
Copyright, 1996 © Dale Carnegie & Associates, Inc.

David Rappaport

School of Computing

Queen’s University

CANADA

Data Compression

	
 There are two broad categories of data
compression:

• Lossless Compression e.g. gif, gzip

• Lossy Compression e.g. mp3, jpeg

Lossless and Lossy
Compression

Lossless Lossy
An exact copy of the
original data is
obtained after
decompression

Original information
content is lost.

Structured data can
be compressed to
40-60 percent of
original size

Any data can be
compressed.
Sometimes by 90%
or more.

What is information?

The colour of the hat is red.

The colour of the book is red.

The colour of the table is red.

The colour of the hat is red.

The ---- " ------ book is " .

The ---- " ------ table is " .

The book, hat, and table are red.

Modelling Information

• The area of information theory explores
the information content of data.

• We can predict the size of the content by
modelling the data.

• Within a given model we can obtain lower
bounds on the number of bits required to
represent the data.

Modelling Information

Consider the following message

x1,x2, …, x12:

Using binary encoding we can store 0..21
using 5 bits per number.

Block Encoding

A decimal number say 1042 can be
thought of as
(1 × 1000)+(0 × 100)+(4 × 10)+(2 × 1)
= (1 × 103)+(0 × 102)+(4 × 101)+(2 × 100)

With 4 decimal digits we can store values
[0 .. 9999] or 104 different values.

Block Encoding

A binary number say 1001 can be thought
of as
(1 × 23)+(0 × 22)+(0 × 21)+(1 × 20) = ?

With 4 binary bits we can store values
[0 .. 24- 1] or 24 = 16 different values.

With 5 binary bits we can store 32
different values.

Modelling Information

Or we can store:

A value n in our message actually
represents the number n+9. Using binary
encoding we can store 0..12 using 4 bits
per number.

0 2 2 2 5 4 6 8 7 8 11 12

Modelling Information

Or we can store:

x1 is stored as is. To encode xi we use xi-
xi-1. We have 5 distinct values which can
be encoded with 3 bits.

Modelling Information

y = x + 8

0

5

10

15

20

25

0 5 10 15

Modelling Information

Let xi denote the ith number in our message,
and let yi be set to i+8.
We can encode ei=xi-yi giving:

There are 3 distinct values so 2 bits per
number suffices.

Minimum Redundancy Coding

 Let’s take a more organized approach
with the next example: Suppose we have
a message consisting of 5 distinct
characters, that appear with the given
frequencies.

A-15, B-7, C-6, D-6, E-5.

First Attempt

 A-15, B-7, C-6, D-6, E-5.

A -- 000, B--001, C--010, D--011, E—100.

 Three bits are needed to encode 5 distinct
characters

Variable Length Code

 A-15, B-7, C-6, D-6, E-5.

A -- 0, B--1, C--00, D--01, E--10.

Why won’t this code work?

Variable Length Code

 A-15, B-7, C-6, D-6, E-5.

A -- 0, B--1, C--00, D--01, E--10.

Why won’t this code work?

Is 00 AA or C?

Second attempt

 A-15, B-7, C-6, D-6, E-5.

A -- 01, B--000, C--001, D--111, E--100.

This code can be unambiguously decoded.
Why?

Shannon-Fano Encoding

 A-15, B-7, C-6, D-6, E-5.

 Split sorted list of codes into roughly
equal parts.

 Assign first bit of left side as 0, and first
bit of right side as 1.

 Repeat on each side until every symbol is
encoded.

Shannon-Fano Encoding

 A-15, B-7, C-6, D-6, E-5.

A B || C D E

A || B C || D E

 D || E

Shannon-Fano encoding
 This can be represented as a binary tree.

D E

CBA

Prefix Code

 A-00, B-01, C-10, D-110, E-111.

No symbol is encoded as the prefix of any other
symbol. A prefix code can be decoded with no
ambiguity.

Shannon-Fano Code

 A-00, B-01, C-10, D-110, E-111.

Consider the following string:

0001010010100101111110

If we are given, the frequencies, the tree, or the
codes, we can decode the message.

Shannon-Fano Code

 A-00, B-01, C-10, D-110, E-111.

For example try to decode the following string:

0001010010100101111110

Prefix Code

 A-00, B-01, C-10, D-110, E-111.

