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This talk

1. Review
a) Graphs
b) Planar graphs

2. How to draw a planar graph?
a) Before Tutte: 1920s – 1950s
b) Tutte: 1960s
c) After Tutte: 1970s – 1990s
d) Recent work: since 2000



1. Review
(b) graphs



• Bob is connected to Alice
• Bob is connected to Andrea
• Bob is connected to Amelia
• Brian is connected to Alice
• Brian is connected to Andrea
• Brian is connected to Amelia

• Boyle is connected to Alice
• Boyle is connected to Andrea
• Boyle is connected to Annie
• Bernard is connected to Alice
• Bernard is connected to Andrea
• Bernard is connected to Annie

Nodes:
• Alice, Andrea, Annie, Amelia, Bob, Brian, Bernard, Boyle 

A graph consists of
• Nodes, and 
• Binary relationships called “edges” between the nodes

Example: a “Linked-In” style social network

Edges



Drawings of graphs



A graph consists of
• Nodes, and 
• Binary relationships called “edges” between the nodes

A graph drawing is a picture of a graph
• That is, a graph drawing a mapping that assigns a location for each 

node, and a curve to each edge.

• That is, if G=(V,E) is a graph with node set V and edge set E, then a 
drawing p(G) consists of two mappings:

pV: V  R2

pE: E  C2

where R2 is the plane and C2 is the set of open Jordan curves in R2
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BoyleAmelia Bob BernardBrian

Andrea

Alice

Annie

• Bob is connected to Alice
• Bob is connected to Andrea
• Bob is connected to Amelia
• Brian is connected to Alice
• Brian is connected to Andrea
• Brian is connected to Amelia

• Boyle is connected to Alice
• Boyle is connected to Andrea
• Boyle is connected to Annie
• Bernard is connected to Alice
• Bernard is connected to Andrea
• Bernard is connected to Annie

Nodes:
• Bob, Brian, Bernard, Boyle, Alice, Andrea, Annie, Amelia

Edges
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A drawing of the graph
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0, 1, 2, 3, 4, 5, 6, 7

0 – 1
0 – 4
1 – 2
1 – 4
1 – 7
2 – 3
2 – 4
2 – 5
3 – 4
4 – 5
4 – 7
5 – 6
5 – 7
6 – 7

Nodes

Edges

A graph



A graph drawing is a straight-line drawing
if every edge is a straight line segment.

BoyleAmelia Bob BernardBrian

Andrea

Alice

Annie
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0 5

straight-line drawing

NOT a straight-line
drawing



Connectivity of graphs



Connectivity notions are fundamental in any study of 
graphs or networks

• A graph is connected if for every pair u, v of 
vertices, there is a path between u and v.

• A graph is k-connected if there is no set of (k-1) 
vertices whose deletion disconnects the graph. 

 k = 1: “1-connected” ≡ “connected”
 k = 2: “2-connected” ≡ “biconnected”
 k = 3: “3-connected” ≡ “triconnected”



This graph is 
connected

This graph is not connected

Connected 
components



Connectivity notions are fundamental in any study of 
networks

• A graph is connected if for every pair u, v of 
vertices, there is a path between u and v.

• A graph is k-connected if there is no set of (k-1) 
vertices whose deletion disconnects the graph. 

 k = 1: “1-connected” ≡ “connected”
 k = 2: “2-connected” ≡ “biconnected”
 k = 3: “3-connected” ≡ “triconnected”



“2-connected” ≡ “biconnected”
– A cutvertex is a vertex whose removal would 

disconnect the graph.
– A graph without cutvertices is biconnected.



2-connected graph,
Ie
Biconnected graph



cutvertices

This graph is not
biconnected



“3-connected” ≡ “triconnected”
– A separation pair is a pair of vertices whose removal would 

disconnect the graph.
– A graph without separation pairs is triconnected.



This graph is 
triconnected



Separation pairs

This graph is not 
triconnected



1. (b) Review of Planar  graphs



A graph is planar if it can be drawn 
without edge crossings.
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A graph is planar if it can be drawn without edge crossings.

Nodes:
• 0,1,2,3,4,5,6,7,8,9
Edges
• 0 – 4
• 0 – 9
• 1 – 2
• 1 – 6
• 1 – 7
• 2 – 3
• 2 – 8
• 3 – 4
• 4 – 5
• 4 – 8
• 5 – 6
• 5 – 7
• 7 – 8



A graph is planar if it can be drawn without edge crossings.

