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Hot news: Lovasz wins Kyoto Prize
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Modelling and optimization

e Modelling refers to building an abstract mathematical model
of real situation, typically one involving making decisions
under constraints with a certain objective.
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Modelling and optimization

Modelling refers to building an abstract mathematical model
of real situation, typically one involving making decisions
under constraints with a certain objective.

The decisions are modelled as decision variables

The constraints and the objective are stated in terms of the
decision variables

If the constraints and objective are linear functions, it is called
a linear program
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e Situation: You need to choose some food in the supermarket
to feed yourself properly for just $1 per day.



Outline Introduction Linear Programming Vertex enumeration

Diet problem

e Situation: You need to choose some food in the supermarket
to feed yourself properly for just $1 per day.

e Decison variables: How much of each product you will buy.



Introduction

Diet problem

e Situation: You need to choose some food in the supermarket
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of each food you can eat.
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Diet problem

Situation: You need to choose some food in the supermarket
to feed yourself properly for just $1 per day.

Decison variables: How much of each product you will buy.

Constraints: There are minimum daily requirements for
calories, vitamins, calcium, etc. There is a maximum amount
of each food you can eat.

Objective Eat for less than $1.
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Sample data

Food Serv. Energy | Protein | Calcium | Price | Max

Size (keal) (8) (mg) ¢ | Serv.

x1 Oatmeal 28g 110 4 2 3 4
X2 Chicken 100g 205 32 12 24 3
X3 Eggs 2 large 160 13 54 13 2
X4 Milk 237ml 160 8 285 9 8
X5 Cherry Pie 170g 420 4 22 20 2
Xp Pork w. beans 260g 260 14 80 19 2

Min. Daily Amt. 2000 55 800

The decision variables are xi, x2, ..., X.

Fractional servings are allowed.
From Linear Programming, Vasek Chvatal, 1983
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Linear programming formulation for diet problem

Food Serv. Energy | Protein | Calcium | Price | Max

Size (keal) (8) (mg) ¢ | Serv.

X1 Oatmeal 28g 110 4 2 3 4
X2 Chicken 100g 205 32 12 24 3
X3 Eggs 2 large 160 13 54 13 2
Xa Milk 237ml 160 8 285 9 8
X5 Cherry Pie 170g 420 4 22 20 2
X6 Pork w. beans 260g 260 14 80 19 2

Min. Daily Amt. 2000 55 800
min z = 3x1 + 24x; + 13x3 + 9x3 + 20x5 + 19x6
s.t. 110x; + 205x» + 160x3 + 160xs + 420xs + 260xs > 2000
4x; + 32xp + 13x3+8xa +4x5 +14xs > 55
2x1 4+ 12x» + b54x3 + 285x4 + 22x5 +80xs > 800

OSX1§4-7

O§X4§87

0§X2§37
0§X5§27

0§X3§27
0§X5§2
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General linear programming problem

max z = C1X1 + CXo+ ...+ ChXp
s.t. aixy + awxe + ainxs < by
ax1 + axnxe + apxp < b
W
amiX1 + ameX2 + amnXn < bm

X1207 X2207 AR XnZO
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® Xy, X2, ..., Xp are the decision variables
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General linear programming problem

max z = C1X1 + CXxo+ ...+ ChXn

IN
&

s.t. aiixy + aipxe + ainXn

IN
S

a1x1 + axxe + apXnp

IN
o
3

amiX1 + ampX2 + amnXn
x12>20, x>0, ..., x>0

® Xy, X2, ..., Xp are the decision variables

® C1, €, .y Cny b1, b2, ...,by and a11, ..., ajj, ...,amn are
input data

e The constraints (1) define a convex polyhedron
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e George Dantzig invented the simplex method to solve linear programs

during WWII.
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Simplex Method

e George Dantzig invented the simplex method to solve linear programs
during WWII.

® "In terms of widespread application, Dantzig's algorithm is one of the
most successful of all time: Linear programming dominates the world of
industry...” (Top 10 Algorithms of the 20th century)
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Simplex Method

e George Dantzig invented the simplex method to solve linear programs
during WWII.

® "In terms of widespread application, Dantzig's algorithm is one of the
most successful of all time: Linear programming dominates the world of
industry...” (Top 10 Algorithms of the 20th century)

® |t gave rise to the field of Operations Research (OR).
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Operations Research faculty at Stanford (1969)

George Dantzig is on the far left, then Alan Manne, Frederick Hillier, Donald
Iglehart, Arthur Veinott Jr., Rudolf E. Kalman, Gerald Lieberman, Kenneth
Arrow and Richard Cottle.
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Sensei and Seito

Vertex enumeration

Vasek Chvatal
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Another OR graduate from Stanford

Hatoyama file:///C:/cygwin/home/avis/talks/allmeals/hato;

inf gy online

Institute for Operations Research and the Management Sciences

In The Media

= 7 i PM with OR degree steps down

"Japan's former prime minister, Yukio Hatoyama, could not apply math modeling to solving two pressing
political problems......."

