All Meals for a Dollar and other vertex enumeration problems

David Avis

April 5, 2012

Introduction

Linear Programming

Vertex enumeration

Hot news：Lovasz wins Kyoto Prize

The Kyoto prize／Laureates／The 2010 Kyoto Prize Laureates

Advanced Technology／Prize Field：Biotechnology and Medical Technology

Shinya Yamanaka

Japan／September 4， 1962
Medical Scientist
Professor，Kyoto University
｜Profle｜｜Achicyements｜Press pave｜
＂Development of Technology for Generating Induced Pluripotent Stem（iPS）Cells＂
By introducing just four transcription factor genes into dermal fibroblasts，Dr．Yamanaka succeeded in producing induced pluripotent stem（iPS）cells， which exhibit a pluripotency similar to that of embryonic stem（ES）cells．The iPS cell technology is now expected not only to expand the possibilities of regenerative medicine，but also to make significant contributions to the rapid progress of medical science in general．

Basic Sciences／Prizc Field：Mathematical Sciences（inchuding Pure Mathematics）

László Lovász

Hungary，U．S．A．／March 9， 1948
Mathematician
Professor，Eötvōs Loránd University
｜Profle｜Achieverments｜Press pase｜
＂Outstanding Contributions to Mathematical Sciences Based on Discrete Optimization Algorithms＂
Through his advanced research on discrete structures，Dr．Lovaisz has provided a link among various branches of mathematics in terms of algorithms， thereby influencing a broad spectrum of the mathematical sciences－including discrete mathematics，combinational optimization and theoretical computer science．In so doing，Dr．Lovaisz has made outstanding contributions to the advancement of both the academic and technological possibilities of the mathematical sciences．

Modelling and optimization

- Modelling refers to building an abstract mathematical model of real situation, typically one involving making decisions under constraints with a certain objective.

Modelling and optimization

- Modelling refers to building an abstract mathematical model of real situation, typically one involving making decisions under constraints with a certain objective.
- The decisions are modelled as decision variables

Modelling and optimization

- Modelling refers to building an abstract mathematical model of real situation, typically one involving making decisions under constraints with a certain objective.
- The decisions are modelled as decision variables
- The constraints and the objective are stated in terms of the decision variables

Modelling and optimization

- Modelling refers to building an abstract mathematical model of real situation, typically one involving making decisions under constraints with a certain objective.
- The decisions are modelled as decision variables
- The constraints and the objective are stated in terms of the decision variables
- If the constraints and objective are linear functions, it is called a linear program

Diet problem

- Situation: You need to choose some food in the supermarket to feed yourself properly for just \$1 per day.

Diet problem

- Situation: You need to choose some food in the supermarket to feed yourself properly for just $\$ 1$ per day.
- Decison variables: How much of each product you will buy.

Diet problem

- Situation: You need to choose some food in the supermarket to feed yourself properly for just $\$ 1$ per day.
- Decison variables: How much of each product you will buy.
- Constraints: There are minimum daily requirements for calories, vitamins, calcium, etc. There is a maximum amount of each food you can eat.

Diet problem

- Situation: You need to choose some food in the supermarket to feed yourself properly for just $\$ 1$ per day.
- Decison variables: How much of each product you will buy.
- Constraints: There are minimum daily requirements for calories, vitamins, calcium, etc. There is a maximum amount of each food you can eat.
- Objective Eat for less than $\$ 1$.

Sample data

	Food	Serv. Size	Energy (kcal)	Protein (g)	Calcium (mg)	Price Φ	Max Serv.
x_{1}	Oatmeal	28 g	110	4	2	3	4
x_{2}	Chicken	100 g	205	32	12	24	3
x_{3}	Eggs	2 large	160	13	54	13	2
x_{4}	Milk	237 ml	160	8	285	9	8
x_{5}	Cherry Pie	170 g	420	4	22	20	2
x_{6}	Pork w. beans	260 g	260	14	80	19	2
	Min. Daily Amt.		2000	55	800		

The decision variables are $x_{1}, x_{2}, \ldots, x_{6}$.
Fractional servings are allowed.
From Linear Programming, Vasek Chvátal, 1983

