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A stable matching is an assignment of  n men  to n women so that no two people prefer each other to their respective spouses. 
This paper describes the convex hull of  the incidence vectors of stable matchings.  With this description, one may solve the 
optimal stable marriage problem as a linear program. 

stable matching * linear programming 

1. Introduction 

The stable marriage problem asks whether there 
is a matching of n men to n women so that no 
two people prefer each other to their respective 
spouses; that is, does there exist a stable match- 
ing? Gale and Shapley [6] resolved this question 
by showing that regardless of the individual pref- 
erences, a stable matching always exists. In fact, 
they described a procedure for finding the stable 
matching that gives each man his best possible 
mate; that is, in no stable matching could any 
man be paired with someone he finds more desira- 
ble. 

McVitie and Wilson [12] pointed out that al- 
though the men all agree Gale and Shapley's sta- 
ble matching is best, the women all agree it is 
worst; that is, in no stable matching could any 
woman be paired with a man she finds less desira- 
ble. Thus, investigators turned to the problem of 
finding equitable or socially optimal stable match- 
ings. 

In the optimal stable marriage problem, each 
possible marriage has a social value and we are 
asked to find a stable matching of maximum total 
value. Irving et al. [9] provided an ingenious, 
albeit complex, algorithm for finding an optimal 
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stable matching by exploiting the one-to-one cor- 
respondence between stable matchings and the 
closed subsets of a certain partially ordered set. 

In this paper, we show how to find an optimal 
stable matching by more conventional means: lin- 
ear programming. We formulate the optimal sta- 
ble marriage problem as a small linear program 
and show that its extreme points are all integer 
valued. Thus, solving the linear program solves the 
optimal stable marriage problem. 

Dantzig [5] referred to the linear programming 
characterization of the bipartite matching problem 
as "a mathematical proof that of all the possible 
forms of marriage (monogamy, bigamy, polygamy, 
etc.) monogamy is the best'. Our linear program- 
ming characterization of the stable marriage prob- 
lem extends Dantzig's observation by showing that 
among all forms of stable marriage, monogamous 
stable marriage is the best. 

2. An integer programming formulation 

We write x >z Y to denote that person z pre- 
fers person x to person y. Thus, a matching # 
(which assigns the woman /~(m) to man m and 
the man/~(w) to woman w) is stable if and only if 
there is no pair m and w such that both w >m 
/z(m) and m >w/x(w). 

For the sake of presentation, we assume that 
the preferences of each individual form a complete 
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order over all the members of the opposite sex and 
that all possible marriages are acceptable, that is, 
it is better to marry than not. Once we describe a 
linear programming formulation of the stable 
marriage problem under these restrictions, it is an 
easy exercise to eliminate the assumption that all 
possible mates are acceptable. It is not clear how 
to extend these results to the situation in which an 
individual may express indifference between two 
possible mates. 

Let M and W be the sets of men and women, 
respectively. The incidence vector of a matching/~ 
is x ~ ( O ,  1) IMl×lwl such that x ( m , w ) = l  if 
/~(rn) = w and x(m, w) = O, otherwise. We write 

x(rn > ,  w) for Y.(x(i, w): for all men i 
such that m >,. i), 

x(m' > i > m, w) for ~.(x(i, w): for all men i 
such that m'  > ~ i > wm), 

x(M, w) for E(x(i ,  w): i ~ M).  

Thus, if x is the incidence vector of a matching 
/~, then x(m > ,  w) = 1 when woman w is married 
to someone she finds less desirable than man m, 
that is, m >w #(w).  Similarly, x(m' > i > m, w) 
- 1  when woman w is married to someone she 
finds less desirable than man m', but more desira- 
ble than man m, that is, m' >w #(w) > wm. Fi- 
nally, x(M, w ) =  1 since woman w is married 
under/~. 

Similarly, we write 

x(m, > w) for E (x (m,  i): for all men i 
such that i >, ,  w), 

x(m, w > )  for E(x(m,  i): for all men i 
such that w >, ,  i), 

x(m, W) for E(x(m,  i): i ~ W). 