"Before entering politics, Hatoyama in the 1970s received a Ph.D in engineering in a field called
operations research, which employs applied mathematics to solve complex problems, at Stanford
University."
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Linear programming solution

Food Serv. Energy | Protein | Calcium | Price | Max

Size (keal) () (mg) ¢ | Serv.

X1 Oatmeal 28g 110 4 2 3 4
X2 Chicken 100g 205 32 12 24 3
X3 Eggs 2 large 160 13 54 13 2
Xa Milk 237ml 160 8 285 9 8
X5 Cherry Pie 170g 420 4 22 20 2
X6 Pork w. beans 260g 260 14 80 19 2

Min. Daily Amt. 2000 55 800
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Linear programming solution

Food Serv. Energy | Protein | Calcium | Price | Max

Size (keal) () (mg) ¢ | Serv.

X1 Oatmeal 28g 110 4 2 3 4
X2 Chicken 100g 205 32 12 24 3
X3 Eggs 2 large 160 13 54 13 2
Xa Milk 237ml 160 8 285 9 8
X5 Cherry Pie 170g 420 4 22 20 2
X6 Pork w. beans 260g 260 14 80 19 2

Min. Daily Amt. 2000 55 800

e x; = 4(oatmeal) x4 = 4.5(milk) x5 = 2(pie) cost=92.5 ¢

e Where are the chicken, eggs and pork?

e Do | have to eat the same food every day?
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Problems with the solution

e Many desirable items were not included in the optimum
solution

e We obtained a unique optimum solution, but ...

o ... people (and managers) like to make choices!
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Ask the right question!

e Q: What are all the meals | can eat for at most $1?
e A: An infinite number! Add any small amount .....

e Q: Can you give me some different meals at least?



Linear Programming

Ask the right question!

Q: What are all the meals | can eat for at most $17
A: An infinite number! Add any small amount .....
Q: Can you give me some different meals at least?

A: Yes! In fact | can describe all allowable meals for under $1
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All meals for a dollar

Any solution to these inequalities is a meal for under $1:

3x1 + 24xo 4+ 13x3 4+ 9x4 + 20x5 + 19x < 100
110x; + 205x2 + 160x3 + 160x4 + 420x5 + 260x¢ > 2000
4x1 + 32xp 4+ 13x34+8x4 +4x5 + 14x > 55
2x1 + 12xp + bB4dx3 + 285x4 + 22x5 + 80xs > 800

0§X1§4, 0§X2§3, 0§X3§2,
0§X4§8, 0§X5§2, 0§X5§2
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4x1 + 32xp 4+ 13x34+8x4 +4x5 + 14x > 55
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e But this is just a restatement of the problem .......



Linear Programming

All meals for a dollar

Any solution to these inequalities is a meal for under $1:

3x1 + 24xo 4+ 13x3 4+ 9x4 + 20x5 + 19x < 100
110x; + 205x2 + 160x3 + 160x4 + 420x5 + 260x¢ > 2000
4x1 + 32xp 4+ 13x34+8x4 +4x5 + 14x > 55
2x1 + 12xp + bB4dx3 + 285x4 + 22x5 + 80xs > 800

0<x<4, 0<x<3, 0<x3<2,
0§X4§8, 0§X5§2, 0§X5§2

e But this is just a restatement of the problem .......

e ... how do | find these solutions?
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A more useful solution

‘All menus for a $1'

All (17) Extreme
Solutions to the Diet Problem with Budget $1.00
Cost Oat- Chicken Eggs Milk Cherry Pork

meal Pie Beans
925 4. 0 0 45 2. 0
97.3 4. 0 0 8. 0.67 0
98.6 4. 0 0 2.23 2. 1.40
100. 1.65 0 0 6.12 2. 0
100. 2.81 0O 0 8. 0.98 0
100. 3.74 0 0 2.20 2. 1.53
100. 4. 0 0 2.18 1.88 1.62
100. 4. 0 0 2.21 2. 1.48
100. 4. 0 0 5.33 2. 0
100. 4 0 0 8. 0.42 0.40
100. 4 0 0 8. 0.80 0
100. 4 0 0.50 8. 0.48 0
100. 4 0 1.88 : 2. 0
100. 4. 0.17 0 2 1.24
100. 4. 0.19 0 0.58 0
100. 4. 0.60 0 2 0
100. 4. 0 1.03 2 0.78
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A more useful solution

All menus for a $§1

All (17) Extreme
Solutions to the Diet Problem with Budget $1.00
Cost_Oat- Chicken Eggs Milk Cherry Pork
meal Pic  Beans
925 4.
97.3 4.
98.6 4.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
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A more useful solution

All (17) Extreme

Solutions to the Diet Problem with Budget $1.00

Cost Oat- Chicken Eggs Milk Cherry Dork
meal Pie  Beans

925 4. 0 0 5 2.

97.3 4. 0 0 . 0.1

98.6 4. 0 0 .23 2.

100. 0 0 12 2,

100. 0 0 . 0.

100. 0 0 220 2

100. 0 0 18 1

100. 0 0 221 2.

100. 0 0 33 2.