N
on

-p
la

na
r Nodes:

• 0,1,2,3,4,5
Edges
• 0 – 1
• 0 – 3
• 0 – 5
• 1 – 2
• 1 – 4
• 2 – 3
• 2 – 5
• 3 – 4
• 4 – 5

A graph is non-planar if 
every drawing has at least 
one edge crossing.



There is a lot of theory about planar  graphs



A planar drawing divides 
the plane into faces.

F1

F0

F2

F3

F4

The boundary-sharing relationships of the faces 
defines a topological embedding of the graph 
drawing

F0 shares a boundary with F1

F0 shares a boundary with F2

F0 shares a boundary with F3

F0 shares a boundary with F4

F1 shares a boundary with F2

F1 shares a boundary with F4

F2 shares a boundary with F1

F2 shares a boundary with F3

F2 shares a boundary with F4

F3 shares a boundary with F4



Euler formula
If

n = #vertices
f = #faces
m = #edges

then
n+f = m+2

F1

F0

F2

F3

F4

Corollary
If m = 3n-6 then every face is a triangle

Corollary m ≤ 3n-6



Kuratowski’s Theorem (1930)
A graph is planar if and only if it does not contain a subgraph

that is a subdivision of K5 or K3,3 .

K5K3,3

Forbidden  subgraphs



Maximal planar graph
• Given a graph G, we can add edges one by 

one until the graph becomes a maximal planar
graph G*.



Easy Theorems:
• In a maximal planar graph, no 

edge can be added without 
making a crossing

• A  maximal planar graph is a  
triangulation (every face is a 
triangle)

• In a maximal planar graph, 
m=3n-6.

• A  maximal planar graph is 
triiconnected



Steinitz Theorem (1922)
Every triconnected planar graph 

is the skeleton of a convex 
polyhedron



Whitney’s Theorem (1933)
There is only one topological embedding of a 

triconnected planar graph (on the sphere).

F4

F1

F2

F3
F5

F0



2. How to draw a planar graph



The classical graph drawing problem:

– How to draw a graph?

A - B, C, D
B - A, C, D
C - A, B, D, E
D - A, B, C, E
E - C, D

The input is a graph 
with no geometry

A B

D

C

E?

The output is a drawing of the graph;
the drawing should be easy to understand, 
easy to remember, beautiful.



Question: What makes a good drawing of a graph?

Answer: Many things, including

 lack of edge crossings (planar drawings are good!)

 straightness of edges (straight-line drawings are good)



~1979 Intuition (Sugiyama et al.):
– Planar  straight-line drawings make good pictures

Mary Bob

Peter

Jon

DavidF

Alan

Joseph

Judy

Albert

DavidE

Peter

Mary

Jon

DavidF

Alan

Joseph

BobJudy

Albert

DavidE

Bad picture Good picture



1997+: Science confirms the intuition
 Human experiments by Purchase and others



Purchase et al.,1997:
Significant correlation between 
edge crossings and human 
understanding
 More edge crossings means 

more human errors in 
understanding



Purchase et al., 1997:
Significant correlation between 
straightness of edges and 
human understanding
More bends mean more 

human errors in 
understanding



How to make a planar drawing 
of a planar graph?



How to make a planar drawing of a planar graph:
1. Get the topology right
2. Place the nodes and route the edges

1. get the 
topology 
right

2. place the nodes 
and route the 
edges

Graph Topological 
embedding Picture

Vertex-edge 
incidence 
structure

Face-vertex-
edge incidence 
structure



Straight-line drawings
 Each edge is a straight line 

segment

This talk is about planar straight-
line drawings

Important note: a straight-line drawing of 
a graph G=(V,E) can be specified with 
a mapping

p: V  R2

that gives a position p(u) in R2 for 
each vertex u in V.



2. How to draw a planar graph?
a) Before Tutte: 1920s – 1950s



Fáry’s Theorem Every topological 
embedding of a planar graph has a 
straight-line planar drawing.

Proved independently by Wagner (1936), 
Fary (1948) and Stein (1951)



Topological 
embedding of G Picture of G

Triangulation T 
that contains G Picture of T

Drawing algorithm

Wikipedia proof of Fáry’s Theorem

First note that it is enough to prove it for triangulations.



