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UNCAPACITATED LOT-SIZING PROBLEMS WITH START-UP COSTS 

LAURENCE A. WOLSEY 
Universite Catholique de Louvain, Louvain-la-Neuve, Belgium 

(Received February 1988; revision received July 1988; accepted August 1988) 

We consider the uncapacitated economic lot-sizing problem with start-up costs as a mixed integer program. A family of 

strong valid inequalities is derived for the class as well as a polynomial separation algorithm. It is then shown how 
equivalent, or possibly stronger, formulations are obtained by the introduction of auxiliary variables. Finally, some 

limited computational results for a single item model and a multi-item model with changeover costs are reported. 

M any practical problems involve start-up costs 
when switching on a machine, or changeover 

costs when changing between items or modes of 
production. Here we begin to study how such situ- 
ations can be effectively modeled by mixed integer 
programming. 

We consider the uncapacitated economic lot-sizing 
(ULS) problem with an additional start-up cost f if a 
setup cost is incurred in period i and not in period 
i- 1. A standard mixed integer programming for- 
mulation of this problem is 

T I 71 T 

min- piyi + i hisi + E cixi + f fzi: 
Li=l i=l i=l = 

(y,s,x,z)EX} (1) 

where X is described by 

si1, + yi = di + si for i = 1, . .., T 

with 

s,d = 0 

minfxi, 1 - xi-II z xi-xi-, for i = 1, ..., T 

s, y ? O, x, z E lo, 1} 

where dc, denotes ' =. di, di - 0 are the demands, pi, 
hi, c, andf the production, storage, setup and start-up 
costs in period i, and yi, si, xi, zi are the production, 
storage, setup and start-up variables, respectively. We 
assume that xo is known and that sO = 0. 

Problems in which (1) appears as a relaxation have 
been studied by Van Wassenhove and Vanderheust 
(1983), Karmarkar and Schrage (1985) and 

Fleischmann (1987). There is an O(T2) dynamic pro- 
gramming algorithm for (1). Based on this algorithm, 
Eppen and Martin (1987) have provided a tight mixed 
integer programming formulation that differs from 
those described below. 

In Section 2, we derive an exponential class of strong 
valid inequalities for X and a polynomial separation 
algorithm for the resulting polytope P that can be used 
in a cutting plane algorithm. In Section 3, we derive 
a formulation (or polytope Q) that is equivalent to P 
that is described by a polynomial number of variables 
and constraints. In Section 4, we derive two other 
formulations that are at least as strong as the previous 
two. Finally, we report on some limited computational 
results for a single item model and a multi-item model 
with changeover costs. 

1. STRONG VALID INEQUALITIES 

The class of valid inequalities that we derive is closely 
related to the (1, S) inequalities derived for the ULS 
model (see Barany, Van Roy and Wolsey 1984a). 

Proposition 1. Let L = I1, ..., II with / - T, and 
S C L with S composed of r disjoint subintervals 
IS, j;= where S,. = {Ck, ,. + 1, ..., Tkj with . k 

fork=-1, ...,r. Then 

'' T~~~~~k 
Yi EdakIXk + X dilzi + s, (2) 

jEES kt=1 i=ak+ I 

is a valid inequality for X. 

Proof. Consider a point (y*, s*, x*, z*) E X. If xj* 
0 for all j E S, 2jESYi* = 0, and as s* > 0, the 
inequality is valid. Otherwise, let t = arg min{j: j E 

S,xj* = I. 

Subject classifications: Programming, integer: cutting plane/facet generation algorithms. Inventory/production: scale diseconomies, lot-sizing. 
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742 / WOLSEY 

Case 1. t = ok for some k. Then ,jEs Yj* >i=t Y* 
S d,, + s* = d,,x* + s*, and hence, the inequality is 
satisfied. 

Case 2. t EE I k + 1, ..., Trk} for some k. Then by 
definition of t, t - 1 E SI, C S, and hence, x* = 0. 
As x* = 1, this implies z* = 1. Therefore, EES Yj S 

x=, d, + s* = d,lz* + s*, and hence, the 
inequality holds. 