With this notation, we can characterize the 
incidence vector of a stable matching as an integer 
vector x satisfying 

x ( , . ,  w )  = 1 

for each m ~ M, (1) 

x ( M , w ) = I  

for each w ~ W, (2) 

x(m >, w ) - x ( m ,  > w) <~0 

for each (m,  w) ~ M X W, (3) 

x(m, w) >10 
for each (m,  w) ~ M × W, (4) 

Constraints (1) and (2) require that each man 
marry one woman and each woman marry one 

man. In asserting that among all forms of mar- 
riage monogamy is best, Dantzig was referring to 
the fact that each extreme point of the linear 
program described by constraints (1), (2) and (4) 
is the incidence vector of a matching [5]. 

Constraints (3) impose the stability condition: 
If woman w marries someone less desirable than 
m, then man m must marry someone more desira- 
ble than she. Note that together with constraints 
(1), (3) also implies that if man rn marries some- 
one less desirable than woman w, she must marry 
someone more desirable than he. Thus, an integer 
vector x ~ R IMI × I W l is the incidence vector of a 
stable matching if and only if x satisfies (1)-(4). 

In general, finding an integer solution to a set 
of linear inequalities is computationally very dif- 
ficult [7]. We show, however, that we may ignore 
the integrality condition and consider only the 
linear inequality system (1)-(4) in finding an opti- 
mal stable matching. In particular, we show that 
each extreme point  of this linear system is integer 
valued. Note that the constraints (1), (2) and (4) 
describe the well-known (perfect) bipartite match- 
ing polytope all of whose extreme points are in- 
teger valued [5]. Further, constraints (3) and (4) 
together describe a cone. We show that the in- 
tersection of these two polyhedra gives rise to a 
polytope with integer extreme points. 

3. A linear programming formulation 

In this section we show that (1)-(4) is a linear 
inequality description of the stable marriage prob- 
lem; that is, we show that each extreme point 
solution to (1)-(4) is integer valued. The first 
ingredient in our argument is Gale and Shapley's 
algorithm for finding the 'male-optimal'  stable 
matching. In this algorithm, the men propose to 
the women who either consider or reject them as 
described below. 

Algorithm 1. The deferred acceptance algorithm. In 
a round, each man proposes to his favorite woman 
from among those who have not yet rejected him. 
Each woman rejects all but  her best proposal. 
Rounds continue until each woman holds a pro- 
posal. 

At the end of Algorithm 1, the men and women 
are tentatively paired according to the male-opti- 
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mal stable matching/£M- Now, reverse the roles of 
the men and women in Algorithm 1. This proce- 
dure, henceforth referred to as Algorithm 2, 
terminates with the men and women paired 
according to the female-optimal stable matching 

~ F  [61. 
The sequence of proposals and rejections in the 

Deferred Acceptance Algorithm identifies many  
variables which must  be zero in every solution to 
(1)-(4). 

[,emma 1. For each x ~ ff~ I~t I × I w l satisfying 

(1)-(4), /f woman w received a proposal from man 
m in Algorithm 1, then x ( m  > ,  w ) = 0 .  Moreover, 
i f  she rejected his proposal, then x (  m, w)  = O. Sim- 
ilarly, i f  man m received a proposal from woman w 
in Algorithm 2, then x ( m ,  w > ) =  0 and, i f  he 
rejected her proposal, then x (  m, w)  = O. 

Proof. Consider a vector x satisfying (1)-(4). Sup- 
pose woman w received a proposal f rom man m 
in the first round of Algorithm 1. Then she is his 
favorite and so x ( m ,  > w ) = 0 ,  trivially. Since 
x satisfies constraint (3) for the pair (m, w), 
x ( m  > ,  w) = 0. Moreover, if she rejected his offer 
in the first round, she must have received a pro- 
posal from some man m'  whom she prefers. Thus, 
x ( m '  > ,  w) = 0 and, in particular, x ( m ,  w)  = O. 

Similar arguments show that if man m received 
a proposal from woman w in the first round of 
Algorithm 2, then x ( m ,  w > ) - - 0  and, if he re- 
jected her, then x ( m ,  w) = O. 

