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shortest path from Princeton CS department to Einstein's house



Shortest Path Problem

Shortest path network.
. Directed graph G = (V, E).
. Source s, destination t.
. Length 7, = length of edge e.

Shortest path problem: find shortest directed path from s to t.
T

cost of path = sum of edge costs in path
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Dijkstra's Algorithm

Dijkstra's algorithm.
. Maintain a set of explored nodes S for which we have determined
the shortest path distance d(u) from s to u.
. Initialize S={s}, d(s)=0.
. Repeatedly choose unexplored node v which minimizes

7(v)=  min  d(u)+ £,
e=(u,v):uesS

add v to S, and set d(v) = =(v). shortest path to some u in explored
‘ part, followed by a single edge (u, v)
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Dijkstra's Algorithm: Proof of Correctness

Invariant. For each node u € S, d(u) is the length of the shortest s-u path.
Pf. (by induction on |S|)
Base case: |S| =1is trivial.
Inductive hypothesis: Assume true for |S| =k > 1.
. Let v be next node added to S, and let u-v be the chosen edge.
. The shortest s-u path plus (u, v) is an s-v path of length =(v).
. Consider any s-v path P. We'll see that it's no shorter than n(v).
. Let x-y be the first edge in P that leaves S,
and let P’ be the subpath to x.
. P is already too long as soon as it leaves S.

¢ (P) IM (P') + ¢ (x) : d(x) + ¢ (X'Y)TZ (y) 1 7(v)

nonnegative inductive defn of n(y) Dijkstra chose v
weights hypothesis instead of y



Dijkstra's Algorithm: Implementation
For each unexplored node, explicitly maintain z(v)= _(m%r; . d(u)+ 7,

. Next node to explore = node with minimum n(v).
. When exploring v, for each incident edge e = (v, w), update

m(w) =min { 7(w), 7(V)+L,}.

Efficient implementation. Maintain a priority queue of unexplored
nodes, prioritized by n(v). D>
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Edsger W. Dijkstra

The question of whether computers can think is like the
question of whether submarines can swim.

Do only what only you can do.

In their capacity as a tool, computers will be but a ripple
on the surface of our culture. In their capacity as
intellectual challenge, they are without precedent in the
cultural history of mankind.

The use of COBOL cripples the mind; its teaching should,
therefore, be regarded as a criminal offence.

APL is a mistake, carried through to perfection. It is the
language of the future for the programming techniques
of the past: it creates a new generation of coding bums.




