26 2 How the Simplex Method Works

‘PROBLEMS

A 21 Solve the following problems by the simplex method:

a. maximize

subject to

b. maximize

subject to

¢. maximize

subject to

22 Use the simplex method to describe ali the optimal solutions of the following problem:

maximize

subject to

3x, + 2%, + 4xs
X, + X3+ZX3£4
2x, + 3x, <5
2X1+ xl+3x3.<.7
Xy, Xz, %520
5%, + 6x; + 9x; + 8x,
X+ 20 33+ x5
X, 4+ X3+ 2x; 4+ 3x, <3
Xy, X3, X3, X5 2 0
2X1+ Xa
2%y + 3x, <3
X, + 5% 51
2){1"‘ X2S4
4/\‘-1“*‘ x3£5
x11x2>0'

2x; + 3%, 4 5x5 4+ 4xy

Xy 4+ 2x; 4+ 3x; + xp €5
X; 4+ X34+ 2x; + 3%, £3
Xy, X3, X3, %4 2 0,

;i‘HREE KINDS OF PITFALLS

Pitfalls and
How to Avoid Them

The examples illustrating the simplex method in the preceding chapter were purposely

‘smooth. They did not point out the dangers that can occur. The purpose of the present

chapter, therefore, is to rigorously analyze the method by scrutinizing its every step.

" Three kinds of pitfalls can occur in the simplex method.

(i INITIALIZATION. We might not be able to start: How do we get hold of

- a feasible dictionary?

" (i) ITERATION. We might get stuck in some iteration: Can we always choose
an entering variable, find the leaving variable, and construct the next feasible
dictionary by pivoting?

(iiiy TERMINATION., We might not be able to finish: Can the simplex method

i+ construct an endless sequence of dictionaries without ever reaching an optimal
. solution?
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- In the preceding chapter, INITIALIZATION never came up. Given a problem

n
2 CXj

ji=1

maximize

(3.1

n
subject to Y agx; < b (f=1,2,...,m)
i=1

x; =20 (j=1,2....n)

we constructed the initial feasible dictionary by simply writing down the formulas
defining the slack variables and the objective function,

"

Xpri = by — ) ayX; i=12....,m
j=1
n

z = Y oex;
Jj=1

In general, this dictionary is feasible if and only if each right-hand side, b;, in (3.1) is
nonnegative. This is the case if and only if

x, =0, x=0,...,%x,=0

is a feasible solution of (3.1). Since the set of zero values is sometimes called the
“origin,” problems (3.1) with each right-hand side b; nonnegative are referred to as
problems with a feasible origin. For the moment, we shall avoid the pitfalls of
INITIALIZATION by default: we shall restrict ourselves to problems with a feasible
origin. Problems with an infeasible origin are discussed on pages 39-42.

Iteration
Given some feasible dictionary, we have to select an entering variable, to find a leaving

variable, and to construct the next feasible dictionary by pivoting.

Choosing an entering variable. The entering variable is a nonbasic variable x; with a
positive coefficient €; in the last row of the current dictionary. This rule is ambiguous
in the sense that it may provide more than one candidate for entering the basis, or
no candidate at all. The latter alternative implies that the current dictionary describes
an optimal solution, at which point the method may terminate. More precisely,
consider the last row of our current dictionary,
z=2z%4+ ) Ex;
jeN

with N standing for the set of subscripts j of nonbasic variables x;. Our current
solution, with x; = O whenever je N, gives the objective function the numerical
value of z* If €; < 0 whenever je N, then every feasible solution, with x; > 0
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whenever j € N, gives the objective function a numerical value of at most z*; hence
the current solution is optimal. On the other hand, if there is more than one candidate
or entering the basis, then any of these candidates may serve. (In hand calculations
involving small problems, it is customary to choose the candidate x; that has the
fargest coefficient ;. In most computer implementations of the simplex method,
owever, this practice is abandoned. More on this subject in Chapter 7.)

Finding the leaving variable. The leaving variable is that basic variable whose
; 611izegativity imposes the most stringent upper bound on the increase of the entering
variable. Again, this rule is ambiguous in the sense that it may provide more than
one candidate for leaving the basis, or no candidate at all. The latter alternative is
ustrated on the dictionary

‘xy =54 2x3 — x4~ 3x;
= 7 - 3X4 it 4x1
=54 X3 —

X — X

The entering variable is x5, but neither of the two basic variables x,, x5 imposes an
upper bound on its increase. Therefore, we can make x5 as large as we wish {main-
taining x, = x, = 0) and still retain feasibility: setting x, = ¢ for any positive ,
we obtain a feasible solution with x;, = 0, x, = 5 + 2, x, = 0, xs = 7, and z =
5 + t. Since t can be made arbitrarily large, z can be made arbitrarily large. We
conclude that the problem is unbounded: for every number M, there is a feasible
solution xy, x5, ..., x5 such that x3 — x, — x, > M. The same conclusion can be
fe'é;_c_:hed in general: if there is no candidate for leaving the basis, then we can make the
value of the entering variable, and therefore also the value of the objective function,
15 large as we wish. In that case, the problem is unbounded. On the other hand, if
there is more than one candidate for leaving the basis, then any of these candidates
may serve. Once the entering and leaving variables have been selected, pivoting is a
straightforward matter.