Note that by substituting for the stock variable sI, 
we obtain the alternative representation for the in- 
equality (2) 

YJ + E Idakx'k + E dcbzi d1,. (3) 
j __L\S '=I i=L k+ 

In addition, it is not difficult to show, using similar 
arguments to those used in Barany, Van Roy and 
Wolsey (1984b), that almost all the inequalities (2) or 
(3) define facets of conv(X). 

Next we describe a separation algorithm for the 
inequalities (2) that can be used in a cutting plane 
algorithm. 

A Separation Algorithm for (y*, s*, x*, z*) and the 
Inequalities (2) 

We assume that Z* x* for = 1, ..., n. For I= 

4/"(0, 0) = H'(O) = 0 

and 4/"(O, 1) =-oo. 

Fort= 1,...,l 

i,t(t, 0) = HI'(t - 1) 

i,t(t, 1) = maxf4t"(t - 1, 1) 

+ y* - dl,z*, 4/1(t - 1, 0) + y* - dlx*l 

H'(t) = maxf4//(t, O), 411(t, 1)). 

Proposition 2. a. If H'(l) - s,*for I = 1, . . ., T, none 
of the inequalities (2) is violated by (y*, s*, x*, z*). 
b. If H'(l) > s*, the corresponding inequality is the 
most violated inequality for that value of 1. 

Proof. The validity of the recursion and the claim 
follow by observing that 

1"(t, 1 ) 

max [v* E dxak E 

tSCI ...1 , jcs /=1 i=lk+l 
I E=S 

and 

4/J(t, 0) 

max [EYj d ? kX k + E dI,Z j . 
SCI""' LiE.. . ,/ ES kt=1 i= (k+ 1 

1(s 

In the next section we will see how the dynamic 
programming recursion also can be written as a short- 
est path problem. 

In the computational experiments of Section 5 we 
did not use the above separation algorithm. Instead 
we experimented using a subset of O(KT) inequalities 
of the form (2) with r = 1, SI = S, S = 1- k + 1, 
. l. ., I and k S K. Results are reported with K - 3 
and K - 5. We refer to the resulting model as SIM. 

2. A POLYNOMIAL REFORMULATION 

In this and the next section, we study reformulations 
that have a polynomial number of constraints and 
variables in place of the 0(2T) inequalities of the form 
(2) or (3). Let 

Y= {(y, x, z) E 

(y, x, z) satisfy the inequalities (3) and z < x}. 

Consider the polyhedron Z, where r11l can be inter- 
preted as the amount produced in i for the periods i 
through I 

rX/ dx for all i, I with i I / 

-ri/ dilxi for all i, I with i I 
I I 

LXk1 < d1,x1 + L dluzk 
k=i k=i+l (4) 

for all i, t, I with i < t I 

E j,> di/ for all I 

z x, y,x, z O. 

We show that the polyhedron Y can be represented 
by the polyhedron Z described in (4), using an obser- 
vation of Martin (1987). 

Proposition 3. Projy1,-,Z = Y. 

Proof. Given a point (y*, x*, z*) that satisfies z* S 

x*, the separation problem for the inequalities (3) can 
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Uncapacitated Lot-Sizing Problems / 743 

be formulated as the integer program 

min , v 

= ji fi {yy*ail + dilx*i3, + dilz*-yi, - dil,l 

ail, + Oil + oyi/ - 6 = O for all i, I with i -,- I 

foi + y',- y'+', / 0 for all i, I with i < 1 (5) 

E a, = 1 

Yi/ =0 for all I 

a, y, ,6 - 0 and integer 

with violation occurring if and only if v < 0. Observe 
that because dilx* - d1,z* and because of the form 
of the objective function, fO, = 1 implies -y, = 0 and 
ai-,,/ = 1. Hence, there exists an optimal solution 
with ti, = ail - fi+,l, - 0. Substituting for ti, and si, = 
3i/ + yi/ - yi+',/ -, 0, we obtain for each 1, the 
shortest path representation 

-a,1/ -/ = --6 

fil + -il - -si+l e,, = 0 

for i = 1, ... , I 

ai/ - fi+l,l - t, = 0 

fori= 1,...,l 

-aei+,/ + Si, + ti, = 0 

for i = 1, ... , I - 1 

SI/ + t,, = 6, 

a, f, -y, s, t ; 0 

showing that the linear programming relaxation of (5) 
always has an optimal integer solution. See Figure 1 
for the case I = 3. 