We prove Fáry’s theorem by induction on 
the number of vertices.

If G has only three vertices, then it is 
easy to create a planar straight-line 
drawing.

Suppose G has n>3 vertices and 3n-6 
edges, and that the outer face of G is 
the triangle <abc>. 

Since every vertex has degree at least 3, 
one can show that there is a vertex u
not on the outside face with degree at 
most 5. 

a

b

cu

a

b c

u

G G’

p’ p

Delete u from G to form G’; this gives a 
face F of G of size at most 5.

Since G’ has n-1 vertices, by induction it 
has a planar straight-line drawing p’.

Since F has at most 5 vertices, it is star-
shaped, and we can place the vertex 
u in the kernel of F to give a planar 
straight-line drawing p of G 



2. How to draw a planar graph?
a) Before Tutte: 1920s – 1950s
b) Tutte

W. Tutte, How to Draw a Graph, 
Proceedings of the London Mathematical 
Society 13, pp743 – 767, 1960



Tutte’s barycentre algorithm
Input:

• A graph G = (V,E)
Output

• A straight-line drawing p

Step 1. Choose a subset A of V
Step 2. Choose p location p (a) = (xa, ya) for each vertex a ∈ A
Step 3. For all u ∈ V-A,

p(u) = ( ∑ p(v) )/ deg(u),
where the sum is over all neighbors v of u

Vertex u is 
placed at the 
barycenter of 
its neighbors 

This is two sets of  equations, 
one for x coordinates and 
one for y coordinates



Tutte’s barycenter algorithm

1. Choose a set A of vertices.
2. Choose a location p(a) for each a∈A
3. For each vertex u ∈V-A, place u at the 

barycentre of its graph- theoretic 
neighbors.
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Step 1. A = {4, 5, 6, 7, 8}
Step 2. For all i = 4, 5, 6, 7, 8, 

choose xi and yi in some way.
Step 3. Find x1, y1, x2, y2, x3, and y3

such that:

and
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Step 1. A = {4, 5, 6, 7, 8}
Step 2. For all i = 4, 5, 6, 7, 8, choose 

xi and yi in some way.
Step 3. Find x1, y1, x2, y2, x3, and y3

such that:

and
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Step 1. A = {4, 5, 6, 7, 8}
Step 2. For all i = 4, 5, 6, 7, 8, choose 

xi and yi in some way.
Step 3. Find x1, y1, x2, y2, x3, and y3

such that:

and
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Tutte’s barycentre algorithm

 The essence of the algorithm is in 
inverting the matrix M
• Can be done in time O(n3)
• This is a special matrix: 

Laplacian submatrix.
• Many software packages can 

solve such equations efficiently,
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Tutte’s barycentre
algorithm

 Example output on a 
non-planar graph



Tutte’s barycentre
algorithm

 Example output on 
a planar graph



Tutte’s barycenter algorithm for
triconnected planar graphs



Tutte’s barycenter algorithm for 
triconnected planar graphs

1. Choose A to be the outside face of 
the graph.

2. Choose the location p(a) for each 
a∈A to be at the vertices of a convex 
polygon.

3. For each vertex u ∈V-A, place u at 
the barycentre of its graph-theoretic 
neighbors.
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8 7

Note: For planar graphs, the Laplacian matrix is 
sparse, and can be inverted fast.



Tutte’s amazing theorems (1960)

If the input graph is planar and triconnected, then 
the drawing output by the barycentre algorithm 
is planar, and every face is convex.



The energy view of Tutte’s barycentre algorithm



Tutte’s barycenter algorithm:
The energy view

1. Choose a set A of vertices.

2. Choose a location p(a) for each a∈A

3. Place all the other vertices to minimize 
energy.
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8 7

What is the energy of a drawing p?
• For each edge e = (u,v), denote the distance between u and v in the 

drawing p by d(u,v), ie,
d(u,v) = ( (xu – xv)2 + (yu-yv)2 )0.5

• The energy in the edge e is d(u,v)2 = (xu – xv)2 + (yu-yv)2

• The energy in the drawing p is the sum of the energy in its edges, ie,
Σ d(u,v)2 = Σ (xu – xv)2 + (yu-yv)2

where the sum is over all edges (u,v).