Dégeneracy. The presence of more than one candidate for leaving the basis has
resting consequences. For illustration, consider the dictionary

x4.=1 — 2X3
.'xs — 3 —_ 2x1 + 4x2 - 6X3

x6=2+ x1—3x2—4X3

Z = le - X2 + SX3.

Having chosen x; to enter the basis, we find that each of the three basic variables
s X5, X limits the increase of x5 to 4. Hence each of these three variables is a
candidate for leaving the basis. We arbitrarily choose x,. Pivoting as usual, we obtain
the dictionary
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x; = 0.5 — 0.5x, xs = — 0.5x; + 55x; + 25x3 — x4
x5 = — 2%, + 4x; + 3x4 xg = — 05x; + 15x; +05x; — x4
Xg = X, — 3%, + 2x4 x=1—-x

7 = 44 2x, — X, — 4x,. z = 10x, — 57x, — 9x3 — 24x,

This dictionary differs from all the dictionaries we have encountered so far in one " and let us agree on the following:

important respect: along with the nonbasic variables, the basic variables x5 and xg
have value zero in the associated solution. Basic solutions with one or more basic
variables at zero are called degenerate.

Although harmless in its own right, degeneracy may have annoying side effects.
These are illustrated on the next iteration in our example. There, x; enters the basis
and x; leaves; because of degeneracy, the constraint x5 > 0 limits the increment of
x, to zero. Hence the value of x, will remain unchanged, and so will the values of the
remaining variables and the value of the objective function z. This is annoying, for

(i) The entering variable will always be the nonbasic variable that has the
largest coefficient in the z-row of the dictionary.

(i) If two or more basic variables compete for leaving the basis, then the can-
didate with the smallest subscript will be made to leave.

" Now the sequence of dictionaries constructed in the first six iterations goes as follows.
© " After the first iteration:

the motivation behind the simplex method is a desire to increase the value of z in : 1= llx, + 5x3 — 18x, — 2xs
cach iteration. In this particular iteration, that desire remains unfulfilled: pivoting Xg = — 4x3— 2xz3+ 8Bxp+ x5
changes the dictionary into i xe=1—1lx; — 5Sx3+ 18x4 + 2x;

X, = 2X2 + l.SX4 . O.SXS 2 = 53x2 + 41.X3 — 204364 — ZOXS.

Xy = 0.5 — O.SX4 o

Xe =  — X»+ 3.5x, — 0.5x, ", After the second iteration:

z = 443x, — X4— Xs xp= = 05xp 4 2xg + 0255 — 0.25%
but it does not affect the associated solution at all. Simplex iterations that do not ooxi = = 05x 4+ dxg o+ 0.75x5 — 275,
change the basic solution are called degenerate. (As the reader may verify, the next X7 =14+ 05x3 — 4x; — 0.75x5 — 13.25x,

iteration is degenerate again, but the one after that turns out to be nondegenerate Yooz
and brings us to the optimal solution.)
In a sense, degeneracy is something of an accident: a basic variable may vanish

only if the results of successive pivot operations just happen to cancel each other

14.5x, — 98x, — 6.75x; — 13.25x,.

After the third iteration:

out. And yet degeneracy abounds in LP problems arising from practical applications. X3 = 8x, + 15x5 — 5.5x — 2x,
It has been said that nearly all such problems yield degenerate basic feasible solutions X, = — 2x, — 05%5 + 25% +  x,
at some stage of the simplex method. Whenever that happens, the simplex method = 1

7 = - X

may stall by going through a few (and sometimes quile a few) degenerate iterations
in a row. Typically, such a block of degenerate iterations ends with a breakthrough
represented by a nondegenerate iteration; an example of the atypical case is presented
next.

t
|

18x, + 15x5 — 93xs — 29x,.

. After the fourth iteration:

o ‘ X, = — 0.25x5 + 1.25x¢ + 0.5x; — 0.5x,
Termination: Cycling .= — 05 4.5x% 2 .
Can the simplex method go through an endless sequence of iterations without ever - X5k AN+ 2n = dn
finding an optimal solution? Yes, it can. To justify this claim, let us consider the Xy =1 - X
initial dictionary = 10.5x5 — 705x5 — 20x, —  9x,.
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After the fifth iteration:
X5 = Oxe + dx; — Bxy - 2x;
Xe = — xg— 0.5x; + L5x; 4+ 0.5x;

l

Xq = - X1

z = 24x6 + 2—2x1 - 93)62 — 21)63.