Finally, proceeding by induction on the round 
in which the proposal was received or rejected 
proves the lemma. [] 

In light of Lemma 1, we remove man m and 
woman w from each other's preference fists if at 
the end of Algorithm 1, she holds a proposal from 
someone she prefers or, at the end of Algorithm 2, 
he holds a proposal from someone he prefers. We 
refer to the resulting preference fists as the short 
lists. (Note that our definition differs slightly f rom 
that of Irving et al. [9], as we have also removed 
those pairs eliminated in Algorithm 2.) One im- 
mediate consequence of Lemma 1 is that women 
w is first on man m ' s  short list if and only if he is 
last on hers. Likewise, man m is first on woman 
w's  short list if and only if she is last on his. 

Although the male-optimal stable matching/~M 
obtained by assigning each man to the first wo- 

man on his short list is the best stable matching 
f rom the men 's  point of view, it is the worst f rom 
the women's  point of view. Thus, in order to 
obtain better partners, some of the women reject 
the proposals they hold at the end of Algorithm 1. 

Suppose for example, that woman Wl rejects 
her proposal  from man  m 1. Then the best he can 
do is to propose to the next woman on his short 
list, say woman w z. Since woman w 2 prefers this 
new proposal over the one she currently holds, say 
from man m2, she will in turn reject man m 2. 
Again, the best m z can do is to propose to the 
next woman on his short fist, say woman w 3. 

Thus, woman wl's ambitions precipitate a se- 
quence of rejections and proposals, which con- 
tinues until either some man is rejected and has no 
one left to propose to, or a cycle is formed when 
some man proposes to a woman who precedes him 
in the sequence. This latter case gives rise to a 
rotation or cycle # = ( (m  j, w j): j ~ [1 . . . . .  r]} 
such that: 

(i) For  each j ~ [1 , . . . ,  r], woman wj is first 
on man mj 's  short fist. 

(ii) For  each j E  [1 . . . . .  r - 1], woman wj+ 1 is 
second on man mj 's  short fist, and to complete 
the cycle. 

Off) Woman  w I is second on man mr's  short 
list. 

Irving et al. introduced the notion of a rotation 
and showed that if each woman wj rejects her 
proposal from man mj and accepts her proposal 
from man m j_ 1 (woman w 1 accepts her proposal 
from man mr), the resulting matching is stable. 

Lemma 2 interprets the sequence of rejections 
and proposals indicated by a rotation as row 
operations on (1)-(4). These row operations iden- 
tify additional variables that must be zero in every 
solution to (1)-(4) and reformulate the constraints 
among the pairs in a rotation as network flow 
constraints. 

Lemma 2. Consider a rotation p = ( (m  j, w j): j 
[1 . . . .  , r]} with respect to the short lists. For each x 
satisfying (1)-(4), 

(i) x ( m j ,  w j ) =  x ( m l ,  wl) 
[2 . . . . .  r ] ,  

(ii) x ( m j _  1 > i > mj,  Wj)  = O, 
[2 . . . . .  r], 

(iii) x ( m  r > i > ml,  wa) = 0. 

for each j 

for each j 
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Proof. By Lemma 1, 

x ( m r ,  ~>Wx)~'X(mr, Wr), (5) 

and 

x ( m , > ,  W l ) = x ( m  1, wl)  + X(mr> i> m 1, Wx). 
( 6 )  

Thus, constraint (3) for the pair (mr, wl) is equiv- 
alent to 

x ( m l ,  wl)  + X(mr> i> ml,  w l ) -  X(mr,  w~) <~ O. 

(7) 
Likewise, constraint (3) for each pair (mj_ a, 

wj), j ~ [2 . . . . .  r], is equivalent to 

x ( m j ,  wj)  + x ( m j _  1 > i> mj, wj)  

- x(mj_l, wj_ ) o. (8) 
Combining (7) and (8) we see that x (m  r > i > 

m 1, wl) = 0, and for each j ~ [2 . . . . .  r], x ( m / _ l  > 
i > m j ,  w j ) = 0 ,  and x(mj ,  w j ) = x ( m l ,  wl), as 
desired. [] 

If p =  ((m3, w j): j ~ [ 1  . . . . .  r]} is a rotation 
with respect to the short lists and woman w 1 
rejects her proposal from man ml, then, in light of 
Lemma 2, we may remove each man m (including 
man mj) and woman wj from each other's short 
lists if she likes him less than her new mate m/_ 1. 
We refer to this process as eliminating the rotation 
p and we refer to the resulting preference lists as 
reduced lists. 