Tutte’s barycenter algorithm:
The energy view

1. Represent each vertex by a steel ring, 
and represent each edge by a spring of 
natural length zero connecting the rings 
at its endpoints.

2. Choose a set A of vertices.

3. For each a∈A, nail the ring representing 
a to the floor at some position.

4. The vertices in V-A will move around a 
bit,
When the movement stops, take a photo 

of the layout; this is the drawing.
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How to minimize energy:
– We need to choose a location (x(u),y(u)) for each u in V-A to 

minimize Σ (xu – xv)2 + (yu-yv)2

– Note that the minimum is unique, and occurs when the partial 
derivative wrt xu and yu is zero for each u in V-A.

Barycentre equations



How good is Tutte’s barycentre algorithm?

Efficiency:
 In theory it is not bad: O(n1.5) for planar graphs
 In practice it is fast, using numerical methods for Laplacians

Elegance:
Very simple algorithm
Easy to implement
Numerical software available for the hard parts

Effectiveness:
Planar graphs drawn planar
Straight-line edges

But unfortunately 



But unfortunately:
 Tutte’s algorithm gives poor vertex resolution in many cases

0

a b

1

2

3

4
5

Example:

Vertex 0 is at (0.5, 0), a is at (0,0), b is at (1,0).
For j>0, vertex j is at (xj,yj).

From the barycentre equations:
yj = (yj-1 + yj+1) / 4.

Also:
yj > yj-1 > yj-2 > …

Thus yj < yj-1 / 2

Thus 0 < yj < 2-j



Aside:
Commercial graph drawing software needs good resolution.



How good is Tutte’s barycentre algorithm?

Efficiency:
OK

Elegance:
Excellent

Effectiveness:
So-so



2. How to draw a planar graph?
a) Before Tutte: 1920s – 1950s
b) Tutte: 1960s
c) After Tutte: 1970s – 1990s



After Tutte: 1970s – 1990s

Sometime in the 1980s, the motivation for graph drawing changed from 
Mathematical curiosity to visual data mining.



© AT&T

Software





(DaVinci)



Biology



Risk Exposure





Money 
movement



From the 1980s, industrial demand for graph drawing algorithms has 
grown
– Software engineering: CASE systems, reverse engineering
– Biology: PPI networks, gene regulatory networks
– Physical networks: network management tools
– Security: risk management, money movements, social network 

analysis
– Customer relationship management: value identification

Many companies buy graph drawing algorithms, many code them.

Currently the international market for graph drawing algorithms is in the 
hundreds of millions of dollars per year.



Tutte’s barycentre 
algorithm

Force directed 
methods

Planarity-based 
methods

Graph theorists 
methods



Planarity based methods after Tutte



Planarity based methods after Tutte

R.C. Read (1979, 1980)
1. Efficient?
 Yes, linear time algorithm

2. Elegant?
 Yes, follows proof of Fáry’s theorem

3. Effective?
 Maybe ...

 Straight-line planar drawings of planar graphs
 But, unfortunately, output has poor vertex resolution



Planarity based methods after Tutte

Chiba-Nishizeki-Yamanouchi (1984)
1. Efficienct?
 Yes, linear time algorithm

2. Elegant?
 Yes, a simple divide&conquer approach

3. Effective?
 Maybe ...

 Straight-line planar drawings of planar graphs
 Convex faces for well connected input
 But, unfortunately, output has poor vertex resolution



de Fraysseix-Pach-Pollack Theorem (1989)
Every planar graph has a planar straight-line grid (that is, 
vertices are at integer grid points) drawing on a 2n X 4n grid. 

Notes:
– This gives a minimum distance of screensize/4n between 

vertices, that is, good resolution.
– Chrobak gave a linear-time algorithm to implement this 

theorem.

The deFraysseix-Pach-Pollack Theorem gave much hope for 
planarity-based methods, and many refinements appeared 
1990 – 2000.

Planarity based methods after Tutte

Breakthrough in 1989: 



de Fraysseix-Pach-Pollack-Chrobak Algorithm

1. Add dummy edges to make the graph into a triangulation

2. Construct an ordering u1, u2, … , un of the vertices , called the 
canonical ordering.

3. Draw the graph, adding one vertex at a time, in order u1, u2, … , un



Topological 
embedding of G Picture of G

Triangulation T 
that contains G Picture of T

Drawing algorithm

Wikipedia proof of Fáry’s Theorem

Step 1: Add dummy edges to make the graph into a triangulation



Gk+1

Step 2: Construct an ordering u1, u2, … , un of the vertices , called the 
canonical ordering.