After the sixth iteration:

— 0.5x; + 1.5x, 4+ 0.5%x; — x4

xs = —05x; + 55x;, + 25x; — 9x4
x=1-x
z = 10x, — 57x; — 9x3 — 24x,.

Since the dictionary constructed after the sixth iteration is identical with the initial
dictionary, the method will go through the same six iterations again and again
without ever finding the optimal solution (which, as we shall see later, has z = 1).
This phenomenon is known as cycling. More precisely, we say that the simplex
method cycles il one dictionary appears in two different iterations (and so the sequence
of iterations leading (rom the dictionary to itself can be repeated over and over
without end). Note that cycling can occur only in the presence of degeneracy: since
the value of the objective function increases with each nondegenerate iteration and
remains unchanged after each degenerate one, all the iterations in the sequence
leading from a dictionary to itself must be degenerate. Cycling is one reason why the
simplex method may fail to terminate; the following theorem shows that it is the
only reason.

THEOREM 3.1. If the simplex method fails to terminate, then it must cycle.

PROOF. To begin, note that there are only finitely many ways of choosing m
basic variables from all the n 4+ m variables. Thus, if the simplex method fails to
terminate, then some basis must appear in two different iterations. Now it only
remains to be proved that any two dictionaries with the same basis must be identical.
(This Fact becomes trivial as soon as one describes dictionaries in terms of matrices,
as we shall do in Chapter 7. Nevertheless, we can and shall present an easy proof
from scratch right now.) Consider two dictionaries
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xp=bi— 2 apx;  (€B)

(3.2)

bf — Y alx;  (ieB)

j¢B

—— -
z =v* + ) clx;
jeB

X
I

(3.3)

*with the same set of basic variables x; (i € B}, It is a defining property of dictionaries
: _that every solution x,, Xz, ..., X, 4. 2 0f (3.2) 1s a solution of (3.3) and vice versa.
 In particular, if x, is a nonbasic variable and if ¢ is a number, then the numbers

x,=t x;=00¢B and j#k), x;=b —au(ieB), z=v+ ¢,

éonstituting a solution of (3.2), must satisfy {3.3). Hence,

b, — agt = b¥ — akt forall ieB, and v+ ¢t = v* + 1.
Since these identities must hold for all numbers t, we have
b; = bf, a; = af, forall ieB, and v = v* ¢ = ¢,

Since x,, was an arbitrary nonbasic variable, the two dictionaries are identical. [ |

Cycling is a rare phenomenon. In fact, constructing an LP problem on which
the simplex method may cycle is difficult. [Our example is adapted from K. T.
Marshall and J. W. Suurballe (1969). The first example of this size was constructed
by E. M. L. Beale (1955) and the first example ever was constructed by A. J. Hoffman
{1953}). Incidentally, Marshall and Suurballe (1969) proved that if the simplex method

.. cycles off-optimum on a problem that has an optimal solution, then the dictionaries

must involve at least six variables and at least three equations.] P. Wolfe (1963) and
T. C. T. Kotiah and D. 1. Steinberg (1978} reported having come across practical

problems that cycled (in 25 and 18 iterations, respectively) but such reports are

scarce. For this reason, the remote possibility of cycling is disregarded in most

'c'_omputer implementations of the simplex method.
“ .. There are ways of preventing the occurrence of cycling altogether. The classic
‘perturbation method and lexicographic method avoid cycling by a judicious choice of

the leaving variable in each simplex iteration; the more recent smallest-subscript rule
does so by an easy choice of both the entering and the leaving variables. The former
alternative maintains the freedom of choice among different candidates for entering
the basis, but it requires extra computations to choose the leaving variable; the
latter alternative requires no extra work at all, but it gives up the multitude of choices
for the entering variable. We shall explain the details of both.
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The pertarbation method and the lexicographic method. The perturbation and the lexicographic
methods are closely related. The perturbation method, suggested first by A. Orden and developed
independently by A. Charnes {1952), provides an intuitive motivation for the lexicographic
method of G. B. Dantzig, A, Orden, and P. Wolfe (19535). The lexicographic method can be seen
as an implementation of the perturbation method.

The starting point relies on the observations that cycling can be stamped out by stamping out
degeneracy and that degeneracy itself is something of an accident. To elaborate on the second
observation, consider a degenerate dictionary. The basic variables currently at zero would most
likely assume small nonzero values if the initial right-hand sides, b;, were changed slightly; at the
same time, if these changes were truly microscopic, then the problem could be considered un-
changed for all practical purposes. One way of exploiting these observations is to add a small
positive ¢ to each by, and then to apply the simplex method to the resulting problem. This trick
{with & = 1079 or 50} is actually used in some computer implementations of the simplex method;
it helps to reduce the number of degenerate iterations. Nevertheless, it does not constitute a reliable
safeguard against cycling: for instance, if the simplex method is applied to the problem

maximize 10x; — 57xy — 9x; — 24x, + 100x,
subject to x5 =1+
05x; — 55x; —25x3 + 9%+ x5 €1 +¢
05x;, — L%, — 05x3 + x4+ Xx;=<1+e¢
Xy + X352+
X, Xg,...,X5 20

