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Data Compression

	
 There are two broad categories of data 
compression:

• Lossless Compression e.g. gif, gzip

• Lossy Compression e.g. mp3, jpeg



Lossless and Lossy 
Compression

Lossless Lossy
An exact copy of the
original data is
obtained after
decompression

Original information
content is lost.

Structured data can
be compressed to
40-60 percent of
original size

Any data can be
compressed.
Sometimes by 90%
or more.



What is information?

The colour of the hat is red.

The colour of the book is red.

The colour of the table is red.

The colour of the hat is red.

The  ---- " ------ book is   " .

The  ---- " ------ table is   " .

The book, hat, and table are red.



Modelling Information

• The area of information theory explores 
the information content of data.

• We can predict the size of the content by 
modelling the data.

• Within a given model we can obtain lower 
bounds on the number of bits required to 
represent the data. 



Modelling Information

Consider the following message 

x1,x2, …, x12:

Using binary encoding we can store 0..21 
using 5 bits per number.



Block Encoding 

A decimal number say 1042 can be 
thought of as 
(1 × 1000)+(0 × 100)+(4 × 10)+(2 × 1)
= (1 × 103)+(0 × 102)+(4 × 101)+(2 × 100)

With 4 decimal digits we can store values 
[0 .. 9999] or 104 different values.



Block Encoding 

A binary number say 1001 can be thought 
of as 
(1 × 23)+(0 × 22)+(0 × 21)+(1 × 20) = ?

With 4 binary bits we can store values 
[0 .. 24- 1] or 24 = 16 different values.

With 5 binary bits we can store 32 
different values.



Modelling Information

Or we can store:

A value n in our message actually 
represents the number n+9. Using binary 
encoding we can store 0..12 using 4 bits 
per number.

0 2 2 2 5 4 6 8 7 8 11 12



Modelling Information

Or we can store:

x1 is stored as is. To encode xi we use xi-
xi-1. We have 5 distinct values which can 
be encoded with 3 bits.



Modelling Information

y = x + 8

0

5

10

15

20

25

0 5 10 15



Modelling Information

Let xi denote the ith number in our message,
and let yi be set to i+8. 
We can encode ei=xi-yi giving:

There are 3 distinct values so 2 bits per 
number suffices.



Minimum Redundancy Coding

    Let’s take a more organized approach 
with the next example: Suppose we have 
a message consisting of 5 distinct 
characters, that appear with the given 
frequencies.

A-15, B-7, C-6, D-6, E-5.



First Attempt

   A-15, B-7, C-6, D-6, E-5.

A -- 000, B--001, C--010, D--011, E—100.

 Three bits are needed to encode 5 distinct 
characters



Variable Length Code

   A-15, B-7, C-6, D-6, E-5.

A -- 0, B--1, C--00, D--01, E--10.

Why won’t this code work?



Variable Length Code

   A-15, B-7, C-6, D-6, E-5.

A -- 0, B--1, C--00, D--01, E--10.

Why won’t this code work?

Is 00 AA or C?



Second attempt

   A-15, B-7, C-6, D-6, E-5.

A -- 01, B--000, C--001, D--111, E--100.

This code can be unambiguously decoded. 
Why?



Shannon-Fano Encoding

   A-15, B-7, C-6, D-6, E-5.

   Split sorted list of codes into roughly 
equal parts.

   Assign first bit of left side as 0, and first 
bit of right side as 1.

   Repeat on each side until every symbol is 
encoded.



Shannon-Fano Encoding

   A-15, B-7, C-6, D-6, E-5.

   

A B  ||  C D E

A || B   C || D E

                D || E



Shannon-Fano encoding
   This can be represented as a binary tree.        

D E

CBA



Prefix Code

   A-00, B-01, C-10, D-110, E-111.

No symbol is encoded as the prefix of any other 
symbol. A prefix code can be decoded with no 
ambiguity.



Shannon-Fano Code

   A-00, B-01, C-10, D-110, E-111.

Consider the following string:

0001010010100101111110

If we are given, the frequencies, the tree, or the 
codes, we can decode the message.



Shannon-Fano Code

   A-00, B-01, C-10, D-110, E-111.

For example try to decode the following string:

0001010010100101111110



Prefix Code

   A-00, B-01, C-10, D-110, E-111.