A canonical ordering is an ordering u1, u2, ..., un of the vertices of a 
triangulation having the property that, for each k, 3 <= k < n, the 
graph Gk induced by u1, u2, ..., uk has the following properties
• Gk is biconnected
• Gk contains the edge (u1, u2)on its outer face,
• Any vertices in Gk adjacent to uk+1 are on the outer face of Gk

• The vertices in Gk adjacent to uk+1 form a path along the outer 
face of Gk

uk+1u1

u2

graph Gk induced 
by u1, u2, ..., uk



Step 3: Draw the graph, adding one vertex at a time in 
order u1, u2, … , un

a) Start with the edge (u1, u2) at y=0
b) For each k>1:

• add uk+1 on y=k
• Choose x coordinate of uk+1 so that there are 

no edge crossings.

u1 u2

At each stage, there is 
a drawing of Gk as a 
“terrain”.

Drawing of Gk

Uk+1

Drawing 
of Gk+1



Some details of deFraysseix-Pach-Pollack-Chrobak algorithm are 
needed to show
– It runs in linear time
– It is possible to avoid edge crossings
– Each vertex lies on an integer grid of size at most 4nX2n



The deFraysseix-Pach-Pollack-Chrobak algorithm

Efficiency:
Yes, linear time

Elegance:
Not bad; can be coded by a student in a week or so.

Effectiveness:
Looks good

• Straight-line edges
• No edge crossings
• Good vertex resolution



The deFraysseix-Pach-Pollack-Crobak algorithm gave much hope 
for planarity-based methods, and many refinements appeared 
1990 – 2000.

But, unfortunately, we found that the first step (increasing 
connectivity by triangulation) gives some problems.

Topological 
embedding of G Picture of G

Triangulation T 
that contains G Picture of T

Drawing algorithm



1. Add dummy 
edges to 
triangulate



Planarity based methods

2.Draw the 
augmented 
graph.



3. Delete the dummy edges



Note: the resulting drawing is ugly.
A better drawing



Current state-of-the-art for planarity based methods:

• There are many small improvements to the 
deFraysseix-Pach-Pollack-Chrobak algorithm.

• But none have overcome all the connectivity 
augmentation problem.

• Almost no planarity based methods have been adopted 
in commercial software … 

• Despite the fact that planarity is the single most 
important aesthetic criterion.



Tutte’s barycentre 
algorithm

Force directed 
methods

Planarity-based 
methods

Graph theorists 
methods



Energy/force methods after Tutte



To improve Tutte’s barycentre algorithm, we need to prevent vertices 
from becoming very close together.

This can be done with forces:-

1. Use springs of nonzero natural length

2. Use an inverse square law repulsive force between 
nonadjacent vertices.



.
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Force exerted by a vertex v on a vertex u:

If u and v are adjacent:
fspring(u,v) = kuv |d(u,v) – quv|

where
• kuv is constant, it is the strength of the spring between u and v
• d(u,v) is the Euclidean distance between u and v
• quv is constant, it is the natural length of the u-v spring

If u and v are not adjacent:
fnonajac(u,v) = ruv / d(u,v)2

where
• ruv is constant, it is the strength of the repulsive force



Total force on a vertex u:
F(u) = Σ fspring(u,v)  + Σ fnonajac(u,w) 

where
• The first sum is over all vertices v adjacent to u
• The second sum is over all vertices w not adjacent to u

A minimum energy configuration satisfies
F(u) = 0

for each vertex u.
This is a system of nonlinear equations.

Note
1. In general, the solution to this system of equations is not unique, 

that is, there are local minima that may not be global.
2. Many methods to solve this system of equations are available. 

Some methods are fast, some are slow, depending on the 
equations.



Force-based 
techniques can 
be constrained 
in various 
ways.

The constants in the force definitions
fspring(u,v) = kuv |d(u,v) – quv|
fnonajac(u,v) = ruv / d(u,v)2

can be chosen to reflect the relationships in the 
domain.

For example
• If the edge between u and v is important, 

then we can choose kuv to be large and quv
to be small.



Force-based 
techniques can 
be constrained 
in various 
ways.