then the degenerate dictionary

1+ & - Xg

Xy = — 0.5x; + 5.5x, + 25x5 — Ox, + Xg
Xg = —05x; 4+ 15x, +05x; —  x, 4+ X4
Xg = 1 — X1 + Xa

z = 100+ 100 + 10x; — 57x, — Ox3; — 24x, — 100x,

is obtained after the first iteration and, as the reader may verify, the simplex method cycles in
the next six iterations. (The cycle is essentially the same as that of the preceding example.)
What went wrong here was that the small amounts ¢ added to the right-hand sides cancelled
each other out in the first iteration. To guarantee that such cancellations will never take place
(and therefore all the dictionaries will remain nondegenerate), we shall perturb the different
right-hand sides b,, b,,..., b, by radically different amounts &,, &,, ..., &,. More precisely,
we shall choose a very small g, and then make each &, , much smaller than the preceding &;: in
symbols,

0<e, e, <

i (3.4)

e e« L

Then we shall apply the simplex method to the perturbed problem

n
maximize Yoo
J=1
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. "
" subject o Soapx;sb+s (=L2...,m
. P

X =0

(i=1,2,...,n.

“This is the perturbation method. (The perturbation methed is usually presented with &y, £5,..., 5,
qual to the powers &, &2, ..., £" of the same small &. Qur version makes the subsequent analysis

+little more transparent.) For illustration, let us return to our first example on which the simplex

hod cycled. There, the initial dictionary reads

— 0.5x, + 53.5x, + 2.5x; — 9%y

Xg = €2 — 0.5x; 4 15x; + 05x3 — x4

GNy=lEe—- X

10x, — 57x, —

X5 = &)

Oxy — 24x,.

gain, the entering variable is x,. The constraints x5 > 0, x4 = 0, and x; = 0 limit the increase
[ to 2g;, 265, and 1 + &, respectively. Since 2¢, < 2Ze; < | + s, the leaving variable is x,,

+ 3x2 + X~ 2X4_ - 2)C5
£, — £ + 4x, 4+ 2x; —
28, + 83 — Ixng — xy + 2x b 2xg
20z, — 2Txy + X3 — ddx, — 20x4.

Xy, = 262
8x, + x4

= 1 -

Now the only candidate for the entering variable is x; and the only candidate for the leaving
variable is x,. The resulting dictionary,

xy=1— Zg;+ & — 3xy+ 2xy b 2xg — X5
=14+ &5 - X
Xy = 2 “+ & — 582 -+ 253 - 2XZ - 4;\:4 + Sxﬁ 2x',l

1+ 188 + &5 — 30x, — 42x, — 18x5 — X4

i

is the optimal dictionary for the perturbed problem. It may be converted into the optimal dic-
fionary for the original problem by simply disregarding all the terms involving &y, £5, €a.

How should we choose the numerical values of £y, &5, . - ., &,7 The simplest answer is that we
“do not have to do that at all: rather than committing ourselves to definite values of g;, &5, . . ., &
¢ may just think of these symbols as representing indefinite quantities, which satisfy (3.4). After
several iterations of the simplex method, these symbols spread throughout the various rows of
he dictionary, but they remain confined to the absolute terms in each of the m + 1 rows; the
coefficients at the nonbasic variables in the dictionary are unaffected by the perturbation. Now
when it comes to finding the leaving variable, each of the constraints x; > 0 for a nonbasic x;
limits the increase of the entering x; to a quantity such as ey, 265, 1 + &, or, more generally,

Cop =g b rEy bk Py S5 = Sg + 8181 + 0+ Sudu (3.5)
and so on. As we are about to explain, assumption (3.4) allows us to compare the numerical values
of such guantities without referring to the precise values of &y, £, ..., &,. If r and 5 in (3.5) are
distinct, then there is the smallest subscript & such that r, % s,. It is customary to say that r is
lexicographically smaller than s if r, < s;. (The choice of the term lexicographically is explained
by observing that, for instance, 2 + 21, + 19s, 4 20z, is lexicographically smaller than
2 4+ 21, + 206, + 206, + 156, + 14e5 for the same reason that “bust™ comes before “button”
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in a dictionary.) It is easy to prove that r is lexicographically smaller than s if and only if r is
numerically smaller than s for all values of £, £,. .. ., &, that satisfy (3.4). This statement has to
be made precise by specifying just what is meant by the symbol « in (3.4); we leave the details
for problem 3.7.