Answer:

0001010010100101111110
 A B B A C C B B E D

Huffman Algorithm

Encoding

Step 1. Determine the frequency of each
symbol in the message. Each symbol can be
thought of as a tree with a weight.

A-15 B-7 C-6 D-6 E-5

Huffman Algorithm

Encoding

Step 2. While there is more than one tree
create a single tree from the two trees of
least weight.

Huffman Algorithm

Encoding

Step 2.

A-15 B-7 C-6

D-6 E-5

11

Huffman Algorithm

Encoding

Step 2.

A-15

B-7 C-6 D-6 E-5

1113

Huffman Algorithm

A-15

B-7 C-6 D-6 E-5

1113

24

39 Final Huffman Tree

Huffman Algorithm

A-15

B-7 C-6 D-6 E-5

1113

24

39
A Huffman code is
obtained by
following links from
the root of the tree
to each leaf, with a
left link
representing 0 and
a right link 1.

Huffman Algorithm

A-15

B-7 C-6 D-6 E-5

1113

24

39
A - 0, B - 100, C - 101,
D - 110, E - 111.

Storing the Huffman Tree

To successfully decode the compressed
file we need the Huffman tree. An
alternate method is to simply store the
counts and rebuild the tree in the
decompression stage.

Huffman Algorithm
We can compare the Huffman code with the

Shannon-Fano code used in our previous
example.

Frequencies:

A-15, B-7, C-6, D-6, E-5.

Codes:

A-0, B-100, C-101, D-110, E-111

A-00, B-01, C-10, D-110, E-111.

Huffman Algorithm
Frequencies:

A-15, B-7, C-6, D-6, E-5.

Codes:

A - 0, B - 100, C - 101, D - 110, E - 111

15 + 3*(7 + 6 + 6 + 5) = 87

A-00, B-01, C-10, D-110, E-111.

2*(15 + 7 + 6) + 3(6 +5) = 89

Unresolved

• Can we do better that Huffman?

• How do we measure information
content?

Entropy

Recall our example: A-15, B-7, C-6, D-6, E-4.
If we have a string of 38 symbols from
{ABCDE} the probability that an A occurs is
P(A) = 15/38. Similarly: P(B) = 7/38, P(C) =
6/38, P(D) = 6/38, P(E) = 4/38.

Self-information
Claude Shannon defined a quantity self-
information associated with a symbol in a
message. The self-information of a
symbol X is given by the formula:

i(X)= logb 1
P(X) = − logb P(X)

Log Function

Self-information

Intuition: The higher the probability of a
character occurance, the lower the
information content. At the extreme if
P(X)=1 then there is nothing learned
when receiving an X since that is the only
possibility.

Entropy
Shannon also defined a quantity entropy
associated with a message, representing
the average self information per symbol in
the message expressed in radix b.

H= P(Xi∑)logb 1
P (X i)

= − P(Xi∑)logb P(Xi)

Entropy
Entropy provides an absolute limit on the
best possible lossless encoding or
compression of any message, assuming
that the message may be represented as a
sequence of independent and identically
distributed random variables.

http://en.wikipedia.org/wiki/Lossless
http://en.wikipedia.org/wiki/Lossless
http://en.wikipedia.org/wiki/Data_compression
http://en.wikipedia.org/wiki/Data_compression
http://en.wikipedia.org/wiki/Independent_and_identically_distributed_random_variables
http://en.wikipedia.org/wiki/Independent_and_identically_distributed_random_variables
http://en.wikipedia.org/wiki/Independent_and_identically_distributed_random_variables
http://en.wikipedia.org/wiki/Independent_and_identically_distributed_random_variables

Entropy

The entropy of the message in our
example is computed as 2.16 binary bits
(i.e. b = 2). The Huffman code obtained
for this example uses an average of 2.23
bits per symbol. The Shannon-Fano code
uses an average of 2.28 bits per symbol

Entropy

• It can be shown that a Shanon-Fano
encoding of a message S produces a
code with average bit length SF(S) that
satisfies:

H(S) ≤ SF(S) ≤ H(S) +1

Entropy
• Let ṗ denote the probability of the least

likely symbol in message S
• It can be shown that a Huffman

encoding of a message S produces a
code with average bit length R(S) that
satisfies:

H(S) ≤ R(S) ≤ H(S) + ṗ +0.086 ≤
H(S) + .586

Entropy
• Let ṗ denote the probability of the least

likely symbol in message S
• Furthermore ṗ ≤ 1/m where m is the

number of symbols in the alphabet:

H(S) ≤ R(S) ≤ H(S) + 1/m +0.086

Entropy
• For m = 28 (8 bits), 1/m = .0039

H(S) ≤ R(S) ≤ H(S) + .0039 +0.086
≤ H(S) +.0899

Arithmetic Encoding
P(A) = 1/2, P(B) = 1/4 P(C) = P(D) = 1/8.

Assign symbols to intervals in 0 .. 1

1/2 3/4 17/80 A B C D

Arithmetic Encoding
P(A) = 1/2, P(B) = 1/4 P(C) = P(D) = 1/8.

Assign symbols to intervals in 0 .. 1
A_lo = 0, B_lo = 1/2, C_lo = 3/4, D_lo = 7/8
A_r = 1/2, B_r= 1/4, C_r= 1/8, D_r =1/8

1/2 3/4 17/80 A B C D

Arithmetic Encoding
lo = 0;
r = 1;
while symbols remain

s = next symbol
\\adjust range
lo = lo + r * s_lo
r = r * s_r

After all symbols are read we are left with an
interval defined between lo .. lo+r . We can
represent the entire message by any value,
call it v, in that interval.

Arithmetic Encoding
Encode message
BAABCADA

1/2 3/4 17/80 A B C D

Arithmetic Encoding
Encode message
BAABCADA

11/16 3/423/321/2 5/8

1/2 3/4 17/80 A B C D

Arithmetic Encoding
Encode message
BAABCADA

19/32 5/839/641/2 9/16

A B C D11/16 3/423/321/2 5/8

Arithmetic Encoding
Encode message
BAABCADA

35/64 9/1671/1281/2 17/32

19/32 5/839/641/2 9/16

Arithmetic Encoding
Encode message
BAABCADA

35/6417/32

35/64 9/1671/1281/2 17/32

Arithmetic Encoding
Encode message
BAABCADA

280/512272/512

35/64 9/1671/1281/2 17/32

276/512 278/512
279/512

Arithmetic Encoding
Encode message
BAABCADA

280/512272/512 276/512 278/512
279/512

278/512 279/512

Arithmetic Encoding
Encode message
BAABCADA

556/1024 557/1024

278/512 279/512

Arithmetic Encoding
Encode message
BAABCADA

556/1024 557/1024

4455/8192 4456/8192

Arithmetic Encoding
Encode message
BAABCADA

8910/16384 8912/16384

8911/163848910/16384

Final message can be encoded as any value in the final interval.

Arithmetic Encoding
Encode message
BAABCADA

8910/16384 8912/16384

8911/163848910/16384

8910/16384 in binary is 0.1000101100111

Arithmetic Encoding
Encode message
BAABCADA

8910/16384 in binary is 0.1000101100111

In general* the number of binary bits needed to encode a
message using arithmetic encoding is -log2(r) where r is
the interval of the final range.

* there are issues of arithmetic that have to be resolved in a real
world application. In practice this statement is true whenever
messages are sufficiently long.

Arithmetic Decoding
Decoding an arithmetic encoded message simply
reverses the encoding process.

8192/16384
17/80 A B C D

The value 8910/16384 is in B’s interval so B must be the first
symbol in the message

12288/16384

Arithmetic Decoding
Decoding an arithmetic encoded message simply
reverses the encoding process.

8192/16384
17/80 A B C D

The value 8910/16384 is in B’s interval so B must be the first
symbol in the message

12288/16384

A B C D8192/16384 12288/16384

Arithmetic Decoding
Encode message
BAABCADA

11/16 3/423/321/2 5/8

1/2 3/4 17/80 A B C D

8192/16384 12288/1638410235/16384

Arithmetic Decoding
Decoding an arithmetic encoded message simply
reverses the encoding process.

A B C D

The value 8910/16384 is now in A’s interval so A must be the
next symbol in the message.