As in the short lists, woman w is first on man 
m's reduced list if and only if he is last on hers. 
Likewise, man m is first on woman w's reduced 
list if and only if she is last on his. Thus, we may 
define a rotation 0 = {(mj, wj): j ~ [1  . . . . .  r]} 
with respect to reduced lists in the natural way. If 
woman w 1 rejects her proposal from man ml, 
eliminating the rotation p leads to a new set of 
reduced lists and new rotations. 

We must eliminate certain rotations in order to 
obtain reduced lists in which we can identify a 
given rotation. For  example, 

(a) If the pair (m, w) is eliminated by a rota- 
tion ¢r and (m, w'),  where w > , ,  w', is in the 
rotation p, we must eliminate ¢r before we can 
identify p. 
Similarly: 

(b) If the pair (m' ,  w), where m' >w m, is in 
the rotation 0, we must eliminate ~r before we can 
identify 0- 

Let R be the collection of rotations together 
with the set O(I~F) = {(m, /xF(m)): m ~ M}.  With 
each pair (m, w) ~ M x W in some member of R, 
we associate the member of R, denoted o(m, w), 
containing (m, w). We define the M-predecessor 
of (m, w), denoted P i ( m ,  W), to be the member 
of R, (if one exists) such that: 

(i) (m, i) ~ PM(m, W) for some woman i with 
i >m w; and 

(ii) for each j such that i >m J >m w, (m, j )  is 
not in any member of R. 

Finally, we define the W-predecessor of (m, w), 
denoted p w(m,  w), to be the member of R, (if 
one exists) such that: 

(i) (i, w ) ~  Ow(m, w) for some man i with 
m > w i; and 

(fi) for each j such that m >~ j >w i, ( j ,  w) is 
not in any member of R. 

Note that if the pair (m, w) is in some member 
of R, then PM(m, W) and Pw(m,  w) are identical. 
If (m, w) is not in a member of R, this is not 
necessarily true. Further, if (m, w) is in some 
member of R, then (a) implies we must eliminate 
p~(m,  w) before eliminating p(m, w). If the pair 
is not in any member of R, then (b) implies we 
must eliminate pw(m,  w) before eliminating 
pM(m, w). 

Before proving that (1)-(4) is a linear in- 
equality description of the stable marriage prob- 
lem, we state the following existence theory for 
rotations originally proved in Irving et al. 

Lemma 3. I f  some man has more than one woman 
on his reduced lists, then there is a rotation with 
respect to the reduced lists. 

We are now prepared to show that the linear 
system (1)-(4) has integer extreme points. In pro- 
ving this, we interpret eliminating rotations as row 
operations transforming (1)-(4) to an equivalent 
network flow problem. 

Theorem 1. For any vector c = (crow: m ~ M and 
w ~ W )  of social values, an extreme point optimal 
solution to the linear program 

max cx 

s.t. 

x ( m ,  W )  = 1 
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for each m ~ M, 

x (M,  w) = 1 

for each w ~ W, 

x ( m > ,  w ) - x ( m ,  >w)~<0 

for each ( m, w) ~ M × W, 

x(m, w) >1 o 

for each ( m, w ) ~ M ×  W, 

solves the optimal stable marriage problem. 

Proof. See Appendix. [] 

Although the polytope described by (1)-(4) has 
integer-valued extreme points, its constraint ma- 
trix is not generally totally unimodular. To see 
this, observe that if it were, then the constraint 
matrix of the following system would be totally 
unimodular: 

x(m,  W) = 1 

for each man m ~ M, (9) 

x(M,  w) = 1 

for each woman w ~ W, (10) 

x ( m >  , w) + x(m,  w) + x(m,  w > ) ~ l  

for each (m, w) ~ M ×  W, (11) 

x(m, w) >1 o 

for each (m, w) ~ M X  W. (12) 

But, the submatrix consisting of the columns for 
x(m, w), x(m', w) and x(m, w) and the rows (9) 
for man m, (10) for woman w and (11) for the 
pair (m', w'), where m' >w' m and w' >m" w is as 
shown in Table 1. 