The lexicographic method is that implementation of the perturbation method in which g,
£3... ., &, 2re treated as symbols, and quantities such as  and s in (3.5} are compared by the
lexicographic rule. Note that it is always possible to choose the leaving variable by the lexico-
graphic rule: in every finite set of expressions such as r and s in (3.5), there is always one that is
lexicographically smaller than or equal to all the others. Even though this fact may be taken for
granted intuitively, rigor requires that it be proved; we leave the details for problem 3.6. Another
fine point concerns the behavior of the objective function z. The value of z, equal to some expression
by + 118 4 o+ D,8,, remains unchanged in each depenerate iteration and increases, in the
lexicographic sense, with each nondegenerate one. (In our example, the increase from 0 to 20e;
in the first iteration was followed by the increase from 20g, to 1 + 18¢; - ;3 in the second
iteration.) It is intuitively obvious that the total of two or more lexicographic increases is a lexi-
cographic increase; a rigorous proof of this fact follows from the result of problem 3.5, Now it
follows that, even in the generalized context of the lexicographic method, cycling is possible
only in the presence of degeneracy. Finally, note that the only function of the terms involving
E1s €25 - - - » &y 15 tO guide us toward the appropriate choice of a leaving variable whenever two or
more candidates present themselves in the original problem. If, at any moment, these terms are
deleted, then the dictionary for the perturbed problem reduces to a dictionary for the original

problem.

THEOREM 3.2. The simplex method terminates as long as the leaving variable is
setected by the lexicographic rule in each iteration.

PROOF. In view of the preceding remarks, we need merely prove that no degenerate dictionary
will be constructed. (If all dictionaries are nondegenerate, then all iterations are nondegenerate.
In that case, cycling cannot occur and the desired conclusion follows from Theorem 3.1.) Thus,
we need only consider an arbitrary row
X = (rg o &+ R — 3 A (3.6)
jen
of an arbitrary dictionary and to prove that at least one of the m + 1 numbers ry, ry, ..., 1, is
distinct from zero. {Actually, we shall prove that at least one of the m numbers ry, r5,. .., 1, i8
distinct from zero.) Writing 4, = 1 and d; = 0 for all basic variables x; distinct frem x,, we record
(3.6) as

ntm "

Z {Ijxj' = Fp + Z ¥k

j=1 i=1

(3.7

Since this equation has been obtained by algebraic manipulations from the definitions of the

slack variables,

Xy = bi + £ — z a"jxj: (] = }., 2, e ,f")
=1

(3.8)
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it must hold for all choices of numbers x|, x,, . ..
the equation

s Xgrgand e ea, .. 8, that satisfy (3.8). Hence,

" " n

n
Sodxgt Y deilbi 5 = Y @) =g+ Y rg
i=1 i=1 i=1 i=1
which is obtained by substituting from (3.8) into (3.7), must hold for all choices of numbers X1
Xay-r s X,a0d &, &5, .. ., &,. Writing this identity as

m m m

Z d; — Z d||+iaij)xj + Z (dyri — 1rde; = rq — Z dyvib;

j=1 =1 P=] i=1
we observe that the coefficient at each x;, the coefficient at each ¢;, and the right-hand side must
equal zero. Thus

dopi = 1y forall i=1,2,...,m

(3.9

n

d;= 3 doay;

i=1

forall j=12 ..., n
% If all the numbers ry, rs, . .., r,, were equal to zero, then (3.9) would imply d,,; = O for all i =
L2...,mand d; =0forall j = 1,2,..., n, contradicting the fact that d, = 1. B

With the hindsight provided by Theorem 3.2, it becomes easy to prove that every LP problem

in the standard form can be perturbed by adding suvitable small nmumbers &, &,, . . ., &, to the
right-hand sides by, b,, ..., b,, in such a way that the simplex method applied to the perturbed
problem will terminate. In fact, the numberse,, e, . . . , 5, may be chosen as the powers ¢, £2, . .., &"
of any sufficiently small positive &. We leave the details for problem 3.8.
- As we have observed, the terms involving &, &, ..., &, are needed only when a tie has to be
broken between two or more candidates for leaving the basis. Thus we might just as well wait
until such a need arises, and only then introduce an ad hoc perturbation. This idea was developed
- by P. Wolfe {1963); its lexicographic counterpart comes from G. B. Dantzig (1960).

_Sma-llest-su‘bscript role. This term will refer to breaking ties in the choice of the entering and
];n‘trmg variables by always choosing the candidate x, that has the smallest subscript k. The moti-
vation for this elegant concept is provided by the following result.

THEQREM 3.3. [R. G. Bland (1977).] The simplex method terminates as long as the |
entering and leaving variables are selected by the smallest-subscript rule in each iteration.