But we know that a linear program: mine, v = cx, 
Ax - b, x - 0 has an optimal value P > 0 if and only 

if there exists a u > 0 with uA - c, ub > 0. Taking 
Ora, Ail, V) as the dual variables associated with (5), we 
obtain that 0 > 0 if and only if 

1rj/ S y 

for all i, I with i I / 

ji/ + A/l di,xj* 

for all i, I with i I / 

Al+ i - il diz,* (6) 

for all i, I with 1 < i I 

- l + v - 
-dl, 

i=l 

for all I 

/ 0, v O 

is feasible. 
Finally, we observe that for fixed I 

projj(ir, ,): r11 + Ail , di,x* for all i , I 

7ril + Ail - Ai-,'I < d11z* for 1 < i l,iO 0 

= lri i,< di,x* for all i S I 

lrk l 
d,X* + 

doz ,i=i ,i=i+ I 

for all i, t with i < t - 1. 

The claim follows. 

3. TWO MORE REFORMULATIONS 

As for the lot-sizing problem ULS, it is natural to 
consider two other formulations based on an 

81 81 

p 1 
'Y2 'Y3 

> I 

P2 
1 

1 3 (X t 3 3 
1 2 

3 
1 

Figure 1. Shortest path separation problem. 
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744 / WOLSEY 

uncapacitated facility location model and a shortest 
path model. See Eppen and Martin (1987) and Pochet 
and Wolsey (1988) for detailed results on problem 
ULS. 

Consider first the polyhedron WUEL 

E yil = di for all I 
I=i 

EY,, < d,xi + Ez,) 

for i, k, I with is k (7) 

Zi -<- xi for all i 

T 

yiI = Yi for all i 
,==i 

yi, 2- 0 for all i, t with i < t, xi, Zi 2- 0 for all i. 

Observe that we can interpret yi, as the production 
in period i to satisfy demand in period 1, so that 
7ri, i Yi, s yi. We see immediately that the 
constraints of Z described in (4) are an aggregation of 
the constraints of WUFL. 

Proposition 4. Proj, ,V,, WUFL C projy,x,Z 

By substituting si = ,= x, - dli, the storage costs 
hi can be taken as zero in formulation (1). Using yi = 

y"=i y, to substitute out the production variables, we 
obtain the formulation 

min{f piYiy + cix, + E fzi: 
Li.,/ 

1 - I Zi Xi- Xi-I 

for all i, (y, x, z) E WUL x, z E BT} 

Next, assuming for simplicity that di > 0 for all i, it is 
known from the structure of the optimal solutions of 
(1) that there exists an optimal solution in which 

x Y Yi i+1 YiT (8) 
di di+ IdTi 

Adding the constraints of (8) to (7) we see that the 
(i, k, 1) constraints of (7) with k < I are dominated by 
the constraint (i, k, k). Hence, by setting w,, = yi,d, 

we obtain the equivalent model 

min p Pid,wi + E cix, + fzi 
i / i 

w wi,1 for all I 

l; I; 

EW,k;<Xi+ E z, for all i,k with 1 <i k (9) 
t=i ,~~=i+I 

xi > wii i .>. . w wi, for all i 

min{x,, 1 - xi-,) zi >xi - xi, for all i 

w>0, x,zEIo,l}. 

Finally, introducing the variable i,, = wi- wi1,+l > 0 
in model (9) leads to the shortest path reformulation 

min pi p1diqi, + cixi + Xfzi 

1 = I 

t-I T 

E =,,-1-E Olk = O t= 2, ..., T 
,=, (10) 

k I ,; 

E E .xi + E z, 
,=i ..=,; ,=i+, 

forall i, k with 1 t is k 

min{xi, 1 - xi-,} > zi >- xi-x for all i 

0 > O, x, z E IO, I}. 

We call this a shortest path SP model, because a 
solution to the equality constraints defines a path from 
1 to T. 

At this stage, we know that the linear programming 
relaxation based on SP( 10) is at least as strong as that 
based on WUFL (7), which is at least as strong as that 
based on (4) or (6), which is equivalent to SIM 
(consisting of the formulation (1) plus the family of 
inequalities (2)). 