Linear programming formulation for diet problem

	Food	Serv. Size	Energy (kcal)	Protein (g)	Calcium (mg)	Price Φ	Max Serv.
x_{1}	Oatmeal	28 g	110	4	2	3	4
x_{2}	Chicken	100 g	205	32	12	24	3
x_{3}	Eggs	2 large	160	13	54	13	2
x_{4}	Milk	237 ml	160	8	285	9	8
x_{5}	Cherry Pie	170 g	420	4	22	20	2
x_{6}	Pork w. beans	260 g	260	14	80	19	2
	Min. Daily Amt.		2000	55	800		

$$
\min z=3 x_{1}+24 x_{2}+13 x_{3}+9 x_{4}+20 x_{5}+19 x_{6}
$$

s.t. $110 x_{1}+205 x_{2}+160 x_{3}+160 x_{4}+420 x_{5}+260 x_{6} \geq 2000$

$$
\begin{aligned}
& 4 x_{1}+32 x_{2}+13 x_{3}+8 x_{4}+4 x_{5}+14 x_{6} \geq 55 \\
& 2 x_{1}+12 x_{2}+54 x_{3}+285 x_{4}+22 x_{5}+80 x_{6} \geq 800 \\
& 0 \leq x_{1} \leq 4, \quad 0 \leq x_{2} \leq 3, \quad 0 \leq x_{3} \leq 2
\end{aligned}
$$

General linear programming problem

$$
\begin{align*}
& \max z= c_{1} x_{1}+c_{2} x_{2}+\ldots+c_{n} x_{n} \\
& \text { s.t. } \quad a_{11} x_{1}+a_{12} x_{2}+a_{1 n} x_{n} \leq b_{1} \\
& a_{21} x_{1}+a_{22} x_{2}+a_{2 n} x_{n} \leq b_{2} \tag{1}\\
& \cdots \\
& a_{m 1} x_{1}+a_{m 2} x_{2}+a_{m n} x_{n} \leq b_{m} \\
& x_{1} \geq 0, x_{2} \geq 0, \ldots, x_{n} \geq 0
\end{align*}
$$

General linear programming problem

$$
\begin{align*}
& \max z= c_{1} x_{1}+c_{2} x_{2}+\ldots+c_{n} x_{n} \\
& \\
& a_{11} x_{1}+a_{12} x_{2}+a_{1 n} x_{n} \leq b_{1} \tag{1}\\
& a_{21} x_{1}+a_{22} x_{2}+a_{2 n} x_{n} \leq b_{2} \\
& \cdots \\
& a_{m 1} x_{1}+a_{m 2} x_{2}+a_{m n} x_{n} \leq b_{m} \\
& x_{1} \geq 0, x_{2} \geq 0, \ldots, x_{n} \geq 0
\end{align*}
$$

- $x_{1}, x_{2}, \ldots, x_{n}$ are the decision variables

General linear programming problem

$$
\begin{aligned}
\max z= & c_{1} x_{1}+c_{2} x_{2}+\ldots+c_{n} x_{n} \\
\text { s.t. } \quad a_{11} x_{1}+a_{12} x_{2}+a_{1 n} x_{n} & \leq b_{1} \\
a_{21} x_{1}+a_{22} x_{2}+a_{2 n} x_{n} & \leq b_{2} \\
& \cdots \\
& a_{m 1} x_{1}+a_{m 2} x_{2}+a_{m n} x_{n}
\end{aligned} \leq b_{m} .
$$

- $x_{1}, x_{2}, \ldots, x_{n}$ are the decision variables
- $c_{1}, c_{2}, \ldots, c_{n}, b_{1}, b_{2}, \ldots, b_{m}$ and $a_{11}, \ldots, a_{i j}, \ldots, a_{m n}$ are input data

General linear programming problem

$$
\begin{align*}
& \max z=c_{1} x_{1}+c_{2} x_{2}+\ldots+c_{n} x_{n} \\
& \text { s.t. } a_{11} x_{1}+a_{12} x_{2}+a_{1 n} x_{n} \leq b_{1} \\
& a_{21} x_{1}+a_{22} x_{2}+a_{2 n} x_{n} \leq b_{2} \tag{1}\\
& a_{m 1} x_{1}+a_{m 2} x_{2}+a_{m n} x_{n} \leq b_{m} \\
& x_{1} \geq 0, x_{2} \geq 0, \ldots, x_{n} \geq 0
\end{align*}
$$

- $x_{1}, x_{2}, \ldots, x_{n}$ are the decision variables
- $c_{1}, c_{2}, \ldots, c_{n}, b_{1}, b_{2}, \ldots, b_{m}$ and $a_{11}, \ldots, a_{i j}, \ldots, a_{m n}$ are input data
- The constraints (1) define a convex polyhedron

Simplex Method

- George Dantzig invented the simplex method to solve linear programs during WWII.