Answer:

0001010010100101111110
 A B B A C C B B  E  D



Huffman Algorithm

Encoding

Step 1.  Determine  the frequency of each 
symbol in the message. Each symbol can be 
thought of as a tree with a weight.

A-15  B-7   C-6   D-6   E-5



Huffman Algorithm

Encoding

Step 2.  While there is more than one tree 
create a single tree from the two trees of 
least weight.



Huffman Algorithm

Encoding

Step 2.  

A-15  B-7   C-6      

D-6 E-5

11



Huffman Algorithm

Encoding

Step 2.  

A-15          

B-7 C-6 D-6 E-5

1113



Huffman Algorithm

A-15

B-7 C-6 D-6 E-5

1113

24

39 Final Huffman Tree



Huffman Algorithm

A-15

B-7 C-6 D-6 E-5

1113

24

39
A Huffman code is 
obtained by 
following links from 
the root of the tree 
to each leaf, with a 
left link 
representing 0 and 
a right link 1.



Huffman Algorithm

A-15

B-7 C-6 D-6 E-5

1113

24

39
A - 0, B - 100, C - 101, 
D - 110, E - 111.



Storing the Huffman Tree

To successfully decode the compressed 
file we need the Huffman tree. An 
alternate method is to simply store the 
counts and rebuild the tree in the 
decompression stage.



Huffman Algorithm
We can compare the Huffman code with the 

Shannon-Fano code used in our previous 
example.

Frequencies:

A-15, B-7, C-6, D-6, E-5.

Codes:

A-0, B-100, C-101, D-110, E-111

A-00, B-01, C-10, D-110, E-111.



Huffman Algorithm
Frequencies:

A-15, B-7, C-6, D-6, E-5.

Codes:

A - 0, B - 100, C - 101, D - 110, E - 111

15 + 3*(7 + 6 + 6 + 5 ) = 87

A-00, B-01, C-10, D-110, E-111.

2*(15 + 7 + 6) + 3(6 +5) = 89



Unresolved

• Can we do better that Huffman?

• How do we measure information 
content?



Entropy

Recall our example: A-15, B-7, C-6, D-6, E-4.
If we have a string of 38 symbols from 
{ABCDE} the probability that an A occurs is
P(A) = 15/38. Similarly: P(B) = 7/38, P(C) = 
6/38, P(D) = 6/38, P(E) = 4/38.



Self-information
Claude Shannon defined a quantity self-
information associated with a symbol in a 
message. The self-information of a 
symbol X is given by the formula: 

i(X)= logb 1
P( X ) = − logb P(X)



Log Function



Self-information

Intuition: The higher the probability of a 
character occurance, the lower the 
information content. At the extreme if 
P(X)=1 then there is nothing learned 
when receiving an X since that is the only 
possibility.



Entropy
Shannon also defined a quantity entropy
associated with a message, representing 
the average self information per symbol in 
the message expressed in radix b.

H= P(Xi∑ )logb 1
P (X i)

= − P(Xi∑ )logb P(Xi )



Entropy
Entropy provides an absolute limit on the 
best possible lossless encoding or 
compression of any message, assuming 
that the message may be represented as a 
sequence of independent and identically 
distributed random variables.

http://en.wikipedia.org/wiki/Lossless
http://en.wikipedia.org/wiki/Lossless
http://en.wikipedia.org/wiki/Data_compression
http://en.wikipedia.org/wiki/Data_compression
http://en.wikipedia.org/wiki/Independent_and_identically_distributed_random_variables
http://en.wikipedia.org/wiki/Independent_and_identically_distributed_random_variables
http://en.wikipedia.org/wiki/Independent_and_identically_distributed_random_variables
http://en.wikipedia.org/wiki/Independent_and_identically_distributed_random_variables


Entropy

The entropy of the message in our 
example is computed as 2.16 binary bits 
(i.e. b = 2). The Huffman code obtained 
for this example uses an average of 2.23 
bits per symbol. The Shannon-Fano code 
uses an average of 2.28 bits per symbol



Entropy

• It can be shown that a Shanon-Fano 
encoding of a message S produces a 
code with average bit length SF(S) that 
satisfies:

H(S) ≤ SF(S) ≤ H(S) +1



Entropy
• Let ṗ denote the probability of the least 

likely symbol in message S
• It can be shown that a Huffman 

encoding of a message S produces a 
code with average bit length R(S) that 
satisfies:

