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A classic example of logical reasoning 
is the syllogism, “All men are mortal. 
Socrates is a man. Therefore, Socrates 

is mortal.” According to both ancient and 
modern views1, reasoning amounts to a rule-
based mental manipulation of symbols — in 
this example, the words ‘All’, ‘men’, and so on. 
But human brains are made of neurons that 
operate by exchanging jittery electrical pulses, 
rather than word-like symbols. This difference 
encapsulates a notorious scientific and philo-
sophical enigma, sometimes referred to as the 
neural–symbolic integration problem2, which 
remains unsolved. On page 471, Graves et al.3 
use the machine-learning methods of ‘deep 
learning’ to impart some crucial symbolic-
reasoning mechanisms to an artificial neural 
system. Their system can solve complex tasks 
by learning symbolic-reasoning rules from 
examples, an achievement that has potential 
implications for the neural–symbolic integra-
tion problem.

A key requirement for reasoning is a work-
ing memory. In digital computers, this role is 

served by the random-access memory (RAM). 
When a computer reasons — when it executes 
a program — information is bundled together 
in working memory in ever-changing com-
binations. Comparing human reasoning to 
the running of computer programs is not a 
far-fetched metaphor. In fact, a venerable 
historical alley leads from Aristotle’s defini-
tion of syllogisms to the modern model of a 

programmable com-
puter (the Turing 
m a c h i n e ) .  A l a n 
Turing himself used 
‘mind’ language in 
his groundbreaking 
work4: “The behav-
iour of the computer 
at any moment is 
determined by the 

symbols which he is observing and his ‘state of 
mind’ at that moment.”

Although there are clear parallels between 
human reasoning and the running of com-
puter programs, we lack an understanding of 
how either of them could be implemented in 
biological or artificial neural networks. Graves 

Tobin and collaborators’ results represent 
the first direct observational evidence that 
small-scale disk fragmentation can lead to 
the formation of binary and multiple star sys-
tems. The authors observe two of the expected  
outcomes of gravitational instability of a  
protostellar disk: namely, a hierarchical 
configuration of protostars and a spiral- 
shaped disk.

The strength of this study is the attention 
to detail in Tobin and colleagues’ analysis. For 
instance, the authors show that the disk of the 
protostar system is gravitationally unstable 
by calculating the ‘Toomre Q parameter’ 
(ref. 8). Specifically, they determine the size at 
which the disk would fragment because of a 
gravitational instability, and conclude that it 
would be unstable at radii of between 150 and 
320 au. This range agrees with the observed 
separation between the two protostars at the 
centre of the system and the third member in 
the spiral arm. Moreover, the authors find that 
this fragmentation probably occurred recently 
(within the past few thousand years), which is 
consistent with the young age of the protostar  
system.

It is important to emphasize that both of 

the fragmentation mechanisms are plausible  
and expected, rather than being mutually 
exclusive. Determining the frequency at 
which each mechanism occurs will require 
follow-up studies. Fragmenting disks like 
the one observed by Tobin and colleagues are 
probably not rare — rather, they are waiting to 
be studied in more detail using the powerful  
(sub-)millimetre-wavelength telescopes that 
are now available. ■
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A R T I F I C I A L  I N T E L L I G E N C E

Deep neural reasoning
The human brain can solve highly abstract reasoning problems using a neural 
network that is entirely physical. The underlying mechanisms are only partially 
understood, but an artificial network provides valuable insight. See Article p.471

The authors’ 
neural system 
cannot and 
need not be 
programmed — 
instead, it is 
trained.

2 7  O C T O B E R  2 0 1 6  |  V O L  5 3 8  |  N A T U R E  |  4 6 7

NEWS & VIEWS RESEARCH

©
 
2016

 
Macmillan

 
Publishers

 
Limited,

 
part

 
of

 
Springer

 
Nature.

 
All

 
rights

 
reserved. ©

 
2016

 
Macmillan

 
Publishers

 
Limited,

 
part

 
of

 
Springer

 
Nature.

 
All

 
rights

 
reserved.



P A T R I C K  M .  O ’ C O N N O R

The origin of modern birds and their 
tremendous diversification continue 
to inspire many studies aimed at  

elucidating the functional, ecological and evo-
lutionary context of the group’s success. The 
past three decades of palaeontological research 
have deepened our understanding of birds as 
close relatives of the predatory theropod dino-
saurs, with a wealth of anatomical evidence 
supporting this idea. Remarkable non-avian 
dinosaur fossils exist with several hallmark 
‘avian’ features, including a diversity of feather 
types1 and a complex lung air-sac system2, both 
of which have a broad distribution among  
non-avian theropod dinosaurs such as 
Velociraptor. A study on page 502 by Clarke 
et al.3 reports the identification of an avian-
specific feature — the sound-producing syrinx 
— in a Late Cretaceous (69 million to 66 mil-
lion years ago) fossil of a bird recovered from 
the Antarctic Peninsula.