Simplex Method

- George Dantzig invented the simplex method to solve linear programs during WWII.
- "In terms of widespread application, Dantzig's algorithm is one of the most successful of all time: Linear programming dominates the world of industry..." (Top 10 Algorithms of the 20th century)

Simplex Method

- George Dantzig invented the simplex method to solve linear programs during WWII.
- "In terms of widespread application, Dantzig's algorithm is one of the most successful of all time: Linear programming dominates the world of industry..." (Top 10 Algorithms of the 20th century)
- It gave rise to the field of Operations Research (OR).

Operations Research faculty at Stanford (1969)

George Dantzig is on the far left, then Alan Manne, Frederick Hillier, Donald Iglehart, Arthur Veinott Jr., Rudolf E. Kalman, Gerald Lieberman, Kenneth Arrow and Richard Cottle.

Sensei and Seito

Another OR graduate from Stanford

Institute for Operations Research and the Management Sciences

In The Media

"Japan's former prime minister, Yukio Hatoyama, could not apply math modeling to solving two pressing political problems. \qquad ."
"Before entering politics, Hatoyama in the 1970s received a Ph.D in engineering in a field called operations research, which employs applied mathematics to solve complex problems, at Stanford University."

Linear programming solution

	Food	Serv. Size	Energy (kcal)	Protein (g)	Calcium (mg)	Price Φ	Max Serv.
x_{1}	Oatmeal	28 g	110	4	2	3	4
x_{2}	Chicken	100 g	205	32	12	24	3
x_{3}	Eggs	2 large	160	13	54	13	2
x_{4}	Milk	237 ml	160	8	285	9	8
x_{5}	Cherry Pie	170 g	420	4	22	20	2
x_{6}	Pork w. beans	260 g	260	14	80	19	2
	Min. Daily Amt.		2000	55	800		

Linear programming solution

	Food	Serv. Size	Energy (kcal)	Protein (g)	Calcium (mg)	Price Φ	Max Serv.
x_{1}	Oatmeal	28 g	110	4	2	3	4
x_{2}	Chicken	100 g	205	32	12	24	3
x_{3}	Eggs	2 large	160	13	54	13	2
x_{4}	Milk	237 ml	160	8	285	9	8
x_{5}	Cherry Pie	170 g	420	4	22	20	2
x_{6}	Pork w. beans	260 g	260	14	80	19	2
	Min. Daily Amt.		2000	55	800		

- $x_{1}=4$ (oatmeal) $x_{4}=4.5($ milk $) x_{5}=2($ pie $)$ cost $=92.5 \Phi$

Linear programming solution

	Food	Serv. Size	Energy (kcal)	Protein (g)	Calcium (mg)	Price Φ	Max Serv.
x_{1}	Oatmeal	28 g	110	4	2	3	4
x_{2}	Chicken	100 g	205	32	12	24	3
x_{3}	Eggs	2 large	160	13	54	13	2
x_{4}	Milk	237 ml	160	8	285	9	8
x_{5}	Cherry Pie	170 g	420	4	22	20	2
x_{6}	Pork w. beans	260 g	260	14	80	19	2
	Min. Daily Amt.		2000	55	800		

- $x_{1}=4$ (oatmeal) $x_{4}=4.5($ milk $) x_{5}=2($ pie $)$ cost $=92.5 \Phi$
- Where are the chicken, eggs and pork?

Linear programming solution

	Food	Serv. Size	Energy (kcal)	Protein (g)	Calcium (mg)	Price Φ	Max Serv.
x_{1}	Oatmeal	28 g	110	4	2	3	4
x_{2}	Chicken	100 g	205	32	12	24	3
x_{3}	Eggs	2 large	160	13	54	13	2
x_{4}	Milk	237 ml	160	8	285	9	8
x_{5}	Cherry Pie	170 g	420	4	22	20	2
x_{6}	Pork w. beans	260 g	260	14	80	19	2
	Min. Daily Amt.		2000	55	800		

- $x_{1}=4$ (oatmeal) $x_{4}=4.5$ (milk) $x_{5}=2$ (pie) cost $=92.5 \Phi$
- Where are the chicken, eggs and pork?
- Do I have to eat the same food every day?