H(S) ≤ R(S) ≤ H(S) + ṗ +0.086 ≤ 
H(S) + .586



Entropy
• Let ṗ denote the probability of the least 

likely symbol in message S
• Furthermore ṗ ≤ 1/m where m is the 

number of symbols in the alphabet:

H(S) ≤ R(S) ≤ H(S) + 1/m +0.086 



Entropy
• For m = 28 (8 bits), 1/m = .0039

H(S) ≤ R(S) ≤ H(S) + .0039 +0.086 
≤ H(S) +.0899



Arithmetic Encoding
P(A) = 1/2, P(B) = 1/4 P(C) = P(D) = 1/8.

Assign symbols to intervals in 0 .. 1

1/2 3/4 17/80 A B C D



Arithmetic Encoding
P(A) = 1/2, P(B) = 1/4 P(C) = P(D) = 1/8.

Assign symbols to intervals in 0 .. 1
A_lo = 0, B_lo = 1/2, C_lo = 3/4, D_lo = 7/8
A_r = 1/2, B_r= 1/4, C_r= 1/8, D_r =1/8

1/2 3/4 17/80 A B C D



Arithmetic Encoding
lo = 0;
r = 1;
while symbols remain 

s = next symbol
\\adjust range
lo = lo  + r * s_lo
r = r * s_r

After all symbols are read we are left with an 
interval defined between lo .. lo+r . We can 
represent the entire message by any  value, 
call it v, in that interval.



Arithmetic Encoding
Encode message
BAABCADA

1/2 3/4 17/80 A B C D



Arithmetic Encoding
Encode message
BAABCADA

11/16 3/423/321/2 5/8

1/2 3/4 17/80 A B C D



Arithmetic Encoding
Encode message
BAABCADA

19/32 5/839/641/2 9/16

A B C D11/16 3/423/321/2 5/8



Arithmetic Encoding
Encode message
BAABCADA

35/64 9/1671/1281/2 17/32

19/32 5/839/641/2 9/16



Arithmetic Encoding
Encode message
BAABCADA

35/6417/32

35/64 9/1671/1281/2 17/32



Arithmetic Encoding
Encode message
BAABCADA

280/512272/512

35/64 9/1671/1281/2 17/32

276/512 278/512
279/512



Arithmetic Encoding
Encode message
BAABCADA

280/512272/512 276/512 278/512
279/512

278/512 279/512



Arithmetic Encoding
Encode message
BAABCADA

556/1024 557/1024

278/512 279/512



Arithmetic Encoding
Encode message
BAABCADA

556/1024 557/1024

4455/8192 4456/8192



Arithmetic Encoding
Encode message
BAABCADA

8910/16384 8912/16384

8911/163848910/16384

Final message can be encoded as any value in the final interval.



Arithmetic Encoding
Encode message
BAABCADA

8910/16384 8912/16384

8911/163848910/16384

8910/16384 in binary is 0.1000101100111



Arithmetic Encoding
Encode message
BAABCADA

8910/16384 in binary is 0.1000101100111

In general* the number of binary bits needed to encode a 
message using arithmetic encoding is -log2(r) where r is 
the interval of the final range.

* there are issues of arithmetic that have to be resolved in a real 
world application. In practice this statement is true whenever 
messages are sufficiently long. 



Arithmetic Decoding
Decoding an arithmetic encoded message simply 
reverses the encoding process.

8192/16384
17/80 A B C D

The value 8910/16384 is in B’s interval so B must be the first 
symbol in the message

12288/16384



Arithmetic Decoding
Decoding an arithmetic encoded message simply 
reverses the encoding process.

8192/16384
17/80 A B C D

The value 8910/16384 is in B’s interval so B must be the first 
symbol in the message

12288/16384

A B C D8192/16384 12288/16384



Arithmetic Decoding
Encode message
BAABCADA

11/16 3/423/321/2 5/8

1/2 3/4 17/80 A B C D

8192/16384 12288/1638410235/16384



Arithmetic Decoding
Decoding an arithmetic encoded message simply 
reverses the encoding process.

A B C D

The value 8910/16384 is now in A’s interval so A must be the 
next symbol in the message.