This is the node-edge incidence matrix of an 
odd cycle; showing that the constraint matrix of 
(1)-(4) is not totally unimodular. 

The formulation given in (9)-(12) leads to the 
intriguing question: Can we relax the requirement 
that everyone marry? More precisely, we might 

Table 1 

x(m, w) x(m', w) x(m, w') 

1 0 1 row (9) for man m 
1 1 0 row (10) for woman w 
0 1 1 row (11) for (m ' ,  w ' )  

Table 2 

Man Preferences Woman Preferences 

a 2 ,1 ,3  1 c,b,a 
b 3 ,1 ,2  2 b.c,a 
c 1 ,2 ,3  3 a,b,c 

ask: Are the extreme point solutions of the follow- 
ing system integer valued? 

x(m,  W) <~ 1 

for each man m ~ M, (13) 

x(M,  w) <~ 1 

for each woman w ~ W, (14) 

x ( m > ,  w) + x(m,  w) + x(m,  w>).N<l 

for each (m, w) E M × W, (15) 

x(m, w) >i o 

for each (m, w) ~ M ×  W. (16) 

Kathie Cameron [4] provided the following ex- 
ample showing that (13)-(16) may have fractional 
extreme points. Equivalently, this example shows 
that the constraint matrix of (13)-(16) is not per- 
fect. 

Example. Consider the preference lists in Table 2. 
We leave it to the reader to verify that coefficients 
of the columns x(a, 2), x(a, 3), x(b, 1), x(b, 3) 
and x(c, 2) in rows (13) for the men a and is b, 
(14) for the women 2 and 3 and (15) for the pair 
(c, 1) correspond to a chordless odd cycle. 

4. Conclusions 

Although it is doubtful that any conclusions 
can be drawn about the relative value of monoga- 
mous versus polygamous marriage outside the 
context of a specific culture (my Saudi Arabian 
friend insists on this), we have demonstrated an 
equivalence between recent algorithmic ap- 
proaches to the stable marriage problem and pivot 
operations in a structured linear program. 

Our linear programming formulation is one of 
few examples that have integer-valued extreme 
points although the constraint matrix is neither 
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totally unimodular nor perfect. We are currently 
investigating extensions to the related stable 
roommates problem. 
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Appendix 

Proof of Theorem 1. It is immediate that the 
incidence vector of each stable matching is an 
extreme point of (1)-(4). We prove that each 
extreme point of (1)-(4) is the incidence vector of 
a stable matching by showing that (1)-(4) is 
equivalent to (the dual of) a network flow prob- 
lem. 

Note that by Lemma 1, if the pair (m, w) is 
eliminated in Algorithm 1 or Algorithm 2, then for 
each x satisfying (1)-(4), x(m, w) = O. 

We construct an equivalent network flow prob- 
lem over the remaining variables by induction on 
the number of rotations eliminated. Let R(k) be 
the members of R, which can be identified by 
eliminating at most k - 1 rotations. The inductive 
hypothesis for an integer k assumes that for each 
x ~ R  Iml×~wl satisfying (1)-(4), there is y ~  
R IRI, with y(p(l.tF)) = 1, satisfying: 

(A) If (m, w) is in the rotation p ~ R(k), then 
x(m, w)=Y(O)--Y(OM( m, W)). (If OM(m, W) 
does not exist, then Y(PM(m, W)) is defined to be 
zero.) 

In Lemma 2 we proved that if p = ((m j, wj): j 
~ [1, . . . ,  r]} is in R(1), then for each x ~  
R I u t x I w l satisfying (1)-(4), 

(i) x(mj, w j ) = x ( m  1, wl) for each j 
[2 . . . . .  r] ,  

(ii) x (mj_ l> i>mj ,  wj)=O for each j 
[2 . . . . .  rl, and 

(iii) x(m r > i > m x, wl) = O. 
Thus, letting y(o(m, w))= x(m, w) for each 

(m, w) with o(m, w) ~ R(1), we see that y satis- 
fies the inductive hypothesis for k = 1. 

