
Computational Intractability 2010/5/27

Lecture 7
Professor: David Avis Scribe:Yosuke Suzuki

1 Crew Scheduling Problem

We define a crew scheduling problem as follows.
Input: a directed graph, each node represents an airport, each edge represents a
flight, and is labelled with the departure and arrival time.
Objective: assign crews to the flights and minimize a given cost function. We define

Figure 1: A flight graph

a pairing of flights as a series of flights which could be serviced by a single crew.
This means that the departure time of a flight in the series must be no earlier than
the arrival time of the previous flight in the series. In Figure 1 a possible pairing is
given by flights 1,7,3,5. The flights 3,5,2 are not a pairing as flight 5 arrives after

7 - 1



flight 2 departs. We will assume that each crew must service at least two flights, so
that each pairing contains at least two flights. We can assign multiple crews to one
flight if necessary, in order to transport a crew to another airport.

The cost of an pairing is expressed as time interval between the first departure
time and the last arrival time +5 hours.

2 Formulation of Flight Scheduling Problem as IP

We have n flights and assign m crews.
One possibility is to define decision variables yij, 1 ≤ i ≤ m, 1 ≤ j ≤ n, where:

yij =

{
1 flight j has a crew i
0 otherwise

To cover flight j we introduce a constraint of the form:

n∑
i=1

yij ≥ 1

for each flight j. However it is not at all obvious how to link the flights together for
any given crew.

An alternative method is to construct all pairings by preprocessing . To do this
it is convenient to construct a flight connection graph showing which flights may
follow which others in a pairing. The flight connection graph for Figure 1 is given
in Figure 2.

Figure 2: The flight connection graph for Figure 1

A flight connection graph has no cycles, and is constructed in time O(n). Each
pairing is a path in the graph of length at least two, and these paths can be enu-
merated in a straight forward way. For the example they are listed in Table 1.

7 - 2



No. Pairing Time
1 12 6
2 123 9
3 124 10
4 173 9
5 174 10
6 1735 12
7 1736 12
8 1235 12
9 1236 12
10 23 5
11 24 6

No. Pairing Time
12 73 4
13 74 5
14 735 7
15 736 7
16 235 8
17 236 8
18 86 5
19 35 5
20 36 5
21 17 7
22 85 5

Table 1: Pairings obtained from Figure 2

A valid crew assignment is given by a set of pairings that cover all the flights.
This can be formulated as a set covering problem. Define variables xi for each
pairing i that will satisfy:

xi =

{
1 pairing i is used
0 otherwise

(1)

For each flight we get a set cover inequality. In the example, we get the following
inequalities:

x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9 + x21 ≥ 1 (for flight 1)

x1 + x2 + x3 + x8 + x9 + x10 + x11 + x16 + x17 ≥ 1 (for flight 2)

... (2)

x18 + x22 ≥ 1 (for flight 8)

Recall that the cost coefficients in the objective function are obtained by adding 5
to each of the times in Table 1.
The integer programming formulation is therefore:

minimize z = 11x1 + 14x2 + 15x3 + ... + 10x22 (3)

subject to (1) and (2).

3 Solving an integer program

1. First we try solving the integer program as a linear program with the objective
of minimizing the number of crews required. For this we replace (3) by

minimize z = x1 + x2 + x3 + ... + x22

7 - 3



Using lp-solve for the linear program, we obtain x3 = x6 = x18 = 1, z = 3, and
otherwise xj = 0. Note this solution has a double-covering for flight 1.

When we introduce the objective function (3), we obtain the solution x3 =
x14 = x18 = 1, z = 37. Since in each case the LP solution was integral, we
were done.

2. Next we check if all vertices are integer valued with lrs. This is done by running
the command:
% lrs sched.ine sched.ext
(A link to a directory containing all files is given on the course home page.)
There are 292 vertices, of which 56 are fractional, and 202 extreme rays. Since
some vertices are fractional, we will need to use integer programming for some
objective functions. For example with objective:

min z = x1 + x2 + x3 + x4 + 3x5 + 3x6 + 3x7 + 2x8 + 2x9 + x10 + x11 + x12

+ x13 + 2x14 + 2x15 + x16 + x17 + x18 + x19 + x20 + x21 + x22

we get the fractional LP solution x3 = x4 = x13 = x17 = x18 = x22 = 1/2, x19 =
1, z = 3. Using lp-solve with the variables defined to be integers, we get the
integer optimal solution x3 = x4 = x18 = x19 = 1, z = 3.

3.1 Cutting Planes

Getting the ideal formulation is useful because we get new inequalities that have
these properties.

• These are satisfied by every integer solution.

• Each new inequality always removes some fractional vertex or vertices of the
original LP.

These inequalities are called cutting planes.

3.2 Solving any ILP by using LP + cutting plane

1. First solve the LP getting a fraction solution x∗ (or if integer stop)

2. Find a cutting plane that removes x∗ (i.e. violated by x∗)

3. Repeat from step 1 with new constraint added to LP

References

[1] Algorithms in the Real World, Carnegie Mellon University, Computer Science
15-853,
http://www.cs.cmu.edu/afs/cs/project/pscico-guyb/294/class-notes/all/11.ps

7 - 4