8192/16384 12288/1638410235/16384

Arithmetic Decoding

lo = 0;
r = 1;
val = number received
while symbols decoded less than total number of symbols

find symbol s such that
s_lo ≤ val /r < s_lo + s_r
\\adjust range
lo = lo + r * s_lo
r = r * s_r

Let pk denote the probability for symbol sk.

Let fk denote the frequency for symbol sk.

For a message of length n, fk = n⇥ pk.
Let m denote the size of the alphabet.

nY

k=1

pk

mY

k=1

pfkk

So the range of the final interval is:

Performance

=

� log2

Y
pfkk = �n

X
pk log2 pk

Performance

We have:

expressing the number of binary bits needed
to represent a message (of n symbols). So
the average number of bits per symbol
matches the entropy bound exactly.

Arithmetic Encoding
Very efficient and effective implementations of arithmetic
encoding and variants of the algorithm have been
developed. In general arithmetic encoding can achieve
compression rates superior to Huffman encoding.

Epilogue

• Claude Shannon, Robert Fano, Peter Elias
professors at MIT during ~ 1950 - 1970

• Claude Shannon invented the field of
information theory and concepts such as
“entropy”

• Shannon-Fano algorithm
• Shannon-Fano-Elias algorithm (Arithmetic

Encoding)

Epilogue

• David Huffman student at MIT early 50s
• Huffman’s algorithm was developed as a

project. (Fano was Huffman’s professor
who gave students a choice between writing
a final exam or doing a project.)

Epilogue
• Many modern compressors use Huffman

encoding e.g. PKZIP, JPEG and mp3.
• Very efficient versions of arithmetic

encoding have been developed and
implemented. Although the original JPEG
specification had an option to use arithmetic
encoding, Huffman is used due to patent
issues. (It has been shown that arithmetic
encoding can reduce a Huffman JPEG up to
25%!)

Epilogue
• These methods assume that every symbol

comes from a sequence of independent and
identically distributed random variables

• In English that is clearly not the case, e.g.
queen, inquiry, queue, cheque, question

• There are various compression schemes that
can adapt to the highly non-independent
sequence of symbols in messages. e.g.,
LZW encoding (gif, UNIX compress).

http://en.wikipedia.org/wiki/Independent_and_identically_distributed_random_variables
http://en.wikipedia.org/wiki/Independent_and_identically_distributed_random_variables
http://en.wikipedia.org/wiki/Independent_and_identically_distributed_random_variables
http://en.wikipedia.org/wiki/Independent_and_identically_distributed_random_variables

Resources
• Data Compression

http://www.ics.uci.edu/~dan/pubs/DataCompression.html
See sections
1.1 Definitions
3.1 Shannon-Fano Coding
3.2 Static Huffman Coding
3.4 Arithmetic Coding

http://www.ics.uci.edu/~dan/pubs/DataCompression.html
http://www.ics.uci.edu/~dan/pubs/DataCompression.html
http://www.ics.uci.edu/~dan/pubs/DC-Sec1.html#Sec_1.1
http://www.ics.uci.edu/~dan/pubs/DC-Sec1.html#Sec_1.1
http://www.ics.uci.edu/~dan/pubs/DC-Sec3.html#Sec_3.1
http://www.ics.uci.edu/~dan/pubs/DC-Sec3.html#Sec_3.1
http://www.ics.uci.edu/~dan/pubs/DC-Sec3.html#Sec_3.2
http://www.ics.uci.edu/~dan/pubs/DC-Sec3.html#Sec_3.2
http://www.ics.uci.edu/~dan/pubs/DC-Sec3.html#Sec_3.4
http://www.ics.uci.edu/~dan/pubs/DC-Sec3.html#Sec_3.4

Resources
• People

– http://en.wikipedia.org/wiki/Claude_Shannon
– http://en.wikipedia.org/wiki/

David_A._Huffman
– http://en.wikipedia.org/wiki/Robert_Fano
– http://en.wikipedia.org/wiki/Peter_Elias

http://en.wikipedia.org/wiki/Claude_Shannon
http://en.wikipedia.org/wiki/Claude_Shannon
http://en.wikipedia.org/wiki/Robert_Fano
http://en.wikipedia.org/wiki/Robert_Fano
http://en.wikipedia.org/wiki/Peter_Elias
http://en.wikipedia.org/wiki/Peter_Elias