100. 0 0 0.

100. 0 0 0.

100. 0 0.4

100. 0 8 2.

100. 0 2

100. 0 & 0

100. 0 3.73 2.

100. 1.03 221 2.

® Taking convex combinations of rows gives new meals
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A more useful solution

Linear Programming

All menus for a $§1

All (17) Extreme
Solutions to the Diet Problem with Budget $1.00

Cost

100.

Oat- Chicken Eggs Milk Cherry Pork
Pie

meal
4.
4.
4.

1.65

[l ol ol ol ol 5 o al o

Beans

® Taking convex combinations of rows gives new meals

Vertex enumeration

e Eg. Taking half each of the last two rows gives a $1 meal with all foods
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o V-representation (Vertices): vi,va, ..., vy are the vertices of P

N
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N
where YN = 1, A\ =0, i=12..,N
i=1
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Two representations of a bounded polyhedron

e H-representation (Half-spaces): {x € R" : Ax < b}

o V-representation (Vertices): vi,va, ..., vy are the vertices of P
N
X = Z)\;v;
i=1
N
where YN = 1, A\ =0, i=12..,N
i=1

e Vertex enumeration: H-representation = V-representation

e Convex hull problem: V-representation = H-representation
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10

Example in R?

1,-10)
“1.1,0)
X3
©0,0,-1) ¥

X2

H-representation:

1-x +x3;20
I —x 4120
1+x +x320
1 +x+x320
~x;20
V-representation:
v =(-L1,0), v, =(-1,-1,0), v3=(1,-1,0),

va=(1,1,0), vs =(0,0,-1)

Vertex enumeration
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Dictionary representation

Introduce slack variables:

+x320

—X+x320

+x320

+x,+x320

-x320

B =1{4,5,6,7,8}, indices of basic variables.

N ={1,2,3}, indices of co-basic variables.

The dictionary with N = {4, 5, 8} is feasible

and represents the vertex (1, 1,0):

Note: xy, x,, x3 are basic and x4 =20, x; =0

— xg
X5 — Xg
— xg
—2xg
x7=2  —x5—2xg

Vertex enumeration
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Adjacency: Pivoting

xp=1-x4 -Xg B={12367)
X, =1 “Xs Xg

x3=0 -Xg N={458}
Xg=2 -X4 -2xg

X7=2 X5 -2Xg Entering variable: 4

! Leaving variable: 6

Xy = 1-xg -Xg

Xy = -Xg
X4 = -Xg -2Xg
X7= 2 -Xg -2xg

B={1,23,47}

N={5628}
x4=2>=0
x5=2>=0

Feasible Pivot!

Vertex enumeration
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Graph search for vertex enumeration

e Adjacency oracle for a feasible dictionary N:

0 N U {i}/{j} infeasible dictionary
Adj(N,i,j) = 0 xj has zero coefficient in row x;
NuU{i}/{j}  feasible dictionary
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¢ Find a starting feasible dictionary by solving an LP (Phase 1)
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Graph search for vertex enumeration

e Adjacency oracle for a feasible dictionary N:

0 N U {i}/{j} infeasible dictionary
Adj(N,i,j) = 0 xj has zero coefficient in row x;
NU{i}/{j}  feasible dictionary

¢ Find a starting feasible dictionary by solving an LP (Phase 1)

e Use your favourite graph traversal algorithm to find all feasible
dictionaries



Vertex enumeration

Graph search for vertex enumeration

Adjacency oracle for a feasible dictionary N:

0 N U {i}/{j} infeasible dictionary
Adj(N,i,j) = 0 xj has zero coefficient in row x;
NU{i}/{j}  feasible dictionary

Find a starting feasible dictionary by solving an LP (Phase 1)

Use your favourite graph traversal algorithm to find all feasible
dictionaries

Eg. DFS or BFS
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Graph of all feasible dictionaries

Vertex enumeration
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Problems with DFS/BFS algorithms

o DFS/BFS requires a database of visited vertices and a
stack/queue
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Problems with DFS/BFS algorithms

o DFS/BFS requires a database of visited vertices and a
stack/queue

e A polyhedron with m inequalities and n dimensions may have
ml/2) vertices |
e Often we just want to examine vertices, not keep them all

¢ Reverse search allows this to be done in O(mn) space, ie.
input size.
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Reverse search algorithm Avis-Fukuda 1991

[

e

— [ — 8-
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Reverse search algorithm Avis-Fukuda 1991

AY

N
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e Simplex method gives a path from any vertex to the optimum
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Reverse search algorithm Avis-Fukuda 1991

AY

N
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e Simplex method gives a path from any vertex to the optimum

e The set of all such paths is a spanning tree of the polyhedron
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Reverse search algorithm Avis-Fukuda 1991

[

e

e Simplex method gives a path from any vertex to the optimum
e The set of all such paths is a spanning tree of the polyhedron

o Reverse search builds this tree starting at the origin, reversing
the simplex method
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Reverse search algorithm

http://cgm.cs.mcgill.ca/ avis/C/Irs.html
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Vertex enumeration
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