Attractive forces can be used to 
keep clusters together.

Magnetic fields and 
magnetized springs can be 

used to align nodes in various 
ways.

Nails can be used to 
hold a node in place.



These constraints are very useful in customizing 
the general spring method to a specific domain.

graph
Custom
spring

method

Generic
spring

method

Domain specific constraints

picture



Example:

Metro Maps

• Damian Merrick
• SeokHee Hong
• Hugo do Nascimento



The Metro Map Problem

– Existing metro maps, produced by professional graphic artists, 
are excellent examples of network visualization

– Can we produce good metro maps automatically? 



H. Beck, 1931

















J. Hallinan



Virtual Environments

Case Study - Stock 
Market

MS-Guidelines
MS-Process

MS-Taxonomy

Software Engineering
Human Perception
Information Display

Data Mining
Abstract Datamany 

applicationslarge
ABSTRACT 

DATA

SOFTWARE 
ENGINEERING

VIRTUAL 
ENVIRONMENT
S

HUMAN 
PERCEPTION

DATA 
MINING

MS-TAXONOMY

INFORMATION 
DISPLAY

CASE 
STUDY         

MS-GUIDELINES

MS-
PROCESS

finding 
patterns

virtual 
abstract 
worlds

virtual  
hybrid 
worlds

data 
characterisation       

task 
analysis       

virtual real 
worlds

new user-interface 
technology

increase human-
computer bandwidth  

many 
interaction 
styles  

perceptual 
data 
mining

multi-
attributed

visual  
data 
mining

information 
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Scientific Question: Is there an E3 computer algorithm that can produce 
a layout of a metro map graph?

(E3 = Effective, Efficient, Elegant)



Force directed method

1. Define forces that map good layout to low energy

2. Use continuous optimization methods to find a minimal 
energy state



Force directed method

Optimisation goals
 Routes straight
 Routes horizontal/ vertical/ 45o.

Set of forces:
 Stationssteel rings
 Interconnections  springs
 Vertical/horizontal/45o

magnetic field
 Futher forces to preserve input 

topology

Find a layout with minimum 
energy



Elegance



Force directed method

Optimisation goals
 Routes straight
 Routes horizontal/ vertical/ 45o.

Set of forces:
 Stationssteel rings
 Interconnections  springs
 Vertical/horizontal/45o magnetic 

field

Find a layout with minimum 
energy

Very 
Elegant!

Classical 
numerical 
methods

Very intuitive mapping



Effectiveness
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Not very 
Effective!



The force directed method is a little bit effective, but not very 
effective.

It needs manual post-processing:
– This uses the time of a professional graphic artist
– Increases cost
– Increases time-to-market



Efficiency
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Not Efficient!



The force directed method for metro maps is not computationally 
efficient.

We need better ways to solve the equations.



The performance of force directed methods on metro maps is typical .



For some data sets, force directed methods give 
reasonable drawings.



For some data sets, force directed methods do not 
give reasonable drawings.



How good are current force directed methods?

Efficiency:
OK for small graphs
Sometimes OK for larger graphs

Elegance:
Many simple methods, easy to implement
Numerical software often available

Effectiveness:

Very flexible

Straight-line edges 

Planar graphs are not drawn planar 

Very poor untangling for large graphs 



The state-of-the-art for force directed methods in practice:

 Many commercial force-directed tools graph drawing methods 
are available

• IBM (ILOG)
• TomSawyer Software
• yWorks

 Much free software available
• GEOMI
• GraphVis

 Force-directed methods account for 60 – 80% of commercial  
and free graph drawing software



2. How to draw a planar graph?
a) Before Tutte: 1920s – 1950s
b) Tutte: 1960s
c) After Tutte: 1970s – 1990s
d) Recent work: since 2000



Recent work: since 2000

– Faster force-directed algorithms

– New metaphors in 2.5D

– New edge-crossing criteria: 
slightly non-planar graphs



New metaphors in 2.5D



New edge-crossing criteria:

Slightly non-planar graphs



Motivation

Tony Huang 2003+: Series of human experiments
• Eye tracking experiments to suggest and refine theories
• Controlled lab experiments to prove theories.



Eye-tracking: suggestions:
Large angle crossings are OK: 

no effect on eye movements

Lab experiments: proof
• Suggestion was confirmed with traditional controlled human lab 

experiments



Huang’s thesis
If the crossing angles are large, then 

non-planar drawings are OK.