4. COMPUTATIONAL RESULTS 

We briefly tested three of the models developed in 
Sections 2-4. The first is the model SIM in the space 
of the original variables (y, s, x, z). Rather than use a 
special purpose cutting plane algorithm based on 
Proposition 2, we preferred to add a subset of the 
inequalities (2) a priori. Thus, anyone with access to 
a mathematical programming system can repeat these 
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results. For a choice of parameter K, we added in- 
equalities with r = 1, and S, = S = {I-k + 1, ..., 1} 
for all 1, k with k s K. The resulting model has at 
most 4 T variables and O(KT) constraints. 

The second model tested is a relaxation of the model 
based on (7) and the change of variable wi, = yal/d,, 
called UFL. Here again, for a choice of parameter 
K, we only added the inequalities Et&- Wk -< X, + 

I= i+ Iz, for values of (i, k) that satisfy k - i s K. The 
resulting problem has at most 1/2(T2 + 5 T) variables 
and O(KT) constraints. 

The UFL model is chosen because it is the same 
size as the SP model but it is considerably less dense. 
It is important to observe that this relaxation is, pos- 
sibly, a relaxation of the original problem, as the 
constraints w,, s x, for I > t + K are needed to give a 
correct formulation. 

The third model tested is the model SP(10). Here 
we have only added the inequalities S,=k ?,5 s 
xi + '=i+l z, for values of (i, k) with k - i s K. This 
model has the same number of constraints and vari- 
ables as the model UFL. However, in this case, when 
K = T - 1 we obtain the complete model. The 
motivation for the parameter K is the hope that if 
setups and start-ups appear every K periods or less, 
the corresponding inequalities may suffice. 

The data are randomly generated. Two sets of five 
problems were generated. A 12-period and a 24-period 
set are obtained using data with the cost p, h,, c,, f 
integers uniformly distributed in [3, 5], [1, 2], [150, 
300], [75, 125], respectively, and the d, integer uni- 
formly distributed in [50, 100]. 

Table I shows the results for each of the three models 
with K = 3 for the 12-period problems and K = 5 
for the 24-period problems. CONV denotes the 

CONVERT + SETUP time and LP is the Primal 
Simplex time. 

These values of K are, in fact, very conservative for 
the class of instances generated. In Table II we show 
the behavior of each of the models with K = 0, 1, 2 
for one of the 24-period problems. The branch-and- 
bound times include the linear programming times. 
The last column indicates whether the solution found 
was feasible for the original problem. The results 
indicate that at least for the class of single item prob- 
lems generated, the strongest and most compact for- 
mulation SP is not the fastest. The slowness of SP is 
undoubtedly due to the density of the (i, k) inequalities 
in (10). On the other hand, the complete SP formu- 
lation requires O(T2) constraints, the complete UFL 
formulation O(T3) constraints and SIM requires 
0(2T) constraints, so one might expect that on more 
difficult problems this tendency will be reversed. Such 
problems can be expected to arise when several items 
are produced on the same machine, so these results 
also suggest that not just the inequalities (2) but even 
the (i, k) inequalities in (10) and the (i, k, 1) inequali- 
ties in (9) should be generated as cuts rather than 
added a priori. 

Given the results, it is also natural to conjecture 
that the different models suffice to describe the convex 
hull of solutions to the original problem (1), as is the 
case without the start-up variables z (see Barany, Van 
Roy and Wolsey 1 984b). The reformulation of Eppen 
and Martin based on a dynamic programming recur- 
sive is known to describe the convex hull of the 
solutions. It contains O(T2) variables and O(T2) con- 
straints like the SP formulation. 

We also solved some multi-item uncapacitated 
problems with changeover costs. This model is 

Table I 
The Single Item Start-Up Model 

secs 

T K ROWS COLS DENS CONV LP PIVS 
SIM 12 3 90 47 84 1.68 2.4 77 

2.2-3.1 70-97 
UFL 12 3 77 101 4.2 2.1 2.5 103 

2.2-2.7 90-111 
SP 12 3 77 101 10.8 3.4 3.7 116 

3.0-4.3 93-132 
SIM 24 5 225 95 5.7 5.3 13.2 211 

10.5-16.3 175-245 
UFL 24 5 200 347 1.8 6.3 15.0 288 

14.1-16.1 276-309 
SP 24 5 200 347 8.4 18.7 32.7 320 

27.3-35.5 276-351 
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Table II 
Adding Selected Inequalities a Priori 

Linear Program Branch-and-Bound Values 

K ROWS COLS CONV LP PIVS NODES SECS PIVS LP IP FEAS. 