8192/16384 12288/1638410235/16384



Arithmetic Decoding

lo = 0;
r = 1;
val = number received
while symbols decoded less than total number of symbols 

find symbol s such that 
s_lo ≤ val /r  < s_lo + s_r
\\adjust range
lo = lo  + r * s_lo
r = r * s_r



Let pk denote the probability for symbol sk.

Let fk denote the frequency for symbol sk.

For a message of length n, fk = n⇥ pk.
Let m denote the size of the alphabet.

nY

k=1

pk

mY

k=1

pfkk

So the range of the final interval is:

Performance

=



� log2

Y
pfkk = �n

X
pk log2 pk

Performance

We have: 

expressing the number of binary bits needed 
to represent a message (of n symbols). So 
the average number of bits per symbol 
matches the entropy bound exactly.



Arithmetic Encoding
Very efficient and effective implementations of arithmetic 
encoding and variants of the algorithm have been 
developed. In general arithmetic encoding can achieve 
compression rates superior to Huffman encoding. 



Epilogue

• Claude Shannon, Robert Fano, Peter Elias 
professors at MIT during ~ 1950 - 1970

• Claude Shannon invented the field of 
information theory and concepts such as 
“entropy”

• Shannon-Fano algorithm 
• Shannon-Fano-Elias algorithm (Arithmetic 

Encoding)



Epilogue

• David Huffman student at MIT early 50s
• Huffman’s algorithm was developed as a 

project. (Fano was Huffman’s professor 
who gave students a choice between writing 
a final exam or doing a project.) 



Epilogue
• Many modern compressors use Huffman 

encoding e.g. PKZIP, JPEG and mp3. 
• Very efficient versions of arithmetic 

encoding have been developed and 
implemented.  Although the original JPEG 
specification had an option to use arithmetic 
encoding, Huffman is used due to patent 
issues. (It has been shown that arithmetic 
encoding can reduce a Huffman JPEG up to  
25%!)



Epilogue
• These methods assume that every symbol 

comes from a sequence of independent and 
identically distributed random variables

• In English that is clearly not the case, e.g. 
queen, inquiry, queue, cheque, question

• There are various compression schemes that 
can adapt to the highly non-independent 
sequence of symbols in messages. e.g., 
LZW encoding (gif, UNIX compress).

http://en.wikipedia.org/wiki/Independent_and_identically_distributed_random_variables
http://en.wikipedia.org/wiki/Independent_and_identically_distributed_random_variables
http://en.wikipedia.org/wiki/Independent_and_identically_distributed_random_variables
http://en.wikipedia.org/wiki/Independent_and_identically_distributed_random_variables


Resources
• Data Compression

http://www.ics.uci.edu/~dan/pubs/DataCompression.html
See sections 
1.1 Definitions 
3.1 Shannon-Fano Coding
3.2 Static Huffman Coding 
3.4 Arithmetic Coding

http://www.ics.uci.edu/~dan/pubs/DataCompression.html
http://www.ics.uci.edu/~dan/pubs/DataCompression.html
http://www.ics.uci.edu/~dan/pubs/DC-Sec1.html#Sec_1.1
http://www.ics.uci.edu/~dan/pubs/DC-Sec1.html#Sec_1.1
http://www.ics.uci.edu/~dan/pubs/DC-Sec3.html#Sec_3.1
http://www.ics.uci.edu/~dan/pubs/DC-Sec3.html#Sec_3.1
http://www.ics.uci.edu/~dan/pubs/DC-Sec3.html#Sec_3.2
http://www.ics.uci.edu/~dan/pubs/DC-Sec3.html#Sec_3.2
http://www.ics.uci.edu/~dan/pubs/DC-Sec3.html#Sec_3.4
http://www.ics.uci.edu/~dan/pubs/DC-Sec3.html#Sec_3.4


Resources
• People

– http://en.wikipedia.org/wiki/Claude_Shannon
– http://en.wikipedia.org/wiki/

David_A._Huffman
– http://en.wikipedia.org/wiki/Robert_Fano
– http://en.wikipedia.org/wiki/Peter_Elias

http://en.wikipedia.org/wiki/Claude_Shannon
http://en.wikipedia.org/wiki/Claude_Shannon
http://en.wikipedia.org/wiki/Robert_Fano
http://en.wikipedia.org/wiki/Robert_Fano
http://en.wikipedia.org/wiki/Peter_Elias
http://en.wikipedia.org/wiki/Peter_Elias