How can we draw graphs with large crossing angles?



Right Angle Crossing (RAC) Graphs



Right-Angle Crossing (RAC) graphs:
– Straight-line edges
– If two edges cross, then the crossing 

makes a right angle





Questions for slightly non-planar graphs:

 How dense can a RAC graph be?

 How can you compute a drawing of a RAC graph?Theorem (Liotta, Didimo, Eades, 2009)

Suppose that G is a RAC graph with n vertices and m edges. 
Then m ≤ 4n-10.



Theorem (Liotta, Eades)*
The following problem is NP-hard:
Input: A graph G
Question: Is there a straight-line RAC drawing of G?

*Independently proved  by Argyriou, Bekos and Symvonis

Questions for slightly non-planar graphs:

 How dense can a RAC graph be?

 How can you compute a drawing of a RAC graph?



Theorem (Liotta, Eades)*
The following problem is NP-hard:
Input: A graph G
Question: Is there a straight-line RAC drawing of G?

Proof
• Reduction from planar-3-sat.
• Draw the instance H of planar-3-sat as a template.
• Fill in details of the template H to form  a graph G that has a RAC 

drawing if and only if H is satisfiable.



Proof
• Reduction from planar-3-sat
• Draw the instance H of planar-3-sat as a template
• Fill in details of the template H to form  a graph G that has a RAC 

drawing if and only if H is satisfiable.

• Fairly generic proof strategy for NP-hardness for layout problems.
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c4

c2

u1
u4u3u2

Instance H of planar 3-sat graph 
1. Draw H as a visibility drawing
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c3

c4
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u1 u4u3u2

c1

c3

c4

c2

u1 u4u3u2

2. Enhance the drawing:
• “node boxes” for

 clauses c1, c2, …  
 variables u1, u2, …



c1

c3

c4

c2

u1 u4u3u2

3. Transform to a 2-bend drawing
 “pipes” to communicate between variables and clauses



c1

c3

c4

c2

u1 u4u3u2

4. Transform to a no-bend drawing
 extra nodes at bend points



c1

c3

c4

c2

u1 u4u3u2

5. Triangulate every face to make it impassable



c1u1

External appearance of “node boxes”, with 
“pipes” attached

variable clause



u1

External appearance of “node box”, with pipes attached, showing 
some of the external triangulation



Variable gadget with pipes attached



Clause gadget with pipes attached



u

Logical view of variable gadget

uū

u is true



u

Logical view of variable gadget

u ū

u is false



u

Logical view of variable gadget

u ū

u is false

Each pipe 
goes to a 
clause in 
which u
occurs



u

Logical view of variable gadget

u ū

Literals are 
attached to the 

clauses in which 
they occur, using 
chains threaded 

through the pipes



u

Logical view of variable gadget

u ū

Chains attached to 
the rear literal 

spend an extra link 
before getting into 

the pipe.



c

u ū
• There is a pipe from the 

variable gadget for u to the 
clause gadget for c

• There is a chain through the 
pipe from ū to c

Suppose that ū occurs in c



Logical view of clause gadget

ba
rr

ie
r

The barrier allows
Any number of brown links to pass through
At most two red links to pass through

Thus at least one chain needs to be long enough to reach past 
the barrier



u ū • If ū is true, then the chain is 
long enough so that it does 
not need a red link to pass 
through the barrier

Suppose that ū occurs in c



uū
• If ū is false, then the chain 

shorter, so that it needs a 
red link to pass through the 
barrier

Suppose that ū occurs in c



uū

• Thus for each clause, at 
most two literals can be 
false.



Notes
 This is a fairly generic proof strategy for NP-hardness for layout 

problems.
 Details of clause and variable gadgets are straightforward but 

tedious
 The same proof works for 1-planar graphs: just choose different 

gadgets for clauses and variables.



Questions for slightly non-planar graphs:

 How can you compute a drawing of a RAC graph?

More generally,
 How can we draw a graph with large crossing angles?

Answers
– There are some force directed heuristics that use forces to 

enlarge angles
– There are some special algorithms for some special classes of 

graphs

However, other than the NP-hardness result, the problem remains 
mostly open from both practical and theoretical points of view.



open problem

Given a graph drawing, what is the smallest crossing angle?
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