Modern birds are a tremendously diverse 
group, numbering about 10,000 living  
species4. Thanks to an impressive range of 

anatomical and behavioural specializations, 
birds have spread to almost every environ-
ment on the planet. Although considerable ink 
has been spilled regarding the roles of avian 
feathers, wings, feeding systems and body-size  
differences as drivers of this diversification, the 
fossil record has produced only limited infor-
mation regarding the evolution of avian social 
and behavioural systems. The evolution of the  
syrinx, that one avian-specific feature respon-
sible for the vast array of sounds produced by 
birds, is sorely understudied. 

The work of Clarke and colleagues represents  
one of only a handful of examples from the 
entire avian fossil record in which the min-
eralized cartilage rings of the syrinx, which 
support the sound-producing soft-tissue 
membranes, have been identified. So far, the 
sound-producing system for non-avian dino-
saurs has been thought to be the muscular tube 
in the throat known as the larynx. Such infer-
ences rest on generalized comparisons with 
other (non-avian) ancestral groups known as 
tetrapods, and there is a relative dearth of stud-
ies that even consider the origin of the syrinx.

Clarke et al. assigned the fossil to the bird 

and colleagues take a substantial step forward 
in this quest by presenting a neuro-computa-
tional system that shows striking similarities 
to a digital computer.

The authors’ system consists of several 
modules, all of which are entirely non-sym-
bolic and operate by exchanging streams of 
purely analog activation patterns — just like 
those recorded from biological brains. There 
are two main modules: a ‘memory’ comprised 
of a large grid of memory cells, each of which 
can have a particular numerical value that is 
akin to a voltage; and a ‘controller’, which is an 
artificial neural network. The controller can 
access selected locations on the memory grid, 
read what it finds there, combine that with 
input data and write numerical values back to 
selected memory locations. The two modules 
interact in many respects like the RAM and 
central processing unit of a digital computer.

Graves and colleagues demonstrate the capa-
bilities of their system by putting it through 
several tasks that require rational reasoning, 
such as planning a multi-stage journey using 
public transport. Such tasks are fairly easy to 
solve using the symbolic computer programs 
of artificial intelligence, but have so far been 
rather out of reach of artificial neural networks.

A digital computer solves a given task by 
executing a program that has been written 
for that purpose. By contrast, the authors’ 
neural system cannot and need not be pro-
grammed — instead, it is trained. During 
training, the system is presented with a large 
number of solved examples of the task at 
hand. With each new presentation, the system 
slightly adapts its internal neural wiring so 
that its response moves gradually closer to the 
given task’s solution.

The analog, smoothly adaptable nature of 
the authors’ neural system is the key to its abil-
ity to be trained. Mathematically speaking, the 
system is a ‘differentiable function’, which has 
led to the authors calling it a differentiable neu-
ral computer (DNC). A digital computer is not 
differentiable and could not be trained in any 
similar fashion.

A DNC is a mathematical object that boasts 
tens of thousands of adjustable parameters. 
Training such a monster raises a plethora 
of mathematical, numerical and run-time 
issues. Only in the past few years has machine- 
learning research overcome these obstacles, 
through a compendium of techniques that 
have become branded as deep learning5. The 
authors’ training of a DNC is a splendid dem-
onstration of the power of deep learning.

Graves et al. steer clear of grand claims 
about their work’s implications for the neural–
symbolic integration problem and, with due 
caution, suggest possible mappings of DNC 
structures to those of biological brains. This 
is wise, because the debates fought out in this 
arena are fierce and without winners. Instead, 
the authors establish an undeniable techni-
cal anchor point that will help to ground the 

PA L A E O N T O L O G Y

Ancient avian aria  
from Antarctica
A discovery of the sound-producing vocal organ known as the syrinx in a bird 
fossil from the end of the ‘age of dinosaurs’ highlights the anatomical basis for 
myriad aspects of avian social and behavioural evolution. See Letter p.502

debates — they have shown that certain non-
trivial, central aspects of symbolic reasoning 
can be learnt by artificial neural systems.

With regard to practical exploits, deep-
learning methods have so far excelled in tasks 
that require limited or no working memory, 
such as image recognition6 and sentence-wise 
language translation7. Whether or not DNCs 
will bring about practical advances in big-data 
technologies remains to be seen. The authors’ 
demonstrations are not particularly complex 
as demands on rational reasoning go, and 
could be solved by the algorithms of symbolic 
artificial intelligence of the 1970s. However, 
those programs were handcrafted by humans 
and do not learn from examples.

For the time being, the DNC by itself  
cannot compete with state-of-the-art methods 
in digital computing when it comes to logical 
data mining8. But a flexible, extensible DNC-
style working memory might allow deep learn-
ing to expand into big-data applications that 
have a rational reasoning component, such as 
generating video commentaries or semantic 

text analysis. A precursor to the DNC, the 
neural Turing machine9, certainly sent thrills 
through the deep-learning community. ■
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