FROOF. By virtue of Theorem 3.1, we need only show that cycling is impossible when the
- smallest-subscript rule is used. We shall do this by deriving a contradiction from the assumption
Fhat the smallest-subscript rule leads from some dictionary D, to itself in a sequence of degenerate
. Herations. For definiteness, let us say that this sequence of iterations produces dictionaries D,
D}. - -5 Dy such that D, = Dy. A variable will be called fickle if it is nonbasic in some of these
dictionaries and basic in others. Among all the fickle variables, let x, have the largest subscript.
In the sequence Dy, Dy, ..., D,, there is a dictionary D with x, leaving (basic in D but nonbasic
10" the next dictionary), and some other fickle variable X, entering {nonbasic in D but basic in the
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next dictionary). Further along in the sequence Dg, Dy, . - -, Dy Dy, Ds. ..., D, there must be a

dictionary D* with x, entering. Let us record D as

X;_—‘bi_‘ Za,-jxj (IEB)

jeB

=0 4+ 3 C -
jel
Since all the iterations leading from D to D* are degenerate, the objective function z must have
the same value » in both dictionaries. Thus, the last row of D* may be recorded as

ntmp
z=v+ 3 Ofx;
j=t

with ¢f = 0 whenever x; is basicin D*. Since this equation has been obtained from D by algebraic
manipulations, it must be satisfied by every solution of D. In particular, it must be satisfied by
x, =y x=0(¢Bbutj# s) x; = by — ayy (i€ B) and z = v + ¢,y for every choice of y.
Thus we have

b4y =v+cty+ 3, i — i)
ieR

and, after simplification,

(crs —+ ¥ c?‘a,-j) y =y b

ich ieB
for every choice of y. Since the right-hand side of the last equation is a constant independent of y,

we conclude that

¢, — ¢+ Y, cFa, =0 (3.10}
iell

The rest is easy. Since x, is entering in D, we have ¢; > 0. Since x, is not entering in D¥ and yet

s < t, we have ¢* < 0. Hence (3.10) implies that

c¥a,, <0 for some reB. (3.11)

Since r € B, the variable x, is basic in I} since ¢ # 0, the same variable is nonbasic in D*. Hence,
x, is fickle and we have r £ t. Actually, x, is different from x,: since x, is leaving in D, we have
a, > Oandso cta, > 0.Nowr < ¢ and yet x, is not entering in D*. Thus, we cannot have ¢f > 0.

From {3.11), we conclude that

dy > 0.

Since all the iterations leading from D to D¥ are degenerate, the two dictionaries describe the
same solution. In particular, the value of x, is zero in both dictionaries {x, is nonbasic in D¥) and
sob, = 0.Hence x, was a candidate for leaving the basis of D—yet we picked x,, even thoughr < t.
This contradiction completes the proof. -

One further point: termination of the simplex method can be guaranteed even without abiding
by the smallest-subscript rule in every single iteration. We might resort to the smallest-subscript
rule, for instance, only when the last fifty or so iterations were degenerate, and abandon it after
the next nondegenerate iteration in favor of any other way of choosing the entering and leaving
variables. Although cycling might conceivably take place in this case, each block of consecutive
degenerate iterations would be followed by a nondegenerate iteration, and so each dictionary

[l would be constructed only a finite number of times.

Initialization
The only remaining point that needs to be

féasible dictionary in a problem

"
maximize '21 CX%;
=

j=1

minimize Xo

Xj

maximize X — Xa4+ X3
- subject to 2x, — X5 + 25
2x; — 3%, + X3

—Xy + X — 2X3

-3
-1

1A

IA

Xy, X5 X3

form:

maximize —Xg

subject to 2x, — Xz 4+ 2x3 — Xp
2x, — 3xs + X3 — Xp
—x; + Xy — 2x3 — X

Xg, Xys Xgs X3

IA
N

v
=
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explained is getting hold of the initial

- subject to Yoax;<b (=12

1
subject to S agx; — %o < by (i =
j=1

To avoid unnecessary confusion, we write the auxiliary problem in its maximiza

A A A

v

)]

x; =20 (Gj=12...,n

with an infeasible origin. The trouble with an infeasible origin is twofold. First, it
‘may not be clear that our problem has any feasible solutions at all. Second, even ifa
‘feasible solution is apparent, a feasible dictionary may not be. One way of getting
around both obstacles uses a so-calied auxiliary problem,

,2,...,m)

>0 (j=01,...,0.

‘A feasible solution of the auxiliary problem is readily available: it suffices to set the
‘value of each x; with 1 < j < n at zero and make the value of x, sufficiently large.
“Furtherrnore, it is easy to see that the original problem has a feasible solution if and
“only if the auxiliary problem has a feasible solu
he original problem has a feasible solution if and only if the optimum value of the
auxiliary problem is zero. Hence our plan is to solve the auxiliary problem first; the
technical details are illustrated on the problem

tion with x, = 0. To put it differently,

tion

-5
-1
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Writing down the formulas defining the slack variables x,, x;, x4 and the objective
function w, we obtain the dictionary

After the second iteration, with x; entering and x, leaving:

1.6 b 0.2x1 + 0.2x5 + 0.6x6 - O.SXG
22 4+ 0.6x; + 04dx; + 0.2x, — 0.6x,

=3 - x — Xet+ 2%

i

X4= 4—2x1+ x2_2X3+xO

i

(3.12)
x5=—5—2x1+3x2—X3+x0

_—1+ xlw

Xy + 2% -+ X — - X,

W= - Xg

he last dictionary (3.12) is optimal. Since the optimal value of the auxiliary problem
ero, dictionary (3.12) points out a feasible solution of the original problem:
=0, x, = 2.2, x3 = 1.6. Furthermore, (3.12) can be easily converted into the
“desired feasible dictionary of the original problem. To obtain the first three rows of

which is infeasible. Nevertheless, this infeasible dictionary can be transformed into
a feasible one by a single pivot, with x, entering and x5 leaving the basis:

Xpg= 54+2x —3x; 4+ x5+ x4 the desired dictionary, we simply copy down the first three rows of (3.12), omitting
o= 9 = 2Xp = X3+ X5 all the terms involving x,:

Xe = 44 3x; —4x, + 3%y + X5 xy = 1.6 — 0.2x; + 0.2x5 + 0.6x,

w = —‘5 - 2x1 + 3x:2 - X3 - xS.

%, = 22 + 0.6x; + 04xs + 0.2x6 (3.13)

In general, the aunxiliary problem may be written as =3 — X - X,

maximize —Xo ‘To obtain the last row, we have to express the original objective function

=Xy e Xy + X3 (314)

subject to Yoapx;—xe<b  (i=12...,m
! n terms of the nonbasic variables x,, x5, x. For this purpose, we simply substitute
from (3.13) into (3.14), obtaining

x, — (2.2 + 0.6x; + 04x;5 + 0.2x6) + (1.6 — 0.2x; + 0.2x5 + 0.6x4)

= —0.6 + 0.2x, — 0.2x; + 0.4x,.

x; 20 (j=01,...,n.

Writing down the formulas defining the slack variables x,. 1, Xp42, - - -, X, 4. a0d
the objective function w gives us the dictionary

by
I

n

x!l+l-=bf— Zaijxj+x(} (i=1,2,...,m)

In short, the desired dictionary reads
j=1 N

%3 = L6 — 0.2x, + 0.2x; + 0.6x
’ XZ = 2.2 + 0.6x; ‘l"‘ 0.4x5 + O.Zxﬁ
Xs= 3 -  x - Xg
= "‘0.6 -} 0.2x1 —_ 0.2x5 + 0.4x6.

W o= — Xg

which is infeasible. Nevertheless, this infeasible dictionary can be transformed into
a feasible one by a single pivot, with x, entering and the “most infeasible” x,,,;
leaving the basis. More precisely, the leaving variable is that x,., whose negative
value, by, has the largest magnitude among all the negative numbers b,. After pivoting,
the variable x, assumes the positive value of —b,, whereas each basic x, ., ; assumes
the nonnegative value of b; — b,. Now we are set to solve the auxiliary problem by the
simplex method. In our iltustrative example, the computations go as follows.

After the first iteration, with x, entering and x leaving:

1
|

Clearly, the same procedure will transform an optimal dictionary of the auxiliary
‘problem into a feasible dictionary of the original problem whenever x, is nonbasic
in the former.

~ Now, let us review the general situation, We have learned how to construct the
“auxiliary problem and its first feasible dictionary. In the process of solving the
~auxiliary problem, we may encounter a dictionary where x, competes with other
‘variables for leaving the basis. If and when that happens, it is only natural to choose
X, as the actual leaving variable; immediately after pivoting, we obtain a dictionary
where

Xy = 1+ 075x; +0.75x; + 0.25x5; — 0.25x,
Xo = 2 -—1025x; — 1.25x5 + 0.25x5 + 0.75x,
X = T - L5x; — 25x; + 05x5 + 0.5x,
w o= =2 + 0.25x, + 1.25x; — 0.25x5 — 0.75x,.

" xq is nonbasic, and so the value of w is zero. (3.15)
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Clearly, a feasible dictionary with this property is optimal. However, we may also
reach the optimum of the auxiliary problem while x, is still basic. Thus, we may
obtain an optimal dictionary where

X, is basic and the value of w is nonzero (3.16)
or, conceivably, an optimal dictionary where
X, is basic and the value of w is zero. (3.17)

Let us examine case (3.17). Since the next-to-last dictionary was not yet optimal,
the value of w = —Xx, must have changed from some negative level to zero in the
last iteration. To put it differently, the value of the basic variable x, must have
dropped from some positive level to zero in the last iteration. But then x, was a
candidate for leaving the basis; yet, contrary to our policy, we did not pick it. This
contradiction shows that (3.17) cannot occur. Hence the optimal dictionary of the
auxiliary problem has either property (3.15) or property (3.16). In the former case,
we construct a feasible dictionary of the original problem as illustrated previously
and proceed to solve the original problem by the simplex method; in the latter case,
we simply conclude that the original problem is infeasible.

This strategy is known as the two-phase simplex method. In the first phase, we set up
and solve the auxiliary problem; if the optimal dictionary turns out to have property
(3.15) then we proceed to the second phase, solving the original problem itself. We
shall return to the two-phase simplex method in Chapter 8.