Problems with the solution

Problems with the solution

- Many desirable items were not included in the optimum solution

Problems with the solution

- Many desirable items were not included in the optimum solution
- We obtained a unique optimum solution, but ...

Problems with the solution

- Many desirable items were not included in the optimum solution
- We obtained a unique optimum solution, but ...
- ... people (and managers) like to make choices!

Ask the right question!

- Q: What are all the meals I can eat for at most $\$ 1$?

Ask the right question!

- Q: What are all the meals I can eat for at most $\$ 1$?
- A: An infinite number! Add any small amount

Ask the right question!

- Q: What are all the meals I can eat for at most $\$ 1$?
- A: An infinite number! Add any small amount
- Q: Can you give me some different meals at least?

Ask the right question!

- Q: What are all the meals I can eat for at most $\$ 1$?
- A: An infinite number! Add any small amount
- Q: Can you give me some different meals at least?
- A: Yes! In fact I can describe all allowable meals for under $\$ 1$

All meals for a dollar

Any solution to these inequalities is a meal for under $\$ 1$:

$$
\begin{aligned}
3 x_{1}+24 x_{2}+13 x_{3}+9 x_{4}+20 x_{5}+19 x_{6} & \leq 100 \\
110 x_{1}+205 x_{2}+160 x_{3}+160 x_{4}+420 x_{5}+260 x_{6} & \geq 2000 \\
4 x_{1}+32 x_{2}+13 x_{3}+8 x_{4}+4 x_{5}+14 x_{6} & \geq 55 \\
2 x_{1}+12 x_{2}+54 x_{3}+285 x_{4}+22 x_{5}+80 x_{6} & \geq 800 \\
0 \leq x_{1} \leq 4, \quad 0 \leq x_{2} \leq 3, \quad 0 \leq x_{3} \leq 2, & \\
0 \leq x_{4} \leq 8, \quad 0 \leq x_{5} \leq 2, \quad 0 \leq x_{6} \leq 2 &
\end{aligned}
$$

All meals for a dollar

Any solution to these inequalities is a meal for under $\$ 1$:

$$
\begin{aligned}
3 x_{1}+24 x_{2}+13 x_{3}+9 x_{4}+20 x_{5}+19 x_{6} & \leq 100 \\
110 x_{1}+205 x_{2}+160 x_{3}+160 x_{4}+420 x_{5}+260 x_{6} & \geq 2000 \\
4 x_{1}+32 x_{2}+13 x_{3}+8 x_{4}+4 x_{5}+14 x_{6} & \geq 55 \\
2 x_{1}+12 x_{2}+54 x_{3}+285 x_{4}+22 x_{5}+80 x_{6} & \geq 800 \\
0 \leq x_{1} \leq 4, \quad 0 \leq x_{2} \leq 3, \quad 0 \leq x_{3} \leq 2, & \\
0 \leq x_{4} \leq 8, \quad 0 \leq x_{5} \leq 2, \quad 0 \leq x_{6} \leq 2 &
\end{aligned}
$$

- But this is just a restatement of the problem

All meals for a dollar

Any solution to these inequalities is a meal for under $\$ 1$:

$$
\begin{aligned}
3 x_{1}+24 x_{2}+13 x_{3}+9 x_{4}+20 x_{5}+19 x_{6} & \leq 100 \\
110 x_{1}+205 x_{2}+160 x_{3}+160 x_{4}+420 x_{5}+260 x_{6} & \geq 2000 \\
4 x_{1}+32 x_{2}+13 x_{3}+8 x_{4}+4 x_{5}+14 x_{6} & \geq 55 \\
2 x_{1}+12 x_{2}+54 x_{3}+285 x_{4}+22 x_{5}+80 x_{6} & \geq 800 \\
0 \leq x_{1} \leq 4, \quad 0 \leq x_{2} \leq 3, \quad 0 \leq x_{3} \leq 2, & \\
0 \leq x_{4} \leq 8, \quad 0 \leq x_{5} \leq 2, \quad 0 \leq x_{6} \leq 2 &
\end{aligned}
$$

- But this is just a restatement of the problem
- ... how do I find these solutions?

