0) = 0$$

 $g(i,0) = g(i-1,0) + H[i,0]$ for all $i > 0$
 $g(0,j) = g(0,j-1) + V[0,j]$ for all $j > 0$

When i, j > 0, g(i, j) is the **maximum** of

$$g(i-1,j) + H[i,j]$$

and

$$g(i, j-1) + V[i, j].$$

- 1. Construct an $m \times n$ table G [global variable[
- 2. Initialise each entry of G to -1.
- 3. return GoodPaths(i, j)

```
GoodPaths(i, j)
1. if G[i,j] \geq 0 then
     return G[i,j]
2.
3.
   else
4.
     if i = 0 and j = 0 then
5.
       G[i,j] \leftarrow 0
     else if i > 0 and j = 0 then
6.
       G[i,j] \leftarrow GoodPaths(i-1,0) + H[i,0]
7.
     else if i = 0 and j > 0 then
8.
       G[i,j] \leftarrow GoodPaths(0,j-1) + V[i,0]
9.
10.
     else
       G[i,j] \leftarrow \max\{GoodPaths(i-1,j) + H[i,j],
11.
                           GoodPaths(i, j - 1) + V[i, j]
     return G[i,j]
12.
```