THE FUNDAMENTAL THEOREM OF LINEAR PROGRAMMING

This name is given to the following result,

THEOREM 3.4. Every LP problem in the standard form has the following three
properties:

(i) Ifit has no optimal solution, then it is either infeasible or unbounded.
(ii) Ifit has a feasibie solution, then it has a basic feasible solution,

(iii} Ifit has an optimal solution, then it has a basic optimal solution.

PROOF. The first phase of the two-phase simplex method either discovers that the problem
is infeasible or else it delivers a basic feasible solution. The second phase of the two-phase simplex
method either discovers that the problem is unbounded or else it delivers a basic optimal
solution. =

Problems 43

Note that the first property is not shared by problems whose constraints may include strict

ear inequalities Y a;x; < b. To take a trivial example, the problem

maximize x subject tox < 0

5 neither infeasible nor unbounded and yet it has no optimal solution. Tl}e remaining two prop-
ies (if) and (iii) tell us that, when looking for feasible or optimal solutions of an L}" problem
in-the standard form, we may confine our search to a finite set. These two prope.rt.ws, easy to
tablish from scratch, are often used to motivate the simplex method. Qur exposition has fol-
wed the reverse pattern, with an emphasis placed on actually solving the problem—and the
fundamental theorem of linear programming obtained as an effortless afterthought.

es

3.1 Maximize X+ 3%, — X3

subject to 2x, + 2%, — x3 5 10
g — 2x; + X3 =10

Xy —3x; + x; £ 10

Xys Xz, X3 = O

In the tableau format, a natural tie-breaking rule for the choice of the pivot row favors the
rows that appear higher up in the tableau. Show that in the following example {constructed
by H. W. Kuhn), this tie-breaking rule leads to cycling:

2%, 4 3x, — Xy — 12x4

X34+ 9x, <0

maximize
subject to —2x; — 9%, +

1 1
§x1 + xz—;jx;,— 2x, <0
Xps X2, X3, Xy = 0

Solve problem 3.2 by the perturbation technique.

Arrange the following expressions in a sequence from lexicographically smaliest to lexico-
graphically largest:

3 — 5

3

2 + [0,

3 — dey 45

& + 3&y

3 4+ de) 4y

3~ dgy, + 8y F Ea

35 Prove:Ifr = rp + ryfy ++ * - + g, i lexicographically smaller than s = s + 5;6, +
<o+ + g e and il s is lexicographically smalier than ¢ = ¢4 + 1,8, + *+* -+ f,8,, thenris
lexicographically smaller than 1.

6  Usethe result of problem 3.5 to prove that, in every finite set of distinct expressions, such as
rand s in (3.5), there is an expression that is lexicographically smaller than all the others.
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3.10

3 Pitfalls and How to Avoid Them

Prove that for every pair of expressions in (3.5) there is a positive number  such that the
following two statements are equivalent: (i} » is lexicographically smaller than s; (i) for

every choice of numbers £y, €4, . . . , &, such that
0<eg <d and O < g < g foralli=2,3,...,m

r is numerically smaller than s.

Use Theorem 3.2 and the result of problem 3.7 to prove the following. For every LP problem

n
2, €7

i=1

maximize

subject to Y apxpsh (i=12...,m)
i1

X220 (J=L1,2,....n
there is a positive number & such that the simplex method used to
maximize Y, o
i=1
subject to Yoax;<b 4+ (i=12...,m
=1
XJ‘Z:O (J=1s23 !”)

terminates whenever 0 < ¢ < &,

Solve the following problems by the two-phase simplex method:

How Fast Is the

4. maximize 3¢+ X3 ?
subjectto X, — xp < —1 S mpl Method*
Xy Xy £ =3 X 1 eX
2+ x4
X, xy2 0 . . . ;
b. maximize 3%y + X, The subject of this chapter is the number of iterations in the simplex method. We
subject to x Xy = -1 shall also comment on the distinction between theoretically satisfactory and practi-
R \ ; . . .
—Xp o Xy £ =3 cally satisfactory algorithms, with a particular regard to linear programming,
2% 4 x, £ 2
X,Xx,= 0 L
c. maximize X+ X " TYPICAL NUMBER OF ITERATIONS 1
subject to X — Xy < -1 &
—X = X< -3 For practical problems of the form
2%, — x, < 2 :
‘pxe 2 0 .. -
2 maximize > e
Prove ar disprove: A feasible dictionary whose last row reads = = ¥ + } &x; describes i=1

an optimal solution if and only if ¢; < O for all f.

(4.1)

subject to Soagx; <6 (i=1,2,...,m)
i=1

XjZO (j'_—"lyzy-~'7n)

with m < 50 and m + n < 200, Dantzig (1963, p. 160) reported the number of i'ger—
ations as being usually less than 3m/2 and only rarely going to 3m. This observation
agrees with empirical findings obtained more recently for much larger problems: the
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