A more useful solution

All menus for a \$1

All (17) Extreme
Solutions to the Diet Problem with Budget $\$ 1.00$

Cost	$\begin{aligned} & \text { Oat- } \\ & \text { meal } \end{aligned}$	Chicken	Eggs	Milk	$\begin{aligned} & \text { Cherry } \\ & \text { Pie } \end{aligned}$	Pork Beans
92.5	4.	0	0	4.5	2.	0
97.3	4.	0	0	8.	0.67	0
98.6	4.	0	0	2.23	2.	1.40
100.	1.65	0	0	6.12	2.	0
100.	2.81	0	0	8.	0.98	0
100.	3.74	0	0	2.20	2.	1.53
100.	4.	0	0	2.18	1.88	1.62
100.	4.	0	0	2.21	2.	1.48
100.	4.	0	0	5.33	2.	0
100.	4.	0	0	8.	0.42	0.40
100.	4.	0	0	8.	0.80	0
100.	4.	0	0.50	8.	0.48	0
100.	4.	0	1.88	2.63	2.	0
100.	4.	0.17	0	2.27	2.	1.24
100.	4.	0.19	0	8.	0.58	,
100.	4.	0.60	0	3.73	2.	0
100.	4.	0	1.03	2.21	2.	0.78

A more useful solution

A more useful solution

All menus for a \$1									
All (17) Extreme Solutions to the Diet Problem with Budget $\$ 1.00$									
$\begin{aligned} & \frac{\text { Solutions to }}{\text { Cost Oat- }} \\ & \text { meal } \end{aligned}$		Chicken					Cher		$\begin{aligned} \text { ork } \\ \text { Beans } \end{aligned}$
92.5	4.			0		4.5	2.	0	
97.3	4.	0		0		8.	0.67	0	
	4.	0		0		2.23	2.		
100.	1.65	0		0		6.12	2.	0	
100.	2.81	0		0		8.	0.98	0	
100.	3.74	0		0		2.20	2.		. 53
100.	4.	0		0		2.18	1.88		. 62
	4.	0		0		2.21	2.		. 48
100.	4.	0		0		5.33	2.	0	
	4.	0		0		8.	0.42		. 40
100.	4.	0		0		8.	0.80	0	
100.	4.	0			. 50	8.	0.48	0	
	4.	0			1.88	2.63	2.		
100.	4.		17	0		2.27	2.		. 24
	4.	0.1				8.	0.58	0	
100.	4.		60	0		3.73	2.		
100.	4.				1.03	2.21	2.		. 78

- Taking convex combinations of rows gives new meals

A more useful solution

All menus for a \$1									
All (17) Extreme Solutions to the Diet Problem with Budget $\$ 1.00$									
$\begin{aligned} & \frac{\text { Solutions to }}{\text { Cost Oat- }} \\ & \text { meal } \end{aligned}$		Chicken					Cher		$\begin{aligned} \text { ork } \\ \text { Beans } \end{aligned}$
92.5	4.			0		4.5	2.	0	
97.3	4.	0		0		8.	0.67	0	
	4.	0		0		2.23	2.		
100.	1.65	0		0		6.12	2.	0	
100.	2.81	0		0		8.	0.98	0	
100.	3.74	0		0		2.20	2.		. 53
100.	4.	0		0		2.18	1.88		. 62
	4.	0		0		2.21	2.		. 48
100.	4.	0		0		5.33	2.	0	
	4.	0		0		8.	0.42		. 40
100.	4.	0		0		8.	0.80	0	
100.	4.	0			. 50	8.	0.48	0	
	4.	0			1.88	2.63	2.		
100.	4.		17	0		2.27	2.		. 24
	4.	0.1				8.	0.58	0	
100.	4.		60	0		3.73	2.		
100.	4.				1.03	2.21	2.		. 78

- Taking convex combinations of rows gives new meals
- Eg. Taking half each of the last two rows gives a $\$ 1$ meal with all foods

Two representations of a bounded polyhedron

Two representations of a bounded polyhedron

- H-representation (Half-spaces): $\left\{x \in R^{n}: A x \leq b\right\}$

Two representations of a bounded polyhedron

- H-representation (Half-spaces): $\left\{x \in R^{n}: A x \leq b\right\}$
- V-representation (Vertices): $v_{1}, v_{2}, \ldots, v_{N}$ are the vertices of P

$$
\begin{aligned}
x & =\sum_{i=1}^{N} \lambda_{i} v_{i} \\
\text { where } \sum_{i=1}^{N} \lambda_{i} & =1, \quad \lambda_{i} \geq 0, \quad i=1,2, \ldots, N
\end{aligned}
$$