SIM 0 120 95 2.4 3.5 112 400+ 140+ 745+ 10677 11938a Y 
SIM 1 143 95 2.8 4.4 133 3 6.1 137 11792 11847 Y 
SIM 2 165 95 3.3 5.3 137 11847 Y 
UFL 1 118 347 3.9 4.4 112 11787 N 
UFL 2 140 347 4.4 6.8 164 11847 Y 
SP 0 95 347 5.1 10.8 226 23 21.7 257 11640 11847 Y 
SP 1 118 347 6.7 12.0 219 11847 Y 
SP 2 140 347 9.4 15.6 246 11847 Y 

a Indicates the value of the best solution found after 400 nodes. 

presented but not tackled in Karmarkar and Schrage. 
The basic formulation is 

min piyi, + E hilsi, + E ci,xi, + E qijvij, 

si,_ +yi, -y= di, + si, for all i, t 

Yi, s Mx1i for all i, t 

Exi,= 1 for all t 

vij, _ xi ,,- + Xj, - 1 for all i, j, t 

s,yO0, x,velo, I} 

where yi", sil, xi,, denote the production, storage and 
setup of item i in period t, and vij, = 1 if item i is setup 
in period t - 1 and item j in period t. Note that in 
this model only one item can be produced in each 
period. 

This formulation is strengthened by dropping the 
last set of constraints that define v1j,, and replacing 
them by 

Zj, = 2,Vij, 

xi,l = Vij1 
x z j+ 

Xi, Zi, + Vii, 

where zi, is the start-up variable for item i in period t. 
We can use any of the reformulations for the start-up 
variables described earlier. 

Based on the single item results we choose to use 
reformulation UFL plus the additional constraints 

s, Wis s Txi,, where wi, is the fraction of the demand 
for i in period s produced in period t. These additional 
constraints serve two purposes. First, they guarantee 
a valid formulation, and second, the inequalities 
wil, s xi, are generated as cuts from these constraints 
if they are violated. 

In Table III we indicate the results for four prob- 
lems-CUTS indicates the number of constraints of 
the form wi,s s xi, that are added. XLP denotes the 
total time to solve the linear program, generate cuts 
and reoptimize until no more cuts are found. Surpris- 
ingly, an integer solution is obtained for all four 
problems without using branch-and-bound. The data 
are randomly generated with pi, = qii = 0, hi,, cit, 
qj(i j) and di, uniformly distributed and integer in 
[1, 2], [100, 400], [200, 900] and [50, 100], respec- 
tively, and initial and final stocks in [200, 350]. 

The results for single-item problems were obtained 
using SCICONIC Version 1.32 on Data General 
MV8000, and the results for multi-item problems used 
SCICONIC Version 1.20 + MPSARX, to generate 
the violated inequalities wi,s < xi, (see Van Roy and 
Wolsey 1987). 

Table III 
Multi-Item Model With Sequence-Dependent Costs 

secs secs 

I T K ROWS COLS 0-1 DENS CONV LP PIVS CUTS XLP PIVS 

TSPO1 5 10 6 503 601 275 .920 15 206 980 21 223 1010 
TSP02 5 12 6 656 786 335 .784 21 290 1103 31 344 1232 
TSP03 5 15 6 848 1101 425 .596 29 794 2147 37 994 2579 
TSP04 5 15 6 848 1101 425 .596 30 736 1967 44 874 2238 
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Since being accepted for publication, further prog- 
ress has been made on the problem treated here. 
S. Van Hoesel discovered a fractional solution that is 
not cut off by the inequalities (2). We then showed 
that the slightly more general inequality family (2') in 
which the term dck,x,k can be replaced by the term: 

dak/(ZTk_,+' + * * * + Zk) for k > 1 is valid for X and 
cuts off the point he proposed. He has shown that this 
new family describes conv(X) when added to the 
initial formulation. This result implies that that 
proj,.,,2Z D conv X, whereas proj,x,, WUFL = conv X, 
and thus the formulation WUFL is tight. 