Assume that the inductive hypothesis holds for 
some k >1 1 and consider a rotation p = 

{(mj, w j): j ~ [1, . . . ,  r]} in R(k + 1). By the in- 
ductive hypothesis, 

x(mr, > wl)= E(x(rnr ,  j ) :  (mr,  j )  is in a 

rotation and j >m, % )  

= x(mr, Wr)+Y(Pt~(mr, Wr)). 
(17) 

Likewise, 

X ( iVFl r , w~)= ~_,(x(j, wl): ( j ,  w~)is in a 

rotation and mr >~, j )  

+ x(mr> i> ml, wa) 

=x(m,, w0) 
+ x ( m r > i > m  a, wl). (18) 

Combining (17) and (18) with constraint (3) for 
the pair (mr, wl) , we see that 

X(ml, wx) +Y(PM(ma, wa)) 

+x(m r> i>ml ,  wl) 

- x ( m  r, Wr) - -y (pM(mr ,  Wr) ) ~.~ O. (19) 

Likewise, 

x(m,, wj) +y(pM(m. wA) 
+ x(mj_, > i> mj, wj) 

- - x (m j -1 ,  W j - 1 ) - - y ( p M ( m j _  1, W j - 1 ) ) ~ 0  

for each j ~ [2 . . . .  , r ]. (20) 

Combining (19) and (20) we see that 

X ( m r > i > m l ,  W1) = 0, 

x ( m j _  1 > i > mj,  wj) = 0 

for each j ~ [2 , . . . ,  r ] ,  

Y(PM(ml, wl))--Y(pM(rnr, wr)) 

= X ( m r ,  Wr) - -X(ml ,  Wl), 

Y(PM(mj, wj))--Y(Om(mj-1, wj-1)), 

= x(mj_ 1, wj_l) - x(mj,  wj) 

for each j ~ [2 . . . . .  r ] .  

Finally, letting 

Y(P) =x(mr,  Wr)+ y(Pm(rnr, wr)), 

i.e., 

y ( p ) = x ( m r ,  > w r ) + x ( m  r, wr), 
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we find that 

x(mj, Wj)=y(p)--y(oM(mj, Wj)) 

for each j ~ [1 . . . .  , r ] ;  

proving that for each x ~ R I ml × I w l satisfying 
(1)-(4), there is y ~ R tRI, with Y(O(#F)) = 1, 
satisfying: 

(B) If (m, w) is in the rotation to ~ R, then 
x(m, w)=y(p)--y(pM(m, W)). (If PM(m, W) 
does not exist, then y(oM(m, w)) is defined to be 
zero.) 

We demonstrate that the extreme points of 
(1)-(4) are integer valued by showing that the 
vectors y ~ R ~R~, with y(p(itF)) = 1, for which 
the transformation defined by (B) and, 

(C) x(m, w) = 0 if (m, w) is not in any stable 
matching gives a solution x to (1)-(4), are exactly 
the solutions to 

y(p(m, w)) --y(pM(m, w)) >~ 0 

for each (m,  w) ~ M × W, (21) 

y(oM(m, W)) --y(Ow(m, w)) >1 0 

for each (m, w) ~ m × W, (22) 

y(p(l~F)) = 1, 1 >~y(p) >1 0 

for each 0 ~ R. (23) 

Consider a vector y ~ R IRt and let x be de- 
fined by (B) and (C). Clearly x is non-negative if 
and only if y satisfies (13). Likewise, by (C), 

x(m >, w) = ~ ( x ( i ,  w): (i, w) is in a stable 

matching and m > w i).  

Therefore, 

x(m >, w)= ~ ( x ( i ,  w): (i, w ) i s  in a stable 

matching and m >w i) 

= X(y (p ( i ,  w))--y(pg(i ,  w)): 

(i, w) is in a stable matching and m >w i). 

Recall that if (m, w) is in a rotation, then 
PM(m, w)=pw(m, w) and so, x(m>,  w)--- 
y(pw(m, w)) and, in particular, x(M, w ) =  1. 
Likewise, x(m, > w)=y(pm(m, w)), and x(m, 
W) = 1. From which we see that x satisfies (1)-(3) 
if and only if y satisfies (21) and (23). 

Since (21)-(23) has integer extreme points and 
the transformation (B) and (C) maintains integral- 
ity, the linear system (1)-(4) has integer extreme 
points. [] 
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