Two representations of a bounded polyhedron

- H-representation (Half-spaces): $\left\{x \in R^{n}: A x \leq b\right\}$
- V-representation (Vertices): $v_{1}, v_{2}, \ldots, v_{N}$ are the vertices of P

$$
\begin{aligned}
x & =\sum_{i=1}^{N} \lambda_{i} v_{i} \\
\text { where } \sum_{i=1}^{N} \lambda_{i} & =1, \quad \lambda_{i} \geq 0, \quad i=1,2, \ldots, N
\end{aligned}
$$

- Vertex enumeration: H-representation $\Rightarrow \mathrm{V}$-representation

Two representations of a bounded polyhedron

- H-representation (Half-spaces): $\left\{x \in R^{n}: A x \leq b\right\}$
- V-representation (Vertices): $v_{1}, v_{2}, \ldots, v_{N}$ are the vertices of P

$$
\begin{aligned}
x & =\sum_{i=1}^{N} \lambda_{i} v_{i} \\
\text { where } \sum_{i=1}^{N} \lambda_{i} & =1, \quad \lambda_{i} \geq 0, \quad i=1,2, \ldots, N
\end{aligned}
$$

- Vertex enumeration: H-representation $\Rightarrow \mathrm{V}$-representation
- Convex hull problem: V-representation $\Rightarrow \mathrm{H}$-representation

Example in R^{3}

H-representation:

$$
\begin{aligned}
1-x_{1}+x_{3} & \geq 0 \\
1-x_{2}+x_{3} & \geq 0 \\
1+x_{1}+x_{3} & \geq 0 \\
1+x_{2}+x_{3} & \geq 0 \\
-x_{3} & \geq 0
\end{aligned}
$$

V-representation:

$v_{1}=(-1,1,0), \quad v_{2}=(-1,-1,0), \quad v_{3}=(1,-1,0)$,

$$
v_{4}=(1,1,0), \quad v_{5}=(0,0,-1)
$$

Dictionary representation

Introduce slack variables:

$$
\begin{aligned}
& x_{4}=1-x_{1}+x_{3} \geq 0 \\
& x_{5}=1-x_{2}+x_{3} \geq 0 \\
& x_{6}=1+x_{1}+x_{3} \geq 0 \\
& x_{7}=1+x_{2}+x_{3} \geq 0 \\
& x_{8}=
\end{aligned}
$$

$B=\{4,5,6,7,8\}$, indices of basic variables.
$N=\{1,2,3\}$, indices of co-basic variables.
The dictionary with $N=\{4,5,8\}$ is feasible and represents the vertex $(1,1,0)$:

$$
\begin{array}{lr}
x_{1}=1-x_{4} & -x_{8} \\
x_{2}=1 & -x_{5}-x_{8} \\
x_{3}= & -x_{8} \\
\hline x_{6}=2-x_{4} & -2 x_{8} \\
x_{7}=2 & -x_{5}-2 x_{8}
\end{array}
$$

Note: x_{1}, x_{2}, x_{3} are basic and $x_{6} \geq 0, x_{7} \geq 0$

Adjacency: Pivoting

$x_{1}=1-x_{4}$	$-x_{8}$	
$x_{2}=1$	$-x_{5}$	$-x_{8}$
$x_{3}=0$		$-x_{8}$
$x_{6}=2-x_{4}$	$-2 x_{8}$	
$x_{7}=2$	$-x_{5}-2 x_{8}$	

$$
\begin{aligned}
& \mathrm{B}=\{1,2,3,6,7\} \\
& \mathrm{N}=\{4,58\}
\end{aligned}
$$

Entering variable: 4
Leaving variable: 6

$x_{1}=-1$	$+x_{6}$	$+x_{8}$
$x_{2}=1$	$-x_{5}$	$-x_{8}$
$x_{3}=0$		$-x_{8}$
$x_{4}=2$	$-x_{6}$	$-2 x_{8}$
$x_{7}=2$	$-x_{5}$	$-2 x_{8}$

$$
\begin{aligned}
& \mathrm{B}=\{1,2,3,4,7\} \\
& \mathrm{N}=\{\mathbf{5}, \boldsymbol{6}, \boldsymbol{8}\} \\
& \mathrm{x} 4=2>=0 \\
& \mathrm{x} 5=2>=0
\end{aligned}
$$

Feasible Pivot!

Graph search for vertex enumeration

- Adjacency oracle for a feasible dictionary N :

$$
\operatorname{Adj}(N, i, j)=\left\{\begin{array}{cl}
\emptyset & N \cup\{i\} /\{j\} \text { infeasible dictionary } \\
\emptyset & x_{j} \text { has zero coefficient in row } x_{i} \\
N \cup\{i\} /\{j\} & \text { feasible dictionary }
\end{array}\right.
$$

Graph search for vertex enumeration

- Adjacency oracle for a feasible dictionary N :

$$
\operatorname{Adj}(N, i, j)=\left\{\begin{array}{cl}
\emptyset & N \cup\{i\} /\{j\} \text { infeasible dictionary } \\
\emptyset & x_{j} \text { has zero coefficient in row } x_{i} \\
N \cup\{i\} /\{j\} & \text { feasible dictionary }
\end{array}\right.
$$

- Find a starting feasible dictionary by solving an LP (Phase 1)

Graph search for vertex enumeration

- Adjacency oracle for a feasible dictionary N :

$$
\operatorname{Adj}(N, i, j)=\left\{\begin{array}{cl}
\emptyset & N \cup\{i\} /\{j\} \text { infeasible dictionary } \\
\emptyset & x_{j} \text { has zero coefficient in row } x_{i} \\
N \cup\{i\} /\{j\} & \text { feasible dictionary }
\end{array}\right.
$$

- Find a starting feasible dictionary by solving an LP (Phase 1)
- Use your favourite graph traversal algorithm to find all feasible dictionaries

Graph search for vertex enumeration

- Adjacency oracle for a feasible dictionary N :

$$
\operatorname{Adj}(N, i, j)=\left\{\begin{array}{cl}
\emptyset & N \cup\{i\} /\{j\} \text { infeasible dictionary } \\
\emptyset & x_{j} \text { has zero coefficient in row } x_{i} \\
N \cup\{i\} /\{j\} & \text { feasible dictionary }
\end{array}\right.
$$

- Find a starting feasible dictionary by solving an LP (Phase 1)
- Use your favourite graph traversal algorithm to find all feasible dictionaries
- Eg. DFS or BFS

Graph of all feasible dictionaries

Problems with DFS/BFS algorithms

- DFS/BFS requires a database of visited vertices and a stack/queue

Problems with DFS/BFS algorithms

- DFS/BFS requires a database of visited vertices and a stack/queue
- A polyhedron with m inequalities and n dimensions may have $m^{\lfloor n / 2\rfloor}$ vertices !

Problems with DFS/BFS algorithms

- DFS/BFS requires a database of visited vertices and a stack/queue
- A polyhedron with m inequalities and n dimensions may have $m^{\lfloor n / 2\rfloor}$ vertices !
- Often we just want to examine vertices, not keep them all

Problems with DFS/BFS algorithms

- DFS/BFS requires a database of visited vertices and a stack/queue
- A polyhedron with m inequalities and n dimensions may have $m^{\lfloor n / 2\rfloor}$ vertices !
- Often we just want to examine vertices, not keep them all
- Reverse search allows this to be done in $O(m n)$ space, ie. input size.

Reverse search algorithm Avis-Fukuda 1991

Reverse search algorithm Avis-Fukuda 1991

- Simplex method gives a path from any vertex to the optimum

Reverse search algorithm Avis-Fukuda 1991

- Simplex method gives a path from any vertex to the optimum
- The set of all such paths is a spanning tree of the polyhedron

Reverse search algorithm Avis-Fukuda 1991

- Simplex method gives a path from any vertex to the optimum
- The set of all such paths is a spanning tree of the polyhedron
- Reverse search builds this tree starting at the origin, reversing the simplex method

Reverse search algorithm

http://cgm.cs.mcgill.ca/ avis/C/Irs.html

(a) The "simplex tree" induced by the objective $\left(-\sum x_{i}\right)$.
(b) The corresponding reverse search tree.