ACKNOWLEDGMENT 

This research was supported by the Projet d'Action 
Concert6e No. 87/92-106 of CORE. 

REFERENCES 

BARANY, I., T. J. VAN ROY AND L. A. WOLSEY. 1984a. 
Strong Formulations for Multi-Item Capacitated 
Lot-Sizing. Mgmt. Sci. 30, 1255-1261. 

BARANY, I., T. J. VAN RoY AND L. A. WOLSEY. 1984b. 
Uncapacitated Lot-Sizing: The Convex Hull of 
Solutions. Math. Prog. Study 22, 32-43. 

EPPEN, G. D., AND R. K. MARTIN. 1987. Solving Multi- 
Item Capacitated Lot-Sizing Problems Using Vari- 
able Redefinition. Opns. Res. 35, 832-848. 

FLEISCHMANN, B. 1987. The Discrete Lot-Sizing and 
Scheduling Problem. Institut fur Unternehmungs- 
forschung, Universitat, Hamburg. 

KARMARKAR, U. S., AND L. SCHRAGE. 1985. The Deter- 
ministic Dynamic Cycling Problem. Opns. Res. 33, 
326-345. 

MARTIN, R. K. 1987. Using Separation Algorithms to 
Generate Mixed Integer Model Reformulations. 
Graduate School of Business, University of Chicago, 
Chicago. 

POCHET, Y., AND L. A. WOLSEY. 1988. Lot-Sizing Models 
With Backlogging: Strong Reformulations and Cut- 
ting Planes. Math. Prog. 40, 317-335. 

VAN Roy, T. J., AND L. A. WOLSEY. 1987. Solving Mixed 
Integer Programming Problems Using Automatic 
Reformulation. Opns. Res. 35, 45-57. 

VAN WASSENHOVE, L. N., AND P. VANDERHEUST. 1983. 
Planning Production in a Bottleneck Department: 
A Case Study. Eur. J. Opns. Res. 12, 127-137. 

This content downloaded from 130.54.110.72 on Wed, 12 Jun 2013 03:03:06 AM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp

	Article Contents
	p. 741
	p. 742
	p. 743
	p. 744
	p. 745
	p. 746
	p. 747

	Issue Table of Contents
	Operations Research, Vol. 37, No. 5 (Sep. - Oct., 1989), pp. 685-848
	Front Matter [pp.  685 - 685]
	In This Issue [pp.  686 - 688]
	OR Practice
	Selecting a Portfolio of Environmental Programs for a Synthetic Fuels Facility [pp.  689 - 699]

	Defense before or after Bomb-Release-Line [pp.  700 - 715]
	A Dual-Ascent Procedure for Large-Scale Uncapacitated Network Design [pp.  716 - 740]
	Uncapacitated Lot-Sizing Problems with Start-Up Costs [pp.  741 - 747]
	A Fast and Simple Algorithm for the Maximum Flow Problem [pp.  748 - 759]
	An Exact Algorithm for the Quadratic Assignment Problem on a Tree [pp.  760 - 768]
	Using Parallel Iteration for Approximate Analysis of a Multiple Server Queueing System [pp.  769 - 779]
	Markov Decision Processes with Sample Path Constraints: The Communicating Case [pp.  780 - 790]
	Solution Procedures for Partially Observed Markov Decision Processes [pp.  791 - 797]
	On the Complexity of Scheduling with Batch Setup Times [pp.  798 - 804]
	An Interactive Multiple Criteria Approach for Parameter Selection in Metal Cutting [pp.  805 - 818]
	Generalized Dynamic Programming for Stochastic Combinatorial Optimization [pp.  819 - 829]
	Sensitivity Analysis for Simulations via Likelihood Ratios [pp.  830 - 844]
	Technical Note
	Comment on Yao and Buzacott's "Modeling a Class of Flexible Manufacturing Systems with Reversible Routing" [pp.  845 - 846]

	Back Matter [pp.  847